xref: /openbmc/linux/arch/x86/kernel/irq.c (revision 3b27d139)
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
27 
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
30 
31 atomic_t irq_err_count;
32 
33 /* Function pointer for generic interrupt vector handling */
34 void (*x86_platform_ipi_callback)(void) = NULL;
35 
36 /*
37  * 'what should we do if we get a hw irq event on an illegal vector'.
38  * each architecture has to answer this themselves.
39  */
40 void ack_bad_irq(unsigned int irq)
41 {
42 	if (printk_ratelimit())
43 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
44 
45 	/*
46 	 * Currently unexpected vectors happen only on SMP and APIC.
47 	 * We _must_ ack these because every local APIC has only N
48 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 	 * holds up an irq slot - in excessive cases (when multiple
50 	 * unexpected vectors occur) that might lock up the APIC
51 	 * completely.
52 	 * But only ack when the APIC is enabled -AK
53 	 */
54 	ack_APIC_irq();
55 }
56 
57 #define irq_stats(x)		(&per_cpu(irq_stat, x))
58 /*
59  * /proc/interrupts printing for arch specific interrupts
60  */
61 int arch_show_interrupts(struct seq_file *p, int prec)
62 {
63 	int j;
64 
65 	seq_printf(p, "%*s: ", prec, "NMI");
66 	for_each_online_cpu(j)
67 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68 	seq_puts(p, "  Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70 	seq_printf(p, "%*s: ", prec, "LOC");
71 	for_each_online_cpu(j)
72 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73 	seq_puts(p, "  Local timer interrupts\n");
74 
75 	seq_printf(p, "%*s: ", prec, "SPU");
76 	for_each_online_cpu(j)
77 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78 	seq_puts(p, "  Spurious interrupts\n");
79 	seq_printf(p, "%*s: ", prec, "PMI");
80 	for_each_online_cpu(j)
81 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82 	seq_puts(p, "  Performance monitoring interrupts\n");
83 	seq_printf(p, "%*s: ", prec, "IWI");
84 	for_each_online_cpu(j)
85 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86 	seq_puts(p, "  IRQ work interrupts\n");
87 	seq_printf(p, "%*s: ", prec, "RTR");
88 	for_each_online_cpu(j)
89 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90 	seq_puts(p, "  APIC ICR read retries\n");
91 #endif
92 	if (x86_platform_ipi_callback) {
93 		seq_printf(p, "%*s: ", prec, "PLT");
94 		for_each_online_cpu(j)
95 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
96 		seq_puts(p, "  Platform interrupts\n");
97 	}
98 #ifdef CONFIG_SMP
99 	seq_printf(p, "%*s: ", prec, "RES");
100 	for_each_online_cpu(j)
101 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102 	seq_puts(p, "  Rescheduling interrupts\n");
103 	seq_printf(p, "%*s: ", prec, "CAL");
104 	for_each_online_cpu(j)
105 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
106 					irq_stats(j)->irq_tlb_count);
107 	seq_puts(p, "  Function call interrupts\n");
108 	seq_printf(p, "%*s: ", prec, "TLB");
109 	for_each_online_cpu(j)
110 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
111 	seq_puts(p, "  TLB shootdowns\n");
112 #endif
113 #ifdef CONFIG_X86_THERMAL_VECTOR
114 	seq_printf(p, "%*s: ", prec, "TRM");
115 	for_each_online_cpu(j)
116 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
117 	seq_puts(p, "  Thermal event interrupts\n");
118 #endif
119 #ifdef CONFIG_X86_MCE_THRESHOLD
120 	seq_printf(p, "%*s: ", prec, "THR");
121 	for_each_online_cpu(j)
122 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
123 	seq_puts(p, "  Threshold APIC interrupts\n");
124 #endif
125 #ifdef CONFIG_X86_MCE_AMD
126 	seq_printf(p, "%*s: ", prec, "DFR");
127 	for_each_online_cpu(j)
128 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
129 	seq_puts(p, "  Deferred Error APIC interrupts\n");
130 #endif
131 #ifdef CONFIG_X86_MCE
132 	seq_printf(p, "%*s: ", prec, "MCE");
133 	for_each_online_cpu(j)
134 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
135 	seq_puts(p, "  Machine check exceptions\n");
136 	seq_printf(p, "%*s: ", prec, "MCP");
137 	for_each_online_cpu(j)
138 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
139 	seq_puts(p, "  Machine check polls\n");
140 #endif
141 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
142 	seq_printf(p, "%*s: ", prec, "HYP");
143 	for_each_online_cpu(j)
144 		seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count);
145 	seq_puts(p, "  Hypervisor callback interrupts\n");
146 #endif
147 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
148 #if defined(CONFIG_X86_IO_APIC)
149 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
150 #endif
151 #ifdef CONFIG_HAVE_KVM
152 	seq_printf(p, "%*s: ", prec, "PIN");
153 	for_each_online_cpu(j)
154 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
155 	seq_puts(p, "  Posted-interrupt notification event\n");
156 
157 	seq_printf(p, "%*s: ", prec, "PIW");
158 	for_each_online_cpu(j)
159 		seq_printf(p, "%10u ",
160 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
161 	seq_puts(p, "  Posted-interrupt wakeup event\n");
162 #endif
163 	return 0;
164 }
165 
166 /*
167  * /proc/stat helpers
168  */
169 u64 arch_irq_stat_cpu(unsigned int cpu)
170 {
171 	u64 sum = irq_stats(cpu)->__nmi_count;
172 
173 #ifdef CONFIG_X86_LOCAL_APIC
174 	sum += irq_stats(cpu)->apic_timer_irqs;
175 	sum += irq_stats(cpu)->irq_spurious_count;
176 	sum += irq_stats(cpu)->apic_perf_irqs;
177 	sum += irq_stats(cpu)->apic_irq_work_irqs;
178 	sum += irq_stats(cpu)->icr_read_retry_count;
179 #endif
180 	if (x86_platform_ipi_callback)
181 		sum += irq_stats(cpu)->x86_platform_ipis;
182 #ifdef CONFIG_SMP
183 	sum += irq_stats(cpu)->irq_resched_count;
184 	sum += irq_stats(cpu)->irq_call_count;
185 #endif
186 #ifdef CONFIG_X86_THERMAL_VECTOR
187 	sum += irq_stats(cpu)->irq_thermal_count;
188 #endif
189 #ifdef CONFIG_X86_MCE_THRESHOLD
190 	sum += irq_stats(cpu)->irq_threshold_count;
191 #endif
192 #ifdef CONFIG_X86_MCE
193 	sum += per_cpu(mce_exception_count, cpu);
194 	sum += per_cpu(mce_poll_count, cpu);
195 #endif
196 	return sum;
197 }
198 
199 u64 arch_irq_stat(void)
200 {
201 	u64 sum = atomic_read(&irq_err_count);
202 	return sum;
203 }
204 
205 
206 /*
207  * do_IRQ handles all normal device IRQ's (the special
208  * SMP cross-CPU interrupts have their own specific
209  * handlers).
210  */
211 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
212 {
213 	struct pt_regs *old_regs = set_irq_regs(regs);
214 
215 	/* high bit used in ret_from_ code  */
216 	unsigned vector = ~regs->orig_ax;
217 	unsigned irq;
218 
219 	entering_irq();
220 
221 	irq = __this_cpu_read(vector_irq[vector]);
222 
223 	if (!handle_irq(irq, regs)) {
224 		ack_APIC_irq();
225 
226 		if (irq != VECTOR_RETRIGGERED) {
227 			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n",
228 					     __func__, smp_processor_id(),
229 					     vector, irq);
230 		} else {
231 			__this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
232 		}
233 	}
234 
235 	exiting_irq();
236 
237 	set_irq_regs(old_regs);
238 	return 1;
239 }
240 
241 /*
242  * Handler for X86_PLATFORM_IPI_VECTOR.
243  */
244 void __smp_x86_platform_ipi(void)
245 {
246 	inc_irq_stat(x86_platform_ipis);
247 
248 	if (x86_platform_ipi_callback)
249 		x86_platform_ipi_callback();
250 }
251 
252 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
253 {
254 	struct pt_regs *old_regs = set_irq_regs(regs);
255 
256 	entering_ack_irq();
257 	__smp_x86_platform_ipi();
258 	exiting_irq();
259 	set_irq_regs(old_regs);
260 }
261 
262 #ifdef CONFIG_HAVE_KVM
263 static void dummy_handler(void) {}
264 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
265 
266 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
267 {
268 	if (handler)
269 		kvm_posted_intr_wakeup_handler = handler;
270 	else
271 		kvm_posted_intr_wakeup_handler = dummy_handler;
272 }
273 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
274 
275 /*
276  * Handler for POSTED_INTERRUPT_VECTOR.
277  */
278 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
279 {
280 	struct pt_regs *old_regs = set_irq_regs(regs);
281 
282 	entering_ack_irq();
283 	inc_irq_stat(kvm_posted_intr_ipis);
284 	exiting_irq();
285 	set_irq_regs(old_regs);
286 }
287 
288 /*
289  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
290  */
291 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
292 {
293 	struct pt_regs *old_regs = set_irq_regs(regs);
294 
295 	entering_ack_irq();
296 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
297 	kvm_posted_intr_wakeup_handler();
298 	exiting_irq();
299 	set_irq_regs(old_regs);
300 }
301 #endif
302 
303 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
304 {
305 	struct pt_regs *old_regs = set_irq_regs(regs);
306 
307 	entering_ack_irq();
308 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
309 	__smp_x86_platform_ipi();
310 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
311 	exiting_irq();
312 	set_irq_regs(old_regs);
313 }
314 
315 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
316 
317 #ifdef CONFIG_HOTPLUG_CPU
318 
319 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
320  * below, which is protected by stop_machine().  Putting them on the stack
321  * results in a stack frame overflow.  Dynamically allocating could result in a
322  * failure so declare these two cpumasks as global.
323  */
324 static struct cpumask affinity_new, online_new;
325 
326 /*
327  * This cpu is going to be removed and its vectors migrated to the remaining
328  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
329  * This function is protected by stop_machine().
330  */
331 int check_irq_vectors_for_cpu_disable(void)
332 {
333 	int irq, cpu;
334 	unsigned int this_cpu, vector, this_count, count;
335 	struct irq_desc *desc;
336 	struct irq_data *data;
337 
338 	this_cpu = smp_processor_id();
339 	cpumask_copy(&online_new, cpu_online_mask);
340 	cpumask_clear_cpu(this_cpu, &online_new);
341 
342 	this_count = 0;
343 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
344 		irq = __this_cpu_read(vector_irq[vector]);
345 		if (irq >= 0) {
346 			desc = irq_to_desc(irq);
347 			if (!desc)
348 				continue;
349 
350 			/*
351 			 * Protect against concurrent action removal,
352 			 * affinity changes etc.
353 			 */
354 			raw_spin_lock(&desc->lock);
355 			data = irq_desc_get_irq_data(desc);
356 			cpumask_copy(&affinity_new, data->affinity);
357 			cpumask_clear_cpu(this_cpu, &affinity_new);
358 
359 			/* Do not count inactive or per-cpu irqs. */
360 			if (!irq_has_action(irq) || irqd_is_per_cpu(data)) {
361 				raw_spin_unlock(&desc->lock);
362 				continue;
363 			}
364 
365 			raw_spin_unlock(&desc->lock);
366 			/*
367 			 * A single irq may be mapped to multiple
368 			 * cpu's vector_irq[] (for example IOAPIC cluster
369 			 * mode).  In this case we have two
370 			 * possibilities:
371 			 *
372 			 * 1) the resulting affinity mask is empty; that is
373 			 * this the down'd cpu is the last cpu in the irq's
374 			 * affinity mask, or
375 			 *
376 			 * 2) the resulting affinity mask is no longer
377 			 * a subset of the online cpus but the affinity
378 			 * mask is not zero; that is the down'd cpu is the
379 			 * last online cpu in a user set affinity mask.
380 			 */
381 			if (cpumask_empty(&affinity_new) ||
382 			    !cpumask_subset(&affinity_new, &online_new))
383 				this_count++;
384 		}
385 	}
386 
387 	count = 0;
388 	for_each_online_cpu(cpu) {
389 		if (cpu == this_cpu)
390 			continue;
391 		/*
392 		 * We scan from FIRST_EXTERNAL_VECTOR to first system
393 		 * vector. If the vector is marked in the used vectors
394 		 * bitmap or an irq is assigned to it, we don't count
395 		 * it as available.
396 		 *
397 		 * As this is an inaccurate snapshot anyway, we can do
398 		 * this w/o holding vector_lock.
399 		 */
400 		for (vector = FIRST_EXTERNAL_VECTOR;
401 		     vector < first_system_vector; vector++) {
402 			if (!test_bit(vector, used_vectors) &&
403 			    per_cpu(vector_irq, cpu)[vector] < 0)
404 					count++;
405 		}
406 	}
407 
408 	if (count < this_count) {
409 		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
410 			this_cpu, this_count, count);
411 		return -ERANGE;
412 	}
413 	return 0;
414 }
415 
416 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
417 void fixup_irqs(void)
418 {
419 	unsigned int irq, vector;
420 	static int warned;
421 	struct irq_desc *desc;
422 	struct irq_data *data;
423 	struct irq_chip *chip;
424 	int ret;
425 
426 	for_each_irq_desc(irq, desc) {
427 		int break_affinity = 0;
428 		int set_affinity = 1;
429 		const struct cpumask *affinity;
430 
431 		if (!desc)
432 			continue;
433 		if (irq == 2)
434 			continue;
435 
436 		/* interrupt's are disabled at this point */
437 		raw_spin_lock(&desc->lock);
438 
439 		data = irq_desc_get_irq_data(desc);
440 		affinity = data->affinity;
441 		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
442 		    cpumask_subset(affinity, cpu_online_mask)) {
443 			raw_spin_unlock(&desc->lock);
444 			continue;
445 		}
446 
447 		/*
448 		 * Complete the irq move. This cpu is going down and for
449 		 * non intr-remapping case, we can't wait till this interrupt
450 		 * arrives at this cpu before completing the irq move.
451 		 */
452 		irq_force_complete_move(irq);
453 
454 		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
455 			break_affinity = 1;
456 			affinity = cpu_online_mask;
457 		}
458 
459 		chip = irq_data_get_irq_chip(data);
460 		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
461 			chip->irq_mask(data);
462 
463 		if (chip->irq_set_affinity) {
464 			ret = chip->irq_set_affinity(data, affinity, true);
465 			if (ret == -ENOSPC)
466 				pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
467 		} else {
468 			if (!(warned++))
469 				set_affinity = 0;
470 		}
471 
472 		/*
473 		 * We unmask if the irq was not marked masked by the
474 		 * core code. That respects the lazy irq disable
475 		 * behaviour.
476 		 */
477 		if (!irqd_can_move_in_process_context(data) &&
478 		    !irqd_irq_masked(data) && chip->irq_unmask)
479 			chip->irq_unmask(data);
480 
481 		raw_spin_unlock(&desc->lock);
482 
483 		if (break_affinity && set_affinity)
484 			pr_notice("Broke affinity for irq %i\n", irq);
485 		else if (!set_affinity)
486 			pr_notice("Cannot set affinity for irq %i\n", irq);
487 	}
488 
489 	/*
490 	 * We can remove mdelay() and then send spuriuous interrupts to
491 	 * new cpu targets for all the irqs that were handled previously by
492 	 * this cpu. While it works, I have seen spurious interrupt messages
493 	 * (nothing wrong but still...).
494 	 *
495 	 * So for now, retain mdelay(1) and check the IRR and then send those
496 	 * interrupts to new targets as this cpu is already offlined...
497 	 */
498 	mdelay(1);
499 
500 	/*
501 	 * We can walk the vector array of this cpu without holding
502 	 * vector_lock because the cpu is already marked !online, so
503 	 * nothing else will touch it.
504 	 */
505 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
506 		unsigned int irr;
507 
508 		if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED)
509 			continue;
510 
511 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
512 		if (irr  & (1 << (vector % 32))) {
513 			irq = __this_cpu_read(vector_irq[vector]);
514 
515 			desc = irq_to_desc(irq);
516 			raw_spin_lock(&desc->lock);
517 			data = irq_desc_get_irq_data(desc);
518 			chip = irq_data_get_irq_chip(data);
519 			if (chip->irq_retrigger) {
520 				chip->irq_retrigger(data);
521 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
522 			}
523 			raw_spin_unlock(&desc->lock);
524 		}
525 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
526 			__this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
527 	}
528 }
529 #endif
530