xref: /openbmc/linux/arch/x86/kernel/irq.c (revision 1491eaf9)
1 /*
2  * Common interrupt code for 32 and 64 bit
3  */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
27 
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
30 
31 atomic_t irq_err_count;
32 
33 /* Function pointer for generic interrupt vector handling */
34 void (*x86_platform_ipi_callback)(void) = NULL;
35 
36 /*
37  * 'what should we do if we get a hw irq event on an illegal vector'.
38  * each architecture has to answer this themselves.
39  */
40 void ack_bad_irq(unsigned int irq)
41 {
42 	if (printk_ratelimit())
43 		pr_err("unexpected IRQ trap at vector %02x\n", irq);
44 
45 	/*
46 	 * Currently unexpected vectors happen only on SMP and APIC.
47 	 * We _must_ ack these because every local APIC has only N
48 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 	 * holds up an irq slot - in excessive cases (when multiple
50 	 * unexpected vectors occur) that might lock up the APIC
51 	 * completely.
52 	 * But only ack when the APIC is enabled -AK
53 	 */
54 	ack_APIC_irq();
55 }
56 
57 #define irq_stats(x)		(&per_cpu(irq_stat, x))
58 /*
59  * /proc/interrupts printing for arch specific interrupts
60  */
61 int arch_show_interrupts(struct seq_file *p, int prec)
62 {
63 	int j;
64 
65 	seq_printf(p, "%*s: ", prec, "NMI");
66 	for_each_online_cpu(j)
67 		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68 	seq_puts(p, "  Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70 	seq_printf(p, "%*s: ", prec, "LOC");
71 	for_each_online_cpu(j)
72 		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73 	seq_puts(p, "  Local timer interrupts\n");
74 
75 	seq_printf(p, "%*s: ", prec, "SPU");
76 	for_each_online_cpu(j)
77 		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78 	seq_puts(p, "  Spurious interrupts\n");
79 	seq_printf(p, "%*s: ", prec, "PMI");
80 	for_each_online_cpu(j)
81 		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82 	seq_puts(p, "  Performance monitoring interrupts\n");
83 	seq_printf(p, "%*s: ", prec, "IWI");
84 	for_each_online_cpu(j)
85 		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86 	seq_puts(p, "  IRQ work interrupts\n");
87 	seq_printf(p, "%*s: ", prec, "RTR");
88 	for_each_online_cpu(j)
89 		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90 	seq_puts(p, "  APIC ICR read retries\n");
91 #endif
92 	if (x86_platform_ipi_callback) {
93 		seq_printf(p, "%*s: ", prec, "PLT");
94 		for_each_online_cpu(j)
95 			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
96 		seq_puts(p, "  Platform interrupts\n");
97 	}
98 #ifdef CONFIG_SMP
99 	seq_printf(p, "%*s: ", prec, "RES");
100 	for_each_online_cpu(j)
101 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102 	seq_puts(p, "  Rescheduling interrupts\n");
103 	seq_printf(p, "%*s: ", prec, "CAL");
104 	for_each_online_cpu(j)
105 		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
106 	seq_puts(p, "  Function call interrupts\n");
107 	seq_printf(p, "%*s: ", prec, "TLB");
108 	for_each_online_cpu(j)
109 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
110 	seq_puts(p, "  TLB shootdowns\n");
111 #endif
112 #ifdef CONFIG_X86_THERMAL_VECTOR
113 	seq_printf(p, "%*s: ", prec, "TRM");
114 	for_each_online_cpu(j)
115 		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
116 	seq_puts(p, "  Thermal event interrupts\n");
117 #endif
118 #ifdef CONFIG_X86_MCE_THRESHOLD
119 	seq_printf(p, "%*s: ", prec, "THR");
120 	for_each_online_cpu(j)
121 		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
122 	seq_puts(p, "  Threshold APIC interrupts\n");
123 #endif
124 #ifdef CONFIG_X86_MCE_AMD
125 	seq_printf(p, "%*s: ", prec, "DFR");
126 	for_each_online_cpu(j)
127 		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
128 	seq_puts(p, "  Deferred Error APIC interrupts\n");
129 #endif
130 #ifdef CONFIG_X86_MCE
131 	seq_printf(p, "%*s: ", prec, "MCE");
132 	for_each_online_cpu(j)
133 		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
134 	seq_puts(p, "  Machine check exceptions\n");
135 	seq_printf(p, "%*s: ", prec, "MCP");
136 	for_each_online_cpu(j)
137 		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
138 	seq_puts(p, "  Machine check polls\n");
139 #endif
140 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
141 	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
142 		seq_printf(p, "%*s: ", prec, "HYP");
143 		for_each_online_cpu(j)
144 			seq_printf(p, "%10u ",
145 				   irq_stats(j)->irq_hv_callback_count);
146 		seq_puts(p, "  Hypervisor callback interrupts\n");
147 	}
148 #endif
149 	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
150 #if defined(CONFIG_X86_IO_APIC)
151 	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
152 #endif
153 #ifdef CONFIG_HAVE_KVM
154 	seq_printf(p, "%*s: ", prec, "PIN");
155 	for_each_online_cpu(j)
156 		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
157 	seq_puts(p, "  Posted-interrupt notification event\n");
158 
159 	seq_printf(p, "%*s: ", prec, "PIW");
160 	for_each_online_cpu(j)
161 		seq_printf(p, "%10u ",
162 			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
163 	seq_puts(p, "  Posted-interrupt wakeup event\n");
164 #endif
165 	return 0;
166 }
167 
168 /*
169  * /proc/stat helpers
170  */
171 u64 arch_irq_stat_cpu(unsigned int cpu)
172 {
173 	u64 sum = irq_stats(cpu)->__nmi_count;
174 
175 #ifdef CONFIG_X86_LOCAL_APIC
176 	sum += irq_stats(cpu)->apic_timer_irqs;
177 	sum += irq_stats(cpu)->irq_spurious_count;
178 	sum += irq_stats(cpu)->apic_perf_irqs;
179 	sum += irq_stats(cpu)->apic_irq_work_irqs;
180 	sum += irq_stats(cpu)->icr_read_retry_count;
181 #endif
182 	if (x86_platform_ipi_callback)
183 		sum += irq_stats(cpu)->x86_platform_ipis;
184 #ifdef CONFIG_SMP
185 	sum += irq_stats(cpu)->irq_resched_count;
186 	sum += irq_stats(cpu)->irq_call_count;
187 #endif
188 #ifdef CONFIG_X86_THERMAL_VECTOR
189 	sum += irq_stats(cpu)->irq_thermal_count;
190 #endif
191 #ifdef CONFIG_X86_MCE_THRESHOLD
192 	sum += irq_stats(cpu)->irq_threshold_count;
193 #endif
194 #ifdef CONFIG_X86_MCE
195 	sum += per_cpu(mce_exception_count, cpu);
196 	sum += per_cpu(mce_poll_count, cpu);
197 #endif
198 	return sum;
199 }
200 
201 u64 arch_irq_stat(void)
202 {
203 	u64 sum = atomic_read(&irq_err_count);
204 	return sum;
205 }
206 
207 
208 /*
209  * do_IRQ handles all normal device IRQ's (the special
210  * SMP cross-CPU interrupts have their own specific
211  * handlers).
212  */
213 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
214 {
215 	struct pt_regs *old_regs = set_irq_regs(regs);
216 	struct irq_desc * desc;
217 	/* high bit used in ret_from_ code  */
218 	unsigned vector = ~regs->orig_ax;
219 
220 	/*
221 	 * NB: Unlike exception entries, IRQ entries do not reliably
222 	 * handle context tracking in the low-level entry code.  This is
223 	 * because syscall entries execute briefly with IRQs on before
224 	 * updating context tracking state, so we can take an IRQ from
225 	 * kernel mode with CONTEXT_USER.  The low-level entry code only
226 	 * updates the context if we came from user mode, so we won't
227 	 * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
228 	 * code is cleaned up enough that we can cleanly defer enabling
229 	 * IRQs.
230 	 */
231 
232 	entering_irq();
233 
234 	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
235 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
236 
237 	desc = __this_cpu_read(vector_irq[vector]);
238 
239 	if (!handle_irq(desc, regs)) {
240 		ack_APIC_irq();
241 
242 		if (desc != VECTOR_RETRIGGERED) {
243 			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
244 					     __func__, smp_processor_id(),
245 					     vector);
246 		} else {
247 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
248 		}
249 	}
250 
251 	exiting_irq();
252 
253 	set_irq_regs(old_regs);
254 	return 1;
255 }
256 
257 /*
258  * Handler for X86_PLATFORM_IPI_VECTOR.
259  */
260 void __smp_x86_platform_ipi(void)
261 {
262 	inc_irq_stat(x86_platform_ipis);
263 
264 	if (x86_platform_ipi_callback)
265 		x86_platform_ipi_callback();
266 }
267 
268 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
269 {
270 	struct pt_regs *old_regs = set_irq_regs(regs);
271 
272 	entering_ack_irq();
273 	__smp_x86_platform_ipi();
274 	exiting_irq();
275 	set_irq_regs(old_regs);
276 }
277 
278 #ifdef CONFIG_HAVE_KVM
279 static void dummy_handler(void) {}
280 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
281 
282 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
283 {
284 	if (handler)
285 		kvm_posted_intr_wakeup_handler = handler;
286 	else
287 		kvm_posted_intr_wakeup_handler = dummy_handler;
288 }
289 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
290 
291 /*
292  * Handler for POSTED_INTERRUPT_VECTOR.
293  */
294 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
295 {
296 	struct pt_regs *old_regs = set_irq_regs(regs);
297 
298 	entering_ack_irq();
299 	inc_irq_stat(kvm_posted_intr_ipis);
300 	exiting_irq();
301 	set_irq_regs(old_regs);
302 }
303 
304 /*
305  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
306  */
307 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
308 {
309 	struct pt_regs *old_regs = set_irq_regs(regs);
310 
311 	entering_ack_irq();
312 	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
313 	kvm_posted_intr_wakeup_handler();
314 	exiting_irq();
315 	set_irq_regs(old_regs);
316 }
317 #endif
318 
319 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
320 {
321 	struct pt_regs *old_regs = set_irq_regs(regs);
322 
323 	entering_ack_irq();
324 	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
325 	__smp_x86_platform_ipi();
326 	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
327 	exiting_irq();
328 	set_irq_regs(old_regs);
329 }
330 
331 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
332 
333 #ifdef CONFIG_HOTPLUG_CPU
334 
335 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
336  * below, which is protected by stop_machine().  Putting them on the stack
337  * results in a stack frame overflow.  Dynamically allocating could result in a
338  * failure so declare these two cpumasks as global.
339  */
340 static struct cpumask affinity_new, online_new;
341 
342 /*
343  * This cpu is going to be removed and its vectors migrated to the remaining
344  * online cpus.  Check to see if there are enough vectors in the remaining cpus.
345  * This function is protected by stop_machine().
346  */
347 int check_irq_vectors_for_cpu_disable(void)
348 {
349 	unsigned int this_cpu, vector, this_count, count;
350 	struct irq_desc *desc;
351 	struct irq_data *data;
352 	int cpu;
353 
354 	this_cpu = smp_processor_id();
355 	cpumask_copy(&online_new, cpu_online_mask);
356 	cpumask_clear_cpu(this_cpu, &online_new);
357 
358 	this_count = 0;
359 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
360 		desc = __this_cpu_read(vector_irq[vector]);
361 		if (IS_ERR_OR_NULL(desc))
362 			continue;
363 		/*
364 		 * Protect against concurrent action removal, affinity
365 		 * changes etc.
366 		 */
367 		raw_spin_lock(&desc->lock);
368 		data = irq_desc_get_irq_data(desc);
369 		cpumask_copy(&affinity_new,
370 			     irq_data_get_affinity_mask(data));
371 		cpumask_clear_cpu(this_cpu, &affinity_new);
372 
373 		/* Do not count inactive or per-cpu irqs. */
374 		if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
375 			raw_spin_unlock(&desc->lock);
376 			continue;
377 		}
378 
379 		raw_spin_unlock(&desc->lock);
380 		/*
381 		 * A single irq may be mapped to multiple cpu's
382 		 * vector_irq[] (for example IOAPIC cluster mode).  In
383 		 * this case we have two possibilities:
384 		 *
385 		 * 1) the resulting affinity mask is empty; that is
386 		 * this the down'd cpu is the last cpu in the irq's
387 		 * affinity mask, or
388 		 *
389 		 * 2) the resulting affinity mask is no longer a
390 		 * subset of the online cpus but the affinity mask is
391 		 * not zero; that is the down'd cpu is the last online
392 		 * cpu in a user set affinity mask.
393 		 */
394 		if (cpumask_empty(&affinity_new) ||
395 		    !cpumask_subset(&affinity_new, &online_new))
396 			this_count++;
397 	}
398 
399 	count = 0;
400 	for_each_online_cpu(cpu) {
401 		if (cpu == this_cpu)
402 			continue;
403 		/*
404 		 * We scan from FIRST_EXTERNAL_VECTOR to first system
405 		 * vector. If the vector is marked in the used vectors
406 		 * bitmap or an irq is assigned to it, we don't count
407 		 * it as available.
408 		 *
409 		 * As this is an inaccurate snapshot anyway, we can do
410 		 * this w/o holding vector_lock.
411 		 */
412 		for (vector = FIRST_EXTERNAL_VECTOR;
413 		     vector < first_system_vector; vector++) {
414 			if (!test_bit(vector, used_vectors) &&
415 			    IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
416 			    count++;
417 		}
418 	}
419 
420 	if (count < this_count) {
421 		pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
422 			this_cpu, this_count, count);
423 		return -ERANGE;
424 	}
425 	return 0;
426 }
427 
428 /* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
429 void fixup_irqs(void)
430 {
431 	unsigned int irq, vector;
432 	static int warned;
433 	struct irq_desc *desc;
434 	struct irq_data *data;
435 	struct irq_chip *chip;
436 	int ret;
437 
438 	for_each_irq_desc(irq, desc) {
439 		int break_affinity = 0;
440 		int set_affinity = 1;
441 		const struct cpumask *affinity;
442 
443 		if (!desc)
444 			continue;
445 		if (irq == 2)
446 			continue;
447 
448 		/* interrupt's are disabled at this point */
449 		raw_spin_lock(&desc->lock);
450 
451 		data = irq_desc_get_irq_data(desc);
452 		affinity = irq_data_get_affinity_mask(data);
453 		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
454 		    cpumask_subset(affinity, cpu_online_mask)) {
455 			raw_spin_unlock(&desc->lock);
456 			continue;
457 		}
458 
459 		/*
460 		 * Complete the irq move. This cpu is going down and for
461 		 * non intr-remapping case, we can't wait till this interrupt
462 		 * arrives at this cpu before completing the irq move.
463 		 */
464 		irq_force_complete_move(desc);
465 
466 		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
467 			break_affinity = 1;
468 			affinity = cpu_online_mask;
469 		}
470 
471 		chip = irq_data_get_irq_chip(data);
472 		/*
473 		 * The interrupt descriptor might have been cleaned up
474 		 * already, but it is not yet removed from the radix tree
475 		 */
476 		if (!chip) {
477 			raw_spin_unlock(&desc->lock);
478 			continue;
479 		}
480 
481 		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
482 			chip->irq_mask(data);
483 
484 		if (chip->irq_set_affinity) {
485 			ret = chip->irq_set_affinity(data, affinity, true);
486 			if (ret == -ENOSPC)
487 				pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
488 		} else {
489 			if (!(warned++))
490 				set_affinity = 0;
491 		}
492 
493 		/*
494 		 * We unmask if the irq was not marked masked by the
495 		 * core code. That respects the lazy irq disable
496 		 * behaviour.
497 		 */
498 		if (!irqd_can_move_in_process_context(data) &&
499 		    !irqd_irq_masked(data) && chip->irq_unmask)
500 			chip->irq_unmask(data);
501 
502 		raw_spin_unlock(&desc->lock);
503 
504 		if (break_affinity && set_affinity)
505 			pr_notice("Broke affinity for irq %i\n", irq);
506 		else if (!set_affinity)
507 			pr_notice("Cannot set affinity for irq %i\n", irq);
508 	}
509 
510 	/*
511 	 * We can remove mdelay() and then send spuriuous interrupts to
512 	 * new cpu targets for all the irqs that were handled previously by
513 	 * this cpu. While it works, I have seen spurious interrupt messages
514 	 * (nothing wrong but still...).
515 	 *
516 	 * So for now, retain mdelay(1) and check the IRR and then send those
517 	 * interrupts to new targets as this cpu is already offlined...
518 	 */
519 	mdelay(1);
520 
521 	/*
522 	 * We can walk the vector array of this cpu without holding
523 	 * vector_lock because the cpu is already marked !online, so
524 	 * nothing else will touch it.
525 	 */
526 	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
527 		unsigned int irr;
528 
529 		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
530 			continue;
531 
532 		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
533 		if (irr  & (1 << (vector % 32))) {
534 			desc = __this_cpu_read(vector_irq[vector]);
535 
536 			raw_spin_lock(&desc->lock);
537 			data = irq_desc_get_irq_data(desc);
538 			chip = irq_data_get_irq_chip(data);
539 			if (chip->irq_retrigger) {
540 				chip->irq_retrigger(data);
541 				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
542 			}
543 			raw_spin_unlock(&desc->lock);
544 		}
545 		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
546 			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
547 	}
548 }
549 #endif
550