xref: /openbmc/linux/arch/x86/kernel/irq.c (revision 78700c0a)
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
27 
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
30 
31 atomic_t irq_err_count;
32 
33 /* Function pointer for generic interrupt vector handling */
34 void (*x86_platform_ipi_callback)(void) = NULL;
35 
36 /*
37  * 'what should we do if we get a hw irq event on an illegal vector'.
38  * each architecture has to answer this themselves.
39  */
40 void ack_bad_irq(unsigned int irq)
41 {
42 	if (printk_ratelimit())
43 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
44 
45 	/*
46 	 * Currently unexpected vectors happen only on SMP and APIC.
47 	 * We _must_ ack these because every local APIC has only N
48 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 	 * holds up an irq slot - in excessive cases (when multiple
50 	 * unexpected vectors occur) that might lock up the APIC
51 	 * completely.
52 	 * But only ack when the APIC is enabled -AK
53 	 */
54 	ack_APIC_irq();
55 }
56 
57 #define irq_stats(x)		(&per_cpu(irq_stat, x))
58 /*
59  * /proc/interrupts printing for arch specific interrupts
60  */
61 int arch_show_interrupts(struct seq_file *p, int prec)
62 {
63 	int j;
64 
65 	seq_printf(p, "%*s: ", prec, "NMI");
66 	for_each_online_cpu(j)
67 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68 	seq_puts(p, "  Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70 	seq_printf(p, "%*s: ", prec, "LOC");
71 	for_each_online_cpu(j)
72 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73 	seq_puts(p, "  Local timer interrupts\n");
74 
75 	seq_printf(p, "%*s: ", prec, "SPU");
76 	for_each_online_cpu(j)
77 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78 	seq_puts(p, "  Spurious interrupts\n");
79 	seq_printf(p, "%*s: ", prec, "PMI");
80 	for_each_online_cpu(j)
81 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82 	seq_puts(p, "  Performance monitoring interrupts\n");
83 	seq_printf(p, "%*s: ", prec, "IWI");
84 	for_each_online_cpu(j)
85 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86 	seq_puts(p, "  IRQ work interrupts\n");
87 	seq_printf(p, "%*s: ", prec, "RTR");
88 	for_each_online_cpu(j)
89 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90 	seq_puts(p, "  APIC ICR read retries\n");
91 #endif
92 	if (x86_platform_ipi_callback) {
93 		seq_printf(p, "%*s: ", prec, "PLT");
94 		for_each_online_cpu(j)
95 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
96 		seq_puts(p, "  Platform interrupts\n");
97 	}
98 #ifdef CONFIG_SMP
99 	seq_printf(p, "%*s: ", prec, "RES");
100 	for_each_online_cpu(j)
101 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102 	seq_puts(p, "  Rescheduling interrupts\n");
103 	seq_printf(p, "%*s: ", prec, "CAL");
104 	for_each_online_cpu(j)
105 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
106 					irq_stats(j)->irq_tlb_count);
107 	seq_puts(p, "  Function call interrupts\n");
108 	seq_printf(p, "%*s: ", prec, "TLB");
109 	for_each_online_cpu(j)
110 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
111 	seq_puts(p, "  TLB shootdowns\n");
112 #endif
113 #ifdef CONFIG_X86_THERMAL_VECTOR
114 	seq_printf(p, "%*s: ", prec, "TRM");
115 	for_each_online_cpu(j)
116 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
117 	seq_puts(p, "  Thermal event interrupts\n");
118 #endif
119 #ifdef CONFIG_X86_MCE_THRESHOLD
120 	seq_printf(p, "%*s: ", prec, "THR");
121 	for_each_online_cpu(j)
122 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
123 	seq_puts(p, "  Threshold APIC interrupts\n");
124 #endif
125 #ifdef CONFIG_X86_MCE_AMD
126 	seq_printf(p, "%*s: ", prec, "DFR");
127 	for_each_online_cpu(j)
128 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
129 	seq_puts(p, "  Deferred Error APIC interrupts\n");
130 #endif
131 #ifdef CONFIG_X86_MCE
132 	seq_printf(p, "%*s: ", prec, "MCE");
133 	for_each_online_cpu(j)
134 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
135 	seq_puts(p, "  Machine check exceptions\n");
136 	seq_printf(p, "%*s: ", prec, "MCP");
137 	for_each_online_cpu(j)
138 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
139 	seq_puts(p, "  Machine check polls\n");
140 #endif
141 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
142 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
143 		seq_printf(p, "%*s: ", prec, "HYP");
144 		for_each_online_cpu(j)
145 			seq_printf(p, "%10u ",
146 				   irq_stats(j)->irq_hv_callback_count);
147 		seq_puts(p, "  Hypervisor callback interrupts\n");
148 	}
149 #endif
150 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
151 #if defined(CONFIG_X86_IO_APIC)
152 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
153 #endif
154 #ifdef CONFIG_HAVE_KVM
155 	seq_printf(p, "%*s: ", prec, "PIN");
156 	for_each_online_cpu(j)
157 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
158 	seq_puts(p, "  Posted-interrupt notification event\n");
159 
160 	seq_printf(p, "%*s: ", prec, "PIW");
161 	for_each_online_cpu(j)
162 		seq_printf(p, "%10u ",
163 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
164 	seq_puts(p, "  Posted-interrupt wakeup event\n");
165 #endif
166 	return 0;
167 }
168 
169 /*
170  * /proc/stat helpers
171  */
172 u64 arch_irq_stat_cpu(unsigned int cpu)
173 {
174 	u64 sum = irq_stats(cpu)->__nmi_count;
175 
176 #ifdef CONFIG_X86_LOCAL_APIC
177 	sum += irq_stats(cpu)->apic_timer_irqs;
178 	sum += irq_stats(cpu)->irq_spurious_count;
179 	sum += irq_stats(cpu)->apic_perf_irqs;
180 	sum += irq_stats(cpu)->apic_irq_work_irqs;
181 	sum += irq_stats(cpu)->icr_read_retry_count;
182 #endif
183 	if (x86_platform_ipi_callback)
184 		sum += irq_stats(cpu)->x86_platform_ipis;
185 #ifdef CONFIG_SMP
186 	sum += irq_stats(cpu)->irq_resched_count;
187 	sum += irq_stats(cpu)->irq_call_count;
188 #endif
189 #ifdef CONFIG_X86_THERMAL_VECTOR
190 	sum += irq_stats(cpu)->irq_thermal_count;
191 #endif
192 #ifdef CONFIG_X86_MCE_THRESHOLD
193 	sum += irq_stats(cpu)->irq_threshold_count;
194 #endif
195 #ifdef CONFIG_X86_MCE
196 	sum += per_cpu(mce_exception_count, cpu);
197 	sum += per_cpu(mce_poll_count, cpu);
198 #endif
199 	return sum;
200 }
201 
202 u64 arch_irq_stat(void)
203 {
204 	u64 sum = atomic_read(&irq_err_count);
205 	return sum;
206 }
207 
208 
209 /*
210  * do_IRQ handles all normal device IRQ's (the special
211  * SMP cross-CPU interrupts have their own specific
212  * handlers).
213  */
214 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
215 {
216 	struct pt_regs *old_regs = set_irq_regs(regs);
217 	struct irq_desc * desc;
218 	/* high bit used in ret_from_ code  */
219 	unsigned vector = ~regs->orig_ax;
220 
221 	/*
222 	 * NB: Unlike exception entries, IRQ entries do not reliably
223 	 * handle context tracking in the low-level entry code.  This is
224 	 * because syscall entries execute briefly with IRQs on before
225 	 * updating context tracking state, so we can take an IRQ from
226 	 * kernel mode with CONTEXT_USER.  The low-level entry code only
227 	 * updates the context if we came from user mode, so we won't
228 	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
229 	 * code is cleaned up enough that we can cleanly defer enabling
230 	 * IRQs.
231 	 */
232 
233 	entering_irq();
234 
235 	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
236 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
237 
238 	desc = __this_cpu_read(vector_irq[vector]);
239 
240 	if (!handle_irq(desc, regs)) {
241 		ack_APIC_irq();
242 
243 		if (desc != VECTOR_RETRIGGERED) {
244 			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
245 					     __func__, smp_processor_id(),
246 					     vector);
247 		} else {
248 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
249 		}
250 	}
251 
252 	exiting_irq();
253 
254 	set_irq_regs(old_regs);
255 	return 1;
256 }
257 
258 /*
259  * Handler for X86_PLATFORM_IPI_VECTOR.
260  */
261 void __smp_x86_platform_ipi(void)
262 {
263 	inc_irq_stat(x86_platform_ipis);
264 
265 	if (x86_platform_ipi_callback)
266 		x86_platform_ipi_callback();
267 }
268 
269 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
270 {
271 	struct pt_regs *old_regs = set_irq_regs(regs);
272 
273 	entering_ack_irq();
274 	__smp_x86_platform_ipi();
275 	exiting_irq();
276 	set_irq_regs(old_regs);
277 }
278 
279 #ifdef CONFIG_HAVE_KVM
280 static void dummy_handler(void) {}
281 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
282 
283 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
284 {
285 	if (handler)
286 		kvm_posted_intr_wakeup_handler = handler;
287 	else
288 		kvm_posted_intr_wakeup_handler = dummy_handler;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
291 
292 /*
293  * Handler for POSTED_INTERRUPT_VECTOR.
294  */
295 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
296 {
297 	struct pt_regs *old_regs = set_irq_regs(regs);
298 
299 	entering_ack_irq();
300 	inc_irq_stat(kvm_posted_intr_ipis);
301 	exiting_irq();
302 	set_irq_regs(old_regs);
303 }
304 
305 /*
306  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
307  */
308 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
309 {
310 	struct pt_regs *old_regs = set_irq_regs(regs);
311 
312 	entering_ack_irq();
313 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
314 	kvm_posted_intr_wakeup_handler();
315 	exiting_irq();
316 	set_irq_regs(old_regs);
317 }
318 #endif
319 
320 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
321 {
322 	struct pt_regs *old_regs = set_irq_regs(regs);
323 
324 	entering_ack_irq();
325 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
326 	__smp_x86_platform_ipi();
327 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
328 	exiting_irq();
329 	set_irq_regs(old_regs);
330 }
331 
332 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
333 
334 #ifdef CONFIG_HOTPLUG_CPU
335 
336 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
337  * below, which is protected by stop_machine().  Putting them on the stack
338  * results in a stack frame overflow.  Dynamically allocating could result in a
339  * failure so declare these two cpumasks as global.
340  */
341 static struct cpumask affinity_new, online_new;
342 
343 /*
344  * This cpu is going to be removed and its vectors migrated to the remaining
345  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
346  * This function is protected by stop_machine().
347  */
348 int check_irq_vectors_for_cpu_disable(void)
349 {
350 	unsigned int this_cpu, vector, this_count, count;
351 	struct irq_desc *desc;
352 	struct irq_data *data;
353 	int cpu;
354 
355 	this_cpu = smp_processor_id();
356 	cpumask_copy(&online_new, cpu_online_mask);
357 	cpumask_clear_cpu(this_cpu, &online_new);
358 
359 	this_count = 0;
360 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
361 		desc = __this_cpu_read(vector_irq[vector]);
362 		if (IS_ERR_OR_NULL(desc))
363 			continue;
364 		/*
365 		 * Protect against concurrent action removal, affinity
366 		 * changes etc.
367 		 */
368 		raw_spin_lock(&desc->lock);
369 		data = irq_desc_get_irq_data(desc);
370 		cpumask_copy(&affinity_new,
371 			     irq_data_get_affinity_mask(data));
372 		cpumask_clear_cpu(this_cpu, &affinity_new);
373 
374 		/* Do not count inactive or per-cpu irqs. */
375 		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
376 			raw_spin_unlock(&desc->lock);
377 			continue;
378 		}
379 
380 		raw_spin_unlock(&desc->lock);
381 		/*
382 		 * A single irq may be mapped to multiple cpu's
383 		 * vector_irq[] (for example IOAPIC cluster mode).  In
384 		 * this case we have two possibilities:
385 		 *
386 		 * 1) the resulting affinity mask is empty; that is
387 		 * this the down'd cpu is the last cpu in the irq's
388 		 * affinity mask, or
389 		 *
390 		 * 2) the resulting affinity mask is no longer a
391 		 * subset of the online cpus but the affinity mask is
392 		 * not zero; that is the down'd cpu is the last online
393 		 * cpu in a user set affinity mask.
394 		 */
395 		if (cpumask_empty(&affinity_new) ||
396 		    !cpumask_subset(&affinity_new, &online_new))
397 			this_count++;
398 	}
399 
400 	count = 0;
401 	for_each_online_cpu(cpu) {
402 		if (cpu == this_cpu)
403 			continue;
404 		/*
405 		 * We scan from FIRST_EXTERNAL_VECTOR to first system
406 		 * vector. If the vector is marked in the used vectors
407 		 * bitmap or an irq is assigned to it, we don't count
408 		 * it as available.
409 		 *
410 		 * As this is an inaccurate snapshot anyway, we can do
411 		 * this w/o holding vector_lock.
412 		 */
413 		for (vector = FIRST_EXTERNAL_VECTOR;
414 		     vector < first_system_vector; vector++) {
415 			if (!test_bit(vector, used_vectors) &&
416 			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
417 			    count++;
418 		}
419 	}
420 
421 	if (count < this_count) {
422 		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
423 			this_cpu, this_count, count);
424 		return -ERANGE;
425 	}
426 	return 0;
427 }
428 
429 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
430 void fixup_irqs(void)
431 {
432 	unsigned int irq, vector;
433 	static int warned;
434 	struct irq_desc *desc;
435 	struct irq_data *data;
436 	struct irq_chip *chip;
437 	int ret;
438 
439 	for_each_irq_desc(irq, desc) {
440 		int break_affinity = 0;
441 		int set_affinity = 1;
442 		const struct cpumask *affinity;
443 
444 		if (!desc)
445 			continue;
446 		if (irq == 2)
447 			continue;
448 
449 		/* interrupt's are disabled at this point */
450 		raw_spin_lock(&desc->lock);
451 
452 		data = irq_desc_get_irq_data(desc);
453 		affinity = irq_data_get_affinity_mask(data);
454 		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
455 		    cpumask_subset(affinity, cpu_online_mask)) {
456 			raw_spin_unlock(&desc->lock);
457 			continue;
458 		}
459 
460 		/*
461 		 * Complete the irq move. This cpu is going down and for
462 		 * non intr-remapping case, we can't wait till this interrupt
463 		 * arrives at this cpu before completing the irq move.
464 		 */
465 		irq_force_complete_move(desc);
466 
467 		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
468 			break_affinity = 1;
469 			affinity = cpu_online_mask;
470 		}
471 
472 		chip = irq_data_get_irq_chip(data);
473 		/*
474 		 * The interrupt descriptor might have been cleaned up
475 		 * already, but it is not yet removed from the radix tree
476 		 */
477 		if (!chip) {
478 			raw_spin_unlock(&desc->lock);
479 			continue;
480 		}
481 
482 		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
483 			chip->irq_mask(data);
484 
485 		if (chip->irq_set_affinity) {
486 			ret = chip->irq_set_affinity(data, affinity, true);
487 			if (ret == -ENOSPC)
488 				pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
489 		} else {
490 			if (!(warned++))
491 				set_affinity = 0;
492 		}
493 
494 		/*
495 		 * We unmask if the irq was not marked masked by the
496 		 * core code. That respects the lazy irq disable
497 		 * behaviour.
498 		 */
499 		if (!irqd_can_move_in_process_context(data) &&
500 		    !irqd_irq_masked(data) && chip->irq_unmask)
501 			chip->irq_unmask(data);
502 
503 		raw_spin_unlock(&desc->lock);
504 
505 		if (break_affinity && set_affinity)
506 			pr_notice("Broke affinity for irq %i\n", irq);
507 		else if (!set_affinity)
508 			pr_notice("Cannot set affinity for irq %i\n", irq);
509 	}
510 
511 	/*
512 	 * We can remove mdelay() and then send spuriuous interrupts to
513 	 * new cpu targets for all the irqs that were handled previously by
514 	 * this cpu. While it works, I have seen spurious interrupt messages
515 	 * (nothing wrong but still...).
516 	 *
517 	 * So for now, retain mdelay(1) and check the IRR and then send those
518 	 * interrupts to new targets as this cpu is already offlined...
519 	 */
520 	mdelay(1);
521 
522 	/*
523 	 * We can walk the vector array of this cpu without holding
524 	 * vector_lock because the cpu is already marked !online, so
525 	 * nothing else will touch it.
526 	 */
527 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
528 		unsigned int irr;
529 
530 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
531 			continue;
532 
533 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
534 		if (irr  & (1 << (vector % 32))) {
535 			desc = __this_cpu_read(vector_irq[vector]);
536 
537 			raw_spin_lock(&desc->lock);
538 			data = irq_desc_get_irq_data(desc);
539 			chip = irq_data_get_irq_chip(data);
540 			if (chip->irq_retrigger) {
541 				chip->irq_retrigger(data);
542 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
543 			}
544 			raw_spin_unlock(&desc->lock);
545 		}
546 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
547 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
548 	}
549 }
550 #endif
551