xref: /openbmc/linux/arch/x86/kernel/i8253.c (revision 2b8232ce)
1 /*
2  * i8253.c  8253/PIT functions
3  *
4  */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 
12 #include <asm/smp.h>
13 #include <asm/delay.h>
14 #include <asm/i8253.h>
15 #include <asm/io.h>
16 
17 DEFINE_SPINLOCK(i8253_lock);
18 EXPORT_SYMBOL(i8253_lock);
19 
20 /*
21  * HPET replaces the PIT, when enabled. So we need to know, which of
22  * the two timers is used
23  */
24 struct clock_event_device *global_clock_event;
25 
26 /*
27  * Initialize the PIT timer.
28  *
29  * This is also called after resume to bring the PIT into operation again.
30  */
31 static void init_pit_timer(enum clock_event_mode mode,
32 			   struct clock_event_device *evt)
33 {
34 	unsigned long flags;
35 
36 	spin_lock_irqsave(&i8253_lock, flags);
37 
38 	switch(mode) {
39 	case CLOCK_EVT_MODE_PERIODIC:
40 		/* binary, mode 2, LSB/MSB, ch 0 */
41 		outb_p(0x34, PIT_MODE);
42 		outb_p(LATCH & 0xff , PIT_CH0);	/* LSB */
43 		outb(LATCH >> 8 , PIT_CH0);	/* MSB */
44 		break;
45 
46 	case CLOCK_EVT_MODE_SHUTDOWN:
47 	case CLOCK_EVT_MODE_UNUSED:
48 		if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
49 		    evt->mode == CLOCK_EVT_MODE_ONESHOT) {
50 			outb_p(0x30, PIT_MODE);
51 			outb_p(0, PIT_CH0);
52 			outb_p(0, PIT_CH0);
53 		}
54 		break;
55 
56 	case CLOCK_EVT_MODE_ONESHOT:
57 		/* One shot setup */
58 		outb_p(0x38, PIT_MODE);
59 		break;
60 
61 	case CLOCK_EVT_MODE_RESUME:
62 		/* Nothing to do here */
63 		break;
64 	}
65 	spin_unlock_irqrestore(&i8253_lock, flags);
66 }
67 
68 /*
69  * Program the next event in oneshot mode
70  *
71  * Delta is given in PIT ticks
72  */
73 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
74 {
75 	unsigned long flags;
76 
77 	spin_lock_irqsave(&i8253_lock, flags);
78 	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
79 	outb(delta >> 8 , PIT_CH0);	/* MSB */
80 	spin_unlock_irqrestore(&i8253_lock, flags);
81 
82 	return 0;
83 }
84 
85 /*
86  * On UP the PIT can serve all of the possible timer functions. On SMP systems
87  * it can be solely used for the global tick.
88  *
89  * The profiling and update capabilites are switched off once the local apic is
90  * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
91  * !using_apic_timer decisions in do_timer_interrupt_hook()
92  */
93 struct clock_event_device pit_clockevent = {
94 	.name		= "pit",
95 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
96 	.set_mode	= init_pit_timer,
97 	.set_next_event = pit_next_event,
98 	.shift		= 32,
99 	.irq		= 0,
100 };
101 
102 /*
103  * Initialize the conversion factor and the min/max deltas of the clock event
104  * structure and register the clock event source with the framework.
105  */
106 void __init setup_pit_timer(void)
107 {
108 	/*
109 	 * Start pit with the boot cpu mask and make it global after the
110 	 * IO_APIC has been initialized.
111 	 */
112 	pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
113 	pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
114 	pit_clockevent.max_delta_ns =
115 		clockevent_delta2ns(0x7FFF, &pit_clockevent);
116 	pit_clockevent.min_delta_ns =
117 		clockevent_delta2ns(0xF, &pit_clockevent);
118 	clockevents_register_device(&pit_clockevent);
119 	global_clock_event = &pit_clockevent;
120 }
121 
122 #ifndef CONFIG_X86_64
123 /*
124  * Since the PIT overflows every tick, its not very useful
125  * to just read by itself. So use jiffies to emulate a free
126  * running counter:
127  */
128 static cycle_t pit_read(void)
129 {
130 	unsigned long flags;
131 	int count;
132 	u32 jifs;
133 	static int old_count;
134 	static u32 old_jifs;
135 
136 	spin_lock_irqsave(&i8253_lock, flags);
137 	/*
138 	 * Although our caller may have the read side of xtime_lock,
139 	 * this is now a seqlock, and we are cheating in this routine
140 	 * by having side effects on state that we cannot undo if
141 	 * there is a collision on the seqlock and our caller has to
142 	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
143 	 * jiffies as volatile despite the lock.  We read jiffies
144 	 * before latching the timer count to guarantee that although
145 	 * the jiffies value might be older than the count (that is,
146 	 * the counter may underflow between the last point where
147 	 * jiffies was incremented and the point where we latch the
148 	 * count), it cannot be newer.
149 	 */
150 	jifs = jiffies;
151 	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
152 	count = inb_p(PIT_CH0);	/* read the latched count */
153 	count |= inb_p(PIT_CH0) << 8;
154 
155 	/* VIA686a test code... reset the latch if count > max + 1 */
156 	if (count > LATCH) {
157 		outb_p(0x34, PIT_MODE);
158 		outb_p(LATCH & 0xff, PIT_CH0);
159 		outb(LATCH >> 8, PIT_CH0);
160 		count = LATCH - 1;
161 	}
162 
163 	/*
164 	 * It's possible for count to appear to go the wrong way for a
165 	 * couple of reasons:
166 	 *
167 	 *  1. The timer counter underflows, but we haven't handled the
168 	 *     resulting interrupt and incremented jiffies yet.
169 	 *  2. Hardware problem with the timer, not giving us continuous time,
170 	 *     the counter does small "jumps" upwards on some Pentium systems,
171 	 *     (see c't 95/10 page 335 for Neptun bug.)
172 	 *
173 	 * Previous attempts to handle these cases intelligently were
174 	 * buggy, so we just do the simple thing now.
175 	 */
176 	if (count > old_count && jifs == old_jifs) {
177 		count = old_count;
178 	}
179 	old_count = count;
180 	old_jifs = jifs;
181 
182 	spin_unlock_irqrestore(&i8253_lock, flags);
183 
184 	count = (LATCH - 1) - count;
185 
186 	return (cycle_t)(jifs * LATCH) + count;
187 }
188 
189 static struct clocksource clocksource_pit = {
190 	.name	= "pit",
191 	.rating = 110,
192 	.read	= pit_read,
193 	.mask	= CLOCKSOURCE_MASK(32),
194 	.mult	= 0,
195 	.shift	= 20,
196 };
197 
198 static int __init init_pit_clocksource(void)
199 {
200 	if (num_possible_cpus() > 1) /* PIT does not scale! */
201 		return 0;
202 
203 	clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
204 	return clocksource_register(&clocksource_pit);
205 }
206 arch_initcall(init_pit_clocksource);
207 
208 #endif
209