xref: /openbmc/linux/arch/x86/kernel/hw_breakpoint.c (revision d53d9bc0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2007 Alan Stern
5  * Copyright (C) 2009 IBM Corporation
6  * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
7  *
8  * Authors: Alan Stern <stern@rowland.harvard.edu>
9  *          K.Prasad <prasad@linux.vnet.ibm.com>
10  *          Frederic Weisbecker <fweisbec@gmail.com>
11  */
12 
13 /*
14  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
15  * using the CPU's debug registers.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/hw_breakpoint.h>
20 #include <linux/irqflags.h>
21 #include <linux/notifier.h>
22 #include <linux/kallsyms.h>
23 #include <linux/kprobes.h>
24 #include <linux/percpu.h>
25 #include <linux/kdebug.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30 
31 #include <asm/hw_breakpoint.h>
32 #include <asm/processor.h>
33 #include <asm/debugreg.h>
34 #include <asm/user.h>
35 #include <asm/desc.h>
36 #include <asm/tlbflush.h>
37 
38 /* Per cpu debug control register value */
39 DEFINE_PER_CPU(unsigned long, cpu_dr7);
40 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
41 
42 /* Per cpu debug address registers values */
43 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
44 
45 /*
46  * Stores the breakpoints currently in use on each breakpoint address
47  * register for each cpus
48  */
49 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
50 
51 
52 static inline unsigned long
53 __encode_dr7(int drnum, unsigned int len, unsigned int type)
54 {
55 	unsigned long bp_info;
56 
57 	bp_info = (len | type) & 0xf;
58 	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
59 	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
60 
61 	return bp_info;
62 }
63 
64 /*
65  * Encode the length, type, Exact, and Enable bits for a particular breakpoint
66  * as stored in debug register 7.
67  */
68 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
69 {
70 	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
71 }
72 
73 /*
74  * Decode the length and type bits for a particular breakpoint as
75  * stored in debug register 7.  Return the "enabled" status.
76  */
77 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
78 {
79 	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
80 
81 	*len = (bp_info & 0xc) | 0x40;
82 	*type = (bp_info & 0x3) | 0x80;
83 
84 	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
85 }
86 
87 /*
88  * Install a perf counter breakpoint.
89  *
90  * We seek a free debug address register and use it for this
91  * breakpoint. Eventually we enable it in the debug control register.
92  *
93  * Atomic: we hold the counter->ctx->lock and we only handle variables
94  * and registers local to this cpu.
95  */
96 int arch_install_hw_breakpoint(struct perf_event *bp)
97 {
98 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
99 	unsigned long *dr7;
100 	int i;
101 
102 	lockdep_assert_irqs_disabled();
103 
104 	for (i = 0; i < HBP_NUM; i++) {
105 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
106 
107 		if (!*slot) {
108 			*slot = bp;
109 			break;
110 		}
111 	}
112 
113 	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
114 		return -EBUSY;
115 
116 	set_debugreg(info->address, i);
117 	__this_cpu_write(cpu_debugreg[i], info->address);
118 
119 	dr7 = this_cpu_ptr(&cpu_dr7);
120 	*dr7 |= encode_dr7(i, info->len, info->type);
121 
122 	/*
123 	 * Ensure we first write cpu_dr7 before we set the DR7 register.
124 	 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
125 	 */
126 	barrier();
127 
128 	set_debugreg(*dr7, 7);
129 	if (info->mask)
130 		set_dr_addr_mask(info->mask, i);
131 
132 	return 0;
133 }
134 
135 /*
136  * Uninstall the breakpoint contained in the given counter.
137  *
138  * First we search the debug address register it uses and then we disable
139  * it.
140  *
141  * Atomic: we hold the counter->ctx->lock and we only handle variables
142  * and registers local to this cpu.
143  */
144 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
145 {
146 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
147 	unsigned long dr7;
148 	int i;
149 
150 	lockdep_assert_irqs_disabled();
151 
152 	for (i = 0; i < HBP_NUM; i++) {
153 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
154 
155 		if (*slot == bp) {
156 			*slot = NULL;
157 			break;
158 		}
159 	}
160 
161 	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
162 		return;
163 
164 	dr7 = this_cpu_read(cpu_dr7);
165 	dr7 &= ~__encode_dr7(i, info->len, info->type);
166 
167 	set_debugreg(dr7, 7);
168 	if (info->mask)
169 		set_dr_addr_mask(0, i);
170 
171 	/*
172 	 * Ensure the write to cpu_dr7 is after we've set the DR7 register.
173 	 * This ensures an NMI never see cpu_dr7 0 when DR7 is not.
174 	 */
175 	barrier();
176 
177 	this_cpu_write(cpu_dr7, dr7);
178 }
179 
180 static int arch_bp_generic_len(int x86_len)
181 {
182 	switch (x86_len) {
183 	case X86_BREAKPOINT_LEN_1:
184 		return HW_BREAKPOINT_LEN_1;
185 	case X86_BREAKPOINT_LEN_2:
186 		return HW_BREAKPOINT_LEN_2;
187 	case X86_BREAKPOINT_LEN_4:
188 		return HW_BREAKPOINT_LEN_4;
189 #ifdef CONFIG_X86_64
190 	case X86_BREAKPOINT_LEN_8:
191 		return HW_BREAKPOINT_LEN_8;
192 #endif
193 	default:
194 		return -EINVAL;
195 	}
196 }
197 
198 int arch_bp_generic_fields(int x86_len, int x86_type,
199 			   int *gen_len, int *gen_type)
200 {
201 	int len;
202 
203 	/* Type */
204 	switch (x86_type) {
205 	case X86_BREAKPOINT_EXECUTE:
206 		if (x86_len != X86_BREAKPOINT_LEN_X)
207 			return -EINVAL;
208 
209 		*gen_type = HW_BREAKPOINT_X;
210 		*gen_len = sizeof(long);
211 		return 0;
212 	case X86_BREAKPOINT_WRITE:
213 		*gen_type = HW_BREAKPOINT_W;
214 		break;
215 	case X86_BREAKPOINT_RW:
216 		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
217 		break;
218 	default:
219 		return -EINVAL;
220 	}
221 
222 	/* Len */
223 	len = arch_bp_generic_len(x86_len);
224 	if (len < 0)
225 		return -EINVAL;
226 	*gen_len = len;
227 
228 	return 0;
229 }
230 
231 /*
232  * Check for virtual address in kernel space.
233  */
234 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
235 {
236 	unsigned long va;
237 	int len;
238 
239 	va = hw->address;
240 	len = arch_bp_generic_len(hw->len);
241 	WARN_ON_ONCE(len < 0);
242 
243 	/*
244 	 * We don't need to worry about va + len - 1 overflowing:
245 	 * we already require that va is aligned to a multiple of len.
246 	 */
247 	return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
248 }
249 
250 /*
251  * Checks whether the range [addr, end], overlaps the area [base, base + size).
252  */
253 static inline bool within_area(unsigned long addr, unsigned long end,
254 			       unsigned long base, unsigned long size)
255 {
256 	return end >= base && addr < (base + size);
257 }
258 
259 /*
260  * Checks whether the range from addr to end, inclusive, overlaps the fixed
261  * mapped CPU entry area range or other ranges used for CPU entry.
262  */
263 static inline bool within_cpu_entry(unsigned long addr, unsigned long end)
264 {
265 	int cpu;
266 
267 	/* CPU entry erea is always used for CPU entry */
268 	if (within_area(addr, end, CPU_ENTRY_AREA_BASE,
269 			CPU_ENTRY_AREA_TOTAL_SIZE))
270 		return true;
271 
272 	for_each_possible_cpu(cpu) {
273 		/* The original rw GDT is being used after load_direct_gdt() */
274 		if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu),
275 				GDT_SIZE))
276 			return true;
277 
278 		/*
279 		 * cpu_tss_rw is not directly referenced by hardware, but
280 		 * cpu_tss_rw is also used in CPU entry code,
281 		 */
282 		if (within_area(addr, end,
283 				(unsigned long)&per_cpu(cpu_tss_rw, cpu),
284 				sizeof(struct tss_struct)))
285 			return true;
286 
287 		/*
288 		 * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry.
289 		 * If a data breakpoint on it, it will cause an unwanted #DB.
290 		 * Protect the full cpu_tlbstate structure to be sure.
291 		 */
292 		if (within_area(addr, end,
293 				(unsigned long)&per_cpu(cpu_tlbstate, cpu),
294 				sizeof(struct tlb_state)))
295 			return true;
296 	}
297 
298 	return false;
299 }
300 
301 static int arch_build_bp_info(struct perf_event *bp,
302 			      const struct perf_event_attr *attr,
303 			      struct arch_hw_breakpoint *hw)
304 {
305 	unsigned long bp_end;
306 
307 	bp_end = attr->bp_addr + attr->bp_len - 1;
308 	if (bp_end < attr->bp_addr)
309 		return -EINVAL;
310 
311 	/*
312 	 * Prevent any breakpoint of any type that overlaps the CPU
313 	 * entry area and data.  This protects the IST stacks and also
314 	 * reduces the chance that we ever find out what happens if
315 	 * there's a data breakpoint on the GDT, IDT, or TSS.
316 	 */
317 	if (within_cpu_entry(attr->bp_addr, bp_end))
318 		return -EINVAL;
319 
320 	hw->address = attr->bp_addr;
321 	hw->mask = 0;
322 
323 	/* Type */
324 	switch (attr->bp_type) {
325 	case HW_BREAKPOINT_W:
326 		hw->type = X86_BREAKPOINT_WRITE;
327 		break;
328 	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
329 		hw->type = X86_BREAKPOINT_RW;
330 		break;
331 	case HW_BREAKPOINT_X:
332 		/*
333 		 * We don't allow kernel breakpoints in places that are not
334 		 * acceptable for kprobes.  On non-kprobes kernels, we don't
335 		 * allow kernel breakpoints at all.
336 		 */
337 		if (attr->bp_addr >= TASK_SIZE_MAX) {
338 			if (within_kprobe_blacklist(attr->bp_addr))
339 				return -EINVAL;
340 		}
341 
342 		hw->type = X86_BREAKPOINT_EXECUTE;
343 		/*
344 		 * x86 inst breakpoints need to have a specific undefined len.
345 		 * But we still need to check userspace is not trying to setup
346 		 * an unsupported length, to get a range breakpoint for example.
347 		 */
348 		if (attr->bp_len == sizeof(long)) {
349 			hw->len = X86_BREAKPOINT_LEN_X;
350 			return 0;
351 		}
352 		fallthrough;
353 	default:
354 		return -EINVAL;
355 	}
356 
357 	/* Len */
358 	switch (attr->bp_len) {
359 	case HW_BREAKPOINT_LEN_1:
360 		hw->len = X86_BREAKPOINT_LEN_1;
361 		break;
362 	case HW_BREAKPOINT_LEN_2:
363 		hw->len = X86_BREAKPOINT_LEN_2;
364 		break;
365 	case HW_BREAKPOINT_LEN_4:
366 		hw->len = X86_BREAKPOINT_LEN_4;
367 		break;
368 #ifdef CONFIG_X86_64
369 	case HW_BREAKPOINT_LEN_8:
370 		hw->len = X86_BREAKPOINT_LEN_8;
371 		break;
372 #endif
373 	default:
374 		/* AMD range breakpoint */
375 		if (!is_power_of_2(attr->bp_len))
376 			return -EINVAL;
377 		if (attr->bp_addr & (attr->bp_len - 1))
378 			return -EINVAL;
379 
380 		if (!boot_cpu_has(X86_FEATURE_BPEXT))
381 			return -EOPNOTSUPP;
382 
383 		/*
384 		 * It's impossible to use a range breakpoint to fake out
385 		 * user vs kernel detection because bp_len - 1 can't
386 		 * have the high bit set.  If we ever allow range instruction
387 		 * breakpoints, then we'll have to check for kprobe-blacklisted
388 		 * addresses anywhere in the range.
389 		 */
390 		hw->mask = attr->bp_len - 1;
391 		hw->len = X86_BREAKPOINT_LEN_1;
392 	}
393 
394 	return 0;
395 }
396 
397 /*
398  * Validate the arch-specific HW Breakpoint register settings
399  */
400 int hw_breakpoint_arch_parse(struct perf_event *bp,
401 			     const struct perf_event_attr *attr,
402 			     struct arch_hw_breakpoint *hw)
403 {
404 	unsigned int align;
405 	int ret;
406 
407 
408 	ret = arch_build_bp_info(bp, attr, hw);
409 	if (ret)
410 		return ret;
411 
412 	switch (hw->len) {
413 	case X86_BREAKPOINT_LEN_1:
414 		align = 0;
415 		if (hw->mask)
416 			align = hw->mask;
417 		break;
418 	case X86_BREAKPOINT_LEN_2:
419 		align = 1;
420 		break;
421 	case X86_BREAKPOINT_LEN_4:
422 		align = 3;
423 		break;
424 #ifdef CONFIG_X86_64
425 	case X86_BREAKPOINT_LEN_8:
426 		align = 7;
427 		break;
428 #endif
429 	default:
430 		WARN_ON_ONCE(1);
431 		return -EINVAL;
432 	}
433 
434 	/*
435 	 * Check that the low-order bits of the address are appropriate
436 	 * for the alignment implied by len.
437 	 */
438 	if (hw->address & align)
439 		return -EINVAL;
440 
441 	return 0;
442 }
443 
444 /*
445  * Release the user breakpoints used by ptrace
446  */
447 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
448 {
449 	int i;
450 	struct thread_struct *t = &tsk->thread;
451 
452 	for (i = 0; i < HBP_NUM; i++) {
453 		unregister_hw_breakpoint(t->ptrace_bps[i]);
454 		t->ptrace_bps[i] = NULL;
455 	}
456 
457 	t->virtual_dr6 = 0;
458 	t->ptrace_dr7 = 0;
459 }
460 
461 void hw_breakpoint_restore(void)
462 {
463 	set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
464 	set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
465 	set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
466 	set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
467 	set_debugreg(DR6_RESERVED, 6);
468 	set_debugreg(__this_cpu_read(cpu_dr7), 7);
469 }
470 EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
471 
472 /*
473  * Handle debug exception notifications.
474  *
475  * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
476  *
477  * NOTIFY_DONE returned if one of the following conditions is true.
478  * i) When the causative address is from user-space and the exception
479  * is a valid one, i.e. not triggered as a result of lazy debug register
480  * switching
481  * ii) When there are more bits than trap<n> set in DR6 register (such
482  * as BD, BS or BT) indicating that more than one debug condition is
483  * met and requires some more action in do_debug().
484  *
485  * NOTIFY_STOP returned for all other cases
486  *
487  */
488 static int hw_breakpoint_handler(struct die_args *args)
489 {
490 	int i, rc = NOTIFY_STOP;
491 	struct perf_event *bp;
492 	unsigned long *dr6_p;
493 	unsigned long dr6;
494 
495 	/* The DR6 value is pointed by args->err */
496 	dr6_p = (unsigned long *)ERR_PTR(args->err);
497 	dr6 = *dr6_p;
498 
499 	/* If it's a single step, TRAP bits are random */
500 	if (dr6 & DR_STEP)
501 		return NOTIFY_DONE;
502 
503 	/* Do an early return if no trap bits are set in DR6 */
504 	if ((dr6 & DR_TRAP_BITS) == 0)
505 		return NOTIFY_DONE;
506 
507 	/* Handle all the breakpoints that were triggered */
508 	for (i = 0; i < HBP_NUM; ++i) {
509 		if (likely(!(dr6 & (DR_TRAP0 << i))))
510 			continue;
511 
512 		/*
513 		 * The counter may be concurrently released but that can only
514 		 * occur from a call_rcu() path. We can then safely fetch
515 		 * the breakpoint, use its callback, touch its counter
516 		 * while we are in an rcu_read_lock() path.
517 		 */
518 		rcu_read_lock();
519 
520 		bp = this_cpu_read(bp_per_reg[i]);
521 		/*
522 		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
523 		 * exception handling
524 		 */
525 		(*dr6_p) &= ~(DR_TRAP0 << i);
526 		/*
527 		 * bp can be NULL due to lazy debug register switching
528 		 * or due to concurrent perf counter removing.
529 		 */
530 		if (!bp) {
531 			rcu_read_unlock();
532 			break;
533 		}
534 
535 		perf_bp_event(bp, args->regs);
536 
537 		/*
538 		 * Set up resume flag to avoid breakpoint recursion when
539 		 * returning back to origin.
540 		 */
541 		if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
542 			args->regs->flags |= X86_EFLAGS_RF;
543 
544 		rcu_read_unlock();
545 	}
546 	/*
547 	 * Further processing in do_debug() is needed for a) user-space
548 	 * breakpoints (to generate signals) and b) when the system has
549 	 * taken exception due to multiple causes
550 	 */
551 	if ((current->thread.virtual_dr6 & DR_TRAP_BITS) ||
552 	    (dr6 & (~DR_TRAP_BITS)))
553 		rc = NOTIFY_DONE;
554 
555 	return rc;
556 }
557 
558 /*
559  * Handle debug exception notifications.
560  */
561 int hw_breakpoint_exceptions_notify(
562 		struct notifier_block *unused, unsigned long val, void *data)
563 {
564 	if (val != DIE_DEBUG)
565 		return NOTIFY_DONE;
566 
567 	return hw_breakpoint_handler(data);
568 }
569 
570 void hw_breakpoint_pmu_read(struct perf_event *bp)
571 {
572 	/* TODO */
573 }
574