1 /* 2 * Common interrupt code for 32 and 64 bit 3 */ 4 #include <linux/cpu.h> 5 #include <linux/interrupt.h> 6 #include <linux/kernel_stat.h> 7 #include <linux/of.h> 8 #include <linux/seq_file.h> 9 #include <linux/smp.h> 10 #include <linux/ftrace.h> 11 #include <linux/delay.h> 12 #include <linux/export.h> 13 14 #include <asm/apic.h> 15 #include <asm/io_apic.h> 16 #include <asm/irq.h> 17 #include <asm/mce.h> 18 #include <asm/hw_irq.h> 19 #include <asm/desc.h> 20 21 #define CREATE_TRACE_POINTS 22 #include <asm/trace/irq_vectors.h> 23 24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 25 EXPORT_PER_CPU_SYMBOL(irq_stat); 26 27 DEFINE_PER_CPU(struct pt_regs *, irq_regs); 28 EXPORT_PER_CPU_SYMBOL(irq_regs); 29 30 atomic_t irq_err_count; 31 32 /* Function pointer for generic interrupt vector handling */ 33 void (*x86_platform_ipi_callback)(void) = NULL; 34 35 /* 36 * 'what should we do if we get a hw irq event on an illegal vector'. 37 * each architecture has to answer this themselves. 38 */ 39 void ack_bad_irq(unsigned int irq) 40 { 41 if (printk_ratelimit()) 42 pr_err("unexpected IRQ trap at vector %02x\n", irq); 43 44 /* 45 * Currently unexpected vectors happen only on SMP and APIC. 46 * We _must_ ack these because every local APIC has only N 47 * irq slots per priority level, and a 'hanging, unacked' IRQ 48 * holds up an irq slot - in excessive cases (when multiple 49 * unexpected vectors occur) that might lock up the APIC 50 * completely. 51 * But only ack when the APIC is enabled -AK 52 */ 53 ack_APIC_irq(); 54 } 55 56 #define irq_stats(x) (&per_cpu(irq_stat, x)) 57 /* 58 * /proc/interrupts printing for arch specific interrupts 59 */ 60 int arch_show_interrupts(struct seq_file *p, int prec) 61 { 62 int j; 63 64 seq_printf(p, "%*s: ", prec, "NMI"); 65 for_each_online_cpu(j) 66 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 67 seq_puts(p, " Non-maskable interrupts\n"); 68 #ifdef CONFIG_X86_LOCAL_APIC 69 seq_printf(p, "%*s: ", prec, "LOC"); 70 for_each_online_cpu(j) 71 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 72 seq_puts(p, " Local timer interrupts\n"); 73 74 seq_printf(p, "%*s: ", prec, "SPU"); 75 for_each_online_cpu(j) 76 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 77 seq_puts(p, " Spurious interrupts\n"); 78 seq_printf(p, "%*s: ", prec, "PMI"); 79 for_each_online_cpu(j) 80 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 81 seq_puts(p, " Performance monitoring interrupts\n"); 82 seq_printf(p, "%*s: ", prec, "IWI"); 83 for_each_online_cpu(j) 84 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 85 seq_puts(p, " IRQ work interrupts\n"); 86 seq_printf(p, "%*s: ", prec, "RTR"); 87 for_each_online_cpu(j) 88 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 89 seq_puts(p, " APIC ICR read retries\n"); 90 #endif 91 if (x86_platform_ipi_callback) { 92 seq_printf(p, "%*s: ", prec, "PLT"); 93 for_each_online_cpu(j) 94 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 95 seq_puts(p, " Platform interrupts\n"); 96 } 97 #ifdef CONFIG_SMP 98 seq_printf(p, "%*s: ", prec, "RES"); 99 for_each_online_cpu(j) 100 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 101 seq_puts(p, " Rescheduling interrupts\n"); 102 seq_printf(p, "%*s: ", prec, "CAL"); 103 for_each_online_cpu(j) 104 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 105 seq_puts(p, " Function call interrupts\n"); 106 seq_printf(p, "%*s: ", prec, "TLB"); 107 for_each_online_cpu(j) 108 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 109 seq_puts(p, " TLB shootdowns\n"); 110 #endif 111 #ifdef CONFIG_X86_THERMAL_VECTOR 112 seq_printf(p, "%*s: ", prec, "TRM"); 113 for_each_online_cpu(j) 114 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 115 seq_puts(p, " Thermal event interrupts\n"); 116 #endif 117 #ifdef CONFIG_X86_MCE_THRESHOLD 118 seq_printf(p, "%*s: ", prec, "THR"); 119 for_each_online_cpu(j) 120 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 121 seq_puts(p, " Threshold APIC interrupts\n"); 122 #endif 123 #ifdef CONFIG_X86_MCE_AMD 124 seq_printf(p, "%*s: ", prec, "DFR"); 125 for_each_online_cpu(j) 126 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); 127 seq_puts(p, " Deferred Error APIC interrupts\n"); 128 #endif 129 #ifdef CONFIG_X86_MCE 130 seq_printf(p, "%*s: ", prec, "MCE"); 131 for_each_online_cpu(j) 132 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 133 seq_puts(p, " Machine check exceptions\n"); 134 seq_printf(p, "%*s: ", prec, "MCP"); 135 for_each_online_cpu(j) 136 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 137 seq_puts(p, " Machine check polls\n"); 138 #endif 139 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) 140 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) { 141 seq_printf(p, "%*s: ", prec, "HYP"); 142 for_each_online_cpu(j) 143 seq_printf(p, "%10u ", 144 irq_stats(j)->irq_hv_callback_count); 145 seq_puts(p, " Hypervisor callback interrupts\n"); 146 } 147 #endif 148 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 149 #if defined(CONFIG_X86_IO_APIC) 150 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 151 #endif 152 #ifdef CONFIG_HAVE_KVM 153 seq_printf(p, "%*s: ", prec, "PIN"); 154 for_each_online_cpu(j) 155 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); 156 seq_puts(p, " Posted-interrupt notification event\n"); 157 158 seq_printf(p, "%*s: ", prec, "PIW"); 159 for_each_online_cpu(j) 160 seq_printf(p, "%10u ", 161 irq_stats(j)->kvm_posted_intr_wakeup_ipis); 162 seq_puts(p, " Posted-interrupt wakeup event\n"); 163 #endif 164 return 0; 165 } 166 167 /* 168 * /proc/stat helpers 169 */ 170 u64 arch_irq_stat_cpu(unsigned int cpu) 171 { 172 u64 sum = irq_stats(cpu)->__nmi_count; 173 174 #ifdef CONFIG_X86_LOCAL_APIC 175 sum += irq_stats(cpu)->apic_timer_irqs; 176 sum += irq_stats(cpu)->irq_spurious_count; 177 sum += irq_stats(cpu)->apic_perf_irqs; 178 sum += irq_stats(cpu)->apic_irq_work_irqs; 179 sum += irq_stats(cpu)->icr_read_retry_count; 180 #endif 181 if (x86_platform_ipi_callback) 182 sum += irq_stats(cpu)->x86_platform_ipis; 183 #ifdef CONFIG_SMP 184 sum += irq_stats(cpu)->irq_resched_count; 185 sum += irq_stats(cpu)->irq_call_count; 186 #endif 187 #ifdef CONFIG_X86_THERMAL_VECTOR 188 sum += irq_stats(cpu)->irq_thermal_count; 189 #endif 190 #ifdef CONFIG_X86_MCE_THRESHOLD 191 sum += irq_stats(cpu)->irq_threshold_count; 192 #endif 193 #ifdef CONFIG_X86_MCE 194 sum += per_cpu(mce_exception_count, cpu); 195 sum += per_cpu(mce_poll_count, cpu); 196 #endif 197 return sum; 198 } 199 200 u64 arch_irq_stat(void) 201 { 202 u64 sum = atomic_read(&irq_err_count); 203 return sum; 204 } 205 206 207 /* 208 * do_IRQ handles all normal device IRQ's (the special 209 * SMP cross-CPU interrupts have their own specific 210 * handlers). 211 */ 212 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 213 { 214 struct pt_regs *old_regs = set_irq_regs(regs); 215 struct irq_desc * desc; 216 /* high bit used in ret_from_ code */ 217 unsigned vector = ~regs->orig_ax; 218 219 /* 220 * NB: Unlike exception entries, IRQ entries do not reliably 221 * handle context tracking in the low-level entry code. This is 222 * because syscall entries execute briefly with IRQs on before 223 * updating context tracking state, so we can take an IRQ from 224 * kernel mode with CONTEXT_USER. The low-level entry code only 225 * updates the context if we came from user mode, so we won't 226 * switch to CONTEXT_KERNEL. We'll fix that once the syscall 227 * code is cleaned up enough that we can cleanly defer enabling 228 * IRQs. 229 */ 230 231 entering_irq(); 232 233 /* entering_irq() tells RCU that we're not quiescent. Check it. */ 234 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); 235 236 desc = __this_cpu_read(vector_irq[vector]); 237 238 if (!handle_irq(desc, regs)) { 239 ack_APIC_irq(); 240 241 if (desc != VECTOR_RETRIGGERED) { 242 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n", 243 __func__, smp_processor_id(), 244 vector); 245 } else { 246 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 247 } 248 } 249 250 exiting_irq(); 251 252 set_irq_regs(old_regs); 253 return 1; 254 } 255 256 /* 257 * Handler for X86_PLATFORM_IPI_VECTOR. 258 */ 259 void __smp_x86_platform_ipi(void) 260 { 261 inc_irq_stat(x86_platform_ipis); 262 263 if (x86_platform_ipi_callback) 264 x86_platform_ipi_callback(); 265 } 266 267 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs) 268 { 269 struct pt_regs *old_regs = set_irq_regs(regs); 270 271 entering_ack_irq(); 272 __smp_x86_platform_ipi(); 273 exiting_irq(); 274 set_irq_regs(old_regs); 275 } 276 277 #ifdef CONFIG_HAVE_KVM 278 static void dummy_handler(void) {} 279 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; 280 281 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) 282 { 283 if (handler) 284 kvm_posted_intr_wakeup_handler = handler; 285 else 286 kvm_posted_intr_wakeup_handler = dummy_handler; 287 } 288 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); 289 290 /* 291 * Handler for POSTED_INTERRUPT_VECTOR. 292 */ 293 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 294 { 295 struct pt_regs *old_regs = set_irq_regs(regs); 296 297 entering_ack_irq(); 298 inc_irq_stat(kvm_posted_intr_ipis); 299 exiting_irq(); 300 set_irq_regs(old_regs); 301 } 302 303 /* 304 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 305 */ 306 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) 307 { 308 struct pt_regs *old_regs = set_irq_regs(regs); 309 310 entering_ack_irq(); 311 inc_irq_stat(kvm_posted_intr_wakeup_ipis); 312 kvm_posted_intr_wakeup_handler(); 313 exiting_irq(); 314 set_irq_regs(old_regs); 315 } 316 #endif 317 318 __visible void __irq_entry smp_trace_x86_platform_ipi(struct pt_regs *regs) 319 { 320 struct pt_regs *old_regs = set_irq_regs(regs); 321 322 entering_ack_irq(); 323 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 324 __smp_x86_platform_ipi(); 325 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 326 exiting_irq(); 327 set_irq_regs(old_regs); 328 } 329 330 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 331 332 #ifdef CONFIG_HOTPLUG_CPU 333 334 /* These two declarations are only used in check_irq_vectors_for_cpu_disable() 335 * below, which is protected by stop_machine(). Putting them on the stack 336 * results in a stack frame overflow. Dynamically allocating could result in a 337 * failure so declare these two cpumasks as global. 338 */ 339 static struct cpumask affinity_new, online_new; 340 341 /* 342 * This cpu is going to be removed and its vectors migrated to the remaining 343 * online cpus. Check to see if there are enough vectors in the remaining cpus. 344 * This function is protected by stop_machine(). 345 */ 346 int check_irq_vectors_for_cpu_disable(void) 347 { 348 unsigned int this_cpu, vector, this_count, count; 349 struct irq_desc *desc; 350 struct irq_data *data; 351 int cpu; 352 353 this_cpu = smp_processor_id(); 354 cpumask_copy(&online_new, cpu_online_mask); 355 cpumask_clear_cpu(this_cpu, &online_new); 356 357 this_count = 0; 358 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 359 desc = __this_cpu_read(vector_irq[vector]); 360 if (IS_ERR_OR_NULL(desc)) 361 continue; 362 /* 363 * Protect against concurrent action removal, affinity 364 * changes etc. 365 */ 366 raw_spin_lock(&desc->lock); 367 data = irq_desc_get_irq_data(desc); 368 cpumask_copy(&affinity_new, 369 irq_data_get_affinity_mask(data)); 370 cpumask_clear_cpu(this_cpu, &affinity_new); 371 372 /* Do not count inactive or per-cpu irqs. */ 373 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) { 374 raw_spin_unlock(&desc->lock); 375 continue; 376 } 377 378 raw_spin_unlock(&desc->lock); 379 /* 380 * A single irq may be mapped to multiple cpu's 381 * vector_irq[] (for example IOAPIC cluster mode). In 382 * this case we have two possibilities: 383 * 384 * 1) the resulting affinity mask is empty; that is 385 * this the down'd cpu is the last cpu in the irq's 386 * affinity mask, or 387 * 388 * 2) the resulting affinity mask is no longer a 389 * subset of the online cpus but the affinity mask is 390 * not zero; that is the down'd cpu is the last online 391 * cpu in a user set affinity mask. 392 */ 393 if (cpumask_empty(&affinity_new) || 394 !cpumask_subset(&affinity_new, &online_new)) 395 this_count++; 396 } 397 /* No need to check any further. */ 398 if (!this_count) 399 return 0; 400 401 count = 0; 402 for_each_online_cpu(cpu) { 403 if (cpu == this_cpu) 404 continue; 405 /* 406 * We scan from FIRST_EXTERNAL_VECTOR to first system 407 * vector. If the vector is marked in the used vectors 408 * bitmap or an irq is assigned to it, we don't count 409 * it as available. 410 * 411 * As this is an inaccurate snapshot anyway, we can do 412 * this w/o holding vector_lock. 413 */ 414 for (vector = FIRST_EXTERNAL_VECTOR; 415 vector < first_system_vector; vector++) { 416 if (!test_bit(vector, used_vectors) && 417 IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) { 418 if (++count == this_count) 419 return 0; 420 } 421 } 422 } 423 424 if (count < this_count) { 425 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 426 this_cpu, this_count, count); 427 return -ERANGE; 428 } 429 return 0; 430 } 431 432 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 433 void fixup_irqs(void) 434 { 435 unsigned int irr, vector; 436 struct irq_desc *desc; 437 struct irq_data *data; 438 struct irq_chip *chip; 439 440 irq_migrate_all_off_this_cpu(); 441 442 /* 443 * We can remove mdelay() and then send spuriuous interrupts to 444 * new cpu targets for all the irqs that were handled previously by 445 * this cpu. While it works, I have seen spurious interrupt messages 446 * (nothing wrong but still...). 447 * 448 * So for now, retain mdelay(1) and check the IRR and then send those 449 * interrupts to new targets as this cpu is already offlined... 450 */ 451 mdelay(1); 452 453 /* 454 * We can walk the vector array of this cpu without holding 455 * vector_lock because the cpu is already marked !online, so 456 * nothing else will touch it. 457 */ 458 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 459 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) 460 continue; 461 462 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 463 if (irr & (1 << (vector % 32))) { 464 desc = __this_cpu_read(vector_irq[vector]); 465 466 raw_spin_lock(&desc->lock); 467 data = irq_desc_get_irq_data(desc); 468 chip = irq_data_get_irq_chip(data); 469 if (chip->irq_retrigger) { 470 chip->irq_retrigger(data); 471 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 472 } 473 raw_spin_unlock(&desc->lock); 474 } 475 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 476 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 477 } 478 } 479 #endif 480