1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/idle.h> 18 #include <asm/mce.h> 19 #include <asm/hw_irq.h> 20 #include <asm/desc.h> 21 22 #define CREATE_TRACE_POINTS 23 #include <asm/trace/irq_vectors.h> 24 25 atomic_t irq_err_count; 26 27 /* Function pointer for generic interrupt vector handling */ 28 void (*x86_platform_ipi_callback)(void) = NULL; 29 30 /* 31 * 'what should we do if we get a hw irq event on an illegal vector'. 32 * each architecture has to answer this themselves. 33 */ 34 void ack_bad_irq(unsigned int irq) 35 { 36 if (printk_ratelimit()) 37 pr_err("unexpected IRQ trap at vector %02x\n", irq); 38 39 /* 40 * Currently unexpected vectors happen only on SMP and APIC. 41 * We _must_ ack these because every local APIC has only N 42 * irq slots per priority level, and a 'hanging, unacked' IRQ 43 * holds up an irq slot - in excessive cases (when multiple 44 * unexpected vectors occur) that might lock up the APIC 45 * completely. 46 * But only ack when the APIC is enabled -AK 47 */ 48 ack_APIC_irq(); 49 } 50 51 #define irq_stats(x) (&per_cpu(irq_stat, x)) 52 /* 53 * /proc/interrupts printing for arch specific interrupts 54 */ 55 int arch_show_interrupts(struct seq_file *p, int prec) 56 { 57 int j; 58 59 seq_printf(p, "%*s: ", prec, "NMI"); 60 for_each_online_cpu(j) 61 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 62 seq_printf(p, " Non-maskable interrupts\n"); 63 #ifdef CONFIG_X86_LOCAL_APIC 64 seq_printf(p, "%*s: ", prec, "LOC"); 65 for_each_online_cpu(j) 66 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 67 seq_printf(p, " Local timer interrupts\n"); 68 69 seq_printf(p, "%*s: ", prec, "SPU"); 70 for_each_online_cpu(j) 71 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 72 seq_printf(p, " Spurious interrupts\n"); 73 seq_printf(p, "%*s: ", prec, "PMI"); 74 for_each_online_cpu(j) 75 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 76 seq_printf(p, " Performance monitoring interrupts\n"); 77 seq_printf(p, "%*s: ", prec, "IWI"); 78 for_each_online_cpu(j) 79 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 80 seq_printf(p, " IRQ work interrupts\n"); 81 seq_printf(p, "%*s: ", prec, "RTR"); 82 for_each_online_cpu(j) 83 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 84 seq_printf(p, " APIC ICR read retries\n"); 85 #endif 86 if (x86_platform_ipi_callback) { 87 seq_printf(p, "%*s: ", prec, "PLT"); 88 for_each_online_cpu(j) 89 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 90 seq_printf(p, " Platform interrupts\n"); 91 } 92 #ifdef CONFIG_SMP 93 seq_printf(p, "%*s: ", prec, "RES"); 94 for_each_online_cpu(j) 95 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 96 seq_printf(p, " Rescheduling interrupts\n"); 97 seq_printf(p, "%*s: ", prec, "CAL"); 98 for_each_online_cpu(j) 99 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count - 100 irq_stats(j)->irq_tlb_count); 101 seq_printf(p, " Function call interrupts\n"); 102 seq_printf(p, "%*s: ", prec, "TLB"); 103 for_each_online_cpu(j) 104 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 105 seq_printf(p, " TLB shootdowns\n"); 106 #endif 107 #ifdef CONFIG_X86_THERMAL_VECTOR 108 seq_printf(p, "%*s: ", prec, "TRM"); 109 for_each_online_cpu(j) 110 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 111 seq_printf(p, " Thermal event interrupts\n"); 112 #endif 113 #ifdef CONFIG_X86_MCE_THRESHOLD 114 seq_printf(p, "%*s: ", prec, "THR"); 115 for_each_online_cpu(j) 116 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 117 seq_printf(p, " Threshold APIC interrupts\n"); 118 #endif 119 #ifdef CONFIG_X86_MCE 120 seq_printf(p, "%*s: ", prec, "MCE"); 121 for_each_online_cpu(j) 122 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 123 seq_printf(p, " Machine check exceptions\n"); 124 seq_printf(p, "%*s: ", prec, "MCP"); 125 for_each_online_cpu(j) 126 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 127 seq_printf(p, " Machine check polls\n"); 128 #endif 129 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) 130 seq_printf(p, "%*s: ", prec, "THR"); 131 for_each_online_cpu(j) 132 seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count); 133 seq_printf(p, " Hypervisor callback interrupts\n"); 134 #endif 135 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 136 #if defined(CONFIG_X86_IO_APIC) 137 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 138 #endif 139 return 0; 140 } 141 142 /* 143 * /proc/stat helpers 144 */ 145 u64 arch_irq_stat_cpu(unsigned int cpu) 146 { 147 u64 sum = irq_stats(cpu)->__nmi_count; 148 149 #ifdef CONFIG_X86_LOCAL_APIC 150 sum += irq_stats(cpu)->apic_timer_irqs; 151 sum += irq_stats(cpu)->irq_spurious_count; 152 sum += irq_stats(cpu)->apic_perf_irqs; 153 sum += irq_stats(cpu)->apic_irq_work_irqs; 154 sum += irq_stats(cpu)->icr_read_retry_count; 155 #endif 156 if (x86_platform_ipi_callback) 157 sum += irq_stats(cpu)->x86_platform_ipis; 158 #ifdef CONFIG_SMP 159 sum += irq_stats(cpu)->irq_resched_count; 160 sum += irq_stats(cpu)->irq_call_count; 161 #endif 162 #ifdef CONFIG_X86_THERMAL_VECTOR 163 sum += irq_stats(cpu)->irq_thermal_count; 164 #endif 165 #ifdef CONFIG_X86_MCE_THRESHOLD 166 sum += irq_stats(cpu)->irq_threshold_count; 167 #endif 168 #ifdef CONFIG_X86_MCE 169 sum += per_cpu(mce_exception_count, cpu); 170 sum += per_cpu(mce_poll_count, cpu); 171 #endif 172 return sum; 173 } 174 175 u64 arch_irq_stat(void) 176 { 177 u64 sum = atomic_read(&irq_err_count); 178 return sum; 179 } 180 181 182 /* 183 * do_IRQ handles all normal device IRQ's (the special 184 * SMP cross-CPU interrupts have their own specific 185 * handlers). 186 */ 187 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 188 { 189 struct pt_regs *old_regs = set_irq_regs(regs); 190 191 /* high bit used in ret_from_ code */ 192 unsigned vector = ~regs->orig_ax; 193 unsigned irq; 194 195 irq_enter(); 196 exit_idle(); 197 198 irq = __this_cpu_read(vector_irq[vector]); 199 200 if (!handle_irq(irq, regs)) { 201 ack_APIC_irq(); 202 203 if (irq != VECTOR_RETRIGGERED) { 204 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n", 205 __func__, smp_processor_id(), 206 vector, irq); 207 } else { 208 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); 209 } 210 } 211 212 irq_exit(); 213 214 set_irq_regs(old_regs); 215 return 1; 216 } 217 218 /* 219 * Handler for X86_PLATFORM_IPI_VECTOR. 220 */ 221 void __smp_x86_platform_ipi(void) 222 { 223 inc_irq_stat(x86_platform_ipis); 224 225 if (x86_platform_ipi_callback) 226 x86_platform_ipi_callback(); 227 } 228 229 __visible void smp_x86_platform_ipi(struct pt_regs *regs) 230 { 231 struct pt_regs *old_regs = set_irq_regs(regs); 232 233 entering_ack_irq(); 234 __smp_x86_platform_ipi(); 235 exiting_irq(); 236 set_irq_regs(old_regs); 237 } 238 239 #ifdef CONFIG_HAVE_KVM 240 /* 241 * Handler for POSTED_INTERRUPT_VECTOR. 242 */ 243 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 244 { 245 struct pt_regs *old_regs = set_irq_regs(regs); 246 247 ack_APIC_irq(); 248 249 irq_enter(); 250 251 exit_idle(); 252 253 inc_irq_stat(kvm_posted_intr_ipis); 254 255 irq_exit(); 256 257 set_irq_regs(old_regs); 258 } 259 #endif 260 261 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs) 262 { 263 struct pt_regs *old_regs = set_irq_regs(regs); 264 265 entering_ack_irq(); 266 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 267 __smp_x86_platform_ipi(); 268 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 269 exiting_irq(); 270 set_irq_regs(old_regs); 271 } 272 273 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 274 275 #ifdef CONFIG_HOTPLUG_CPU 276 277 /* These two declarations are only used in check_irq_vectors_for_cpu_disable() 278 * below, which is protected by stop_machine(). Putting them on the stack 279 * results in a stack frame overflow. Dynamically allocating could result in a 280 * failure so declare these two cpumasks as global. 281 */ 282 static struct cpumask affinity_new, online_new; 283 284 /* 285 * This cpu is going to be removed and its vectors migrated to the remaining 286 * online cpus. Check to see if there are enough vectors in the remaining cpus. 287 * This function is protected by stop_machine(). 288 */ 289 int check_irq_vectors_for_cpu_disable(void) 290 { 291 int irq, cpu; 292 unsigned int this_cpu, vector, this_count, count; 293 struct irq_desc *desc; 294 struct irq_data *data; 295 296 this_cpu = smp_processor_id(); 297 cpumask_copy(&online_new, cpu_online_mask); 298 cpu_clear(this_cpu, online_new); 299 300 this_count = 0; 301 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 302 irq = __this_cpu_read(vector_irq[vector]); 303 if (irq >= 0) { 304 desc = irq_to_desc(irq); 305 data = irq_desc_get_irq_data(desc); 306 cpumask_copy(&affinity_new, data->affinity); 307 cpu_clear(this_cpu, affinity_new); 308 309 /* Do not count inactive or per-cpu irqs. */ 310 if (!irq_has_action(irq) || irqd_is_per_cpu(data)) 311 continue; 312 313 /* 314 * A single irq may be mapped to multiple 315 * cpu's vector_irq[] (for example IOAPIC cluster 316 * mode). In this case we have two 317 * possibilities: 318 * 319 * 1) the resulting affinity mask is empty; that is 320 * this the down'd cpu is the last cpu in the irq's 321 * affinity mask, or 322 * 323 * 2) the resulting affinity mask is no longer 324 * a subset of the online cpus but the affinity 325 * mask is not zero; that is the down'd cpu is the 326 * last online cpu in a user set affinity mask. 327 */ 328 if (cpumask_empty(&affinity_new) || 329 !cpumask_subset(&affinity_new, &online_new)) 330 this_count++; 331 } 332 } 333 334 count = 0; 335 for_each_online_cpu(cpu) { 336 if (cpu == this_cpu) 337 continue; 338 /* 339 * We scan from FIRST_EXTERNAL_VECTOR to first system 340 * vector. If the vector is marked in the used vectors 341 * bitmap or an irq is assigned to it, we don't count 342 * it as available. 343 */ 344 for (vector = FIRST_EXTERNAL_VECTOR; 345 vector < first_system_vector; vector++) { 346 if (!test_bit(vector, used_vectors) && 347 per_cpu(vector_irq, cpu)[vector] < 0) 348 count++; 349 } 350 } 351 352 if (count < this_count) { 353 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 354 this_cpu, this_count, count); 355 return -ERANGE; 356 } 357 return 0; 358 } 359 360 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 361 void fixup_irqs(void) 362 { 363 unsigned int irq, vector; 364 static int warned; 365 struct irq_desc *desc; 366 struct irq_data *data; 367 struct irq_chip *chip; 368 int ret; 369 370 for_each_irq_desc(irq, desc) { 371 int break_affinity = 0; 372 int set_affinity = 1; 373 const struct cpumask *affinity; 374 375 if (!desc) 376 continue; 377 if (irq == 2) 378 continue; 379 380 /* interrupt's are disabled at this point */ 381 raw_spin_lock(&desc->lock); 382 383 data = irq_desc_get_irq_data(desc); 384 affinity = data->affinity; 385 if (!irq_has_action(irq) || irqd_is_per_cpu(data) || 386 cpumask_subset(affinity, cpu_online_mask)) { 387 raw_spin_unlock(&desc->lock); 388 continue; 389 } 390 391 /* 392 * Complete the irq move. This cpu is going down and for 393 * non intr-remapping case, we can't wait till this interrupt 394 * arrives at this cpu before completing the irq move. 395 */ 396 irq_force_complete_move(irq); 397 398 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { 399 break_affinity = 1; 400 affinity = cpu_online_mask; 401 } 402 403 chip = irq_data_get_irq_chip(data); 404 if (!irqd_can_move_in_process_context(data) && chip->irq_mask) 405 chip->irq_mask(data); 406 407 if (chip->irq_set_affinity) { 408 ret = chip->irq_set_affinity(data, affinity, true); 409 if (ret == -ENOSPC) 410 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq); 411 } else { 412 if (!(warned++)) 413 set_affinity = 0; 414 } 415 416 /* 417 * We unmask if the irq was not marked masked by the 418 * core code. That respects the lazy irq disable 419 * behaviour. 420 */ 421 if (!irqd_can_move_in_process_context(data) && 422 !irqd_irq_masked(data) && chip->irq_unmask) 423 chip->irq_unmask(data); 424 425 raw_spin_unlock(&desc->lock); 426 427 if (break_affinity && set_affinity) 428 pr_notice("Broke affinity for irq %i\n", irq); 429 else if (!set_affinity) 430 pr_notice("Cannot set affinity for irq %i\n", irq); 431 } 432 433 /* 434 * We can remove mdelay() and then send spuriuous interrupts to 435 * new cpu targets for all the irqs that were handled previously by 436 * this cpu. While it works, I have seen spurious interrupt messages 437 * (nothing wrong but still...). 438 * 439 * So for now, retain mdelay(1) and check the IRR and then send those 440 * interrupts to new targets as this cpu is already offlined... 441 */ 442 mdelay(1); 443 444 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 445 unsigned int irr; 446 447 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED) 448 continue; 449 450 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 451 if (irr & (1 << (vector % 32))) { 452 irq = __this_cpu_read(vector_irq[vector]); 453 454 desc = irq_to_desc(irq); 455 data = irq_desc_get_irq_data(desc); 456 chip = irq_data_get_irq_chip(data); 457 raw_spin_lock(&desc->lock); 458 if (chip->irq_retrigger) { 459 chip->irq_retrigger(data); 460 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 461 } 462 raw_spin_unlock(&desc->lock); 463 } 464 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 465 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED); 466 } 467 } 468 #endif 469