xref: /openbmc/linux/arch/x86/kernel/hw_breakpoint.c (revision d390e6de)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2007 Alan Stern
5  * Copyright (C) 2009 IBM Corporation
6  * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
7  *
8  * Authors: Alan Stern <stern@rowland.harvard.edu>
9  *          K.Prasad <prasad@linux.vnet.ibm.com>
10  *          Frederic Weisbecker <fweisbec@gmail.com>
11  */
12 
13 /*
14  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
15  * using the CPU's debug registers.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/hw_breakpoint.h>
20 #include <linux/irqflags.h>
21 #include <linux/notifier.h>
22 #include <linux/kallsyms.h>
23 #include <linux/kprobes.h>
24 #include <linux/percpu.h>
25 #include <linux/kdebug.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30 
31 #include <asm/hw_breakpoint.h>
32 #include <asm/processor.h>
33 #include <asm/debugreg.h>
34 #include <asm/user.h>
35 
36 /* Per cpu debug control register value */
37 DEFINE_PER_CPU(unsigned long, cpu_dr7);
38 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
39 
40 /* Per cpu debug address registers values */
41 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
42 
43 /*
44  * Stores the breakpoints currently in use on each breakpoint address
45  * register for each cpus
46  */
47 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
48 
49 
50 static inline unsigned long
51 __encode_dr7(int drnum, unsigned int len, unsigned int type)
52 {
53 	unsigned long bp_info;
54 
55 	bp_info = (len | type) & 0xf;
56 	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
57 	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
58 
59 	return bp_info;
60 }
61 
62 /*
63  * Encode the length, type, Exact, and Enable bits for a particular breakpoint
64  * as stored in debug register 7.
65  */
66 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
67 {
68 	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
69 }
70 
71 /*
72  * Decode the length and type bits for a particular breakpoint as
73  * stored in debug register 7.  Return the "enabled" status.
74  */
75 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
76 {
77 	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
78 
79 	*len = (bp_info & 0xc) | 0x40;
80 	*type = (bp_info & 0x3) | 0x80;
81 
82 	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
83 }
84 
85 /*
86  * Install a perf counter breakpoint.
87  *
88  * We seek a free debug address register and use it for this
89  * breakpoint. Eventually we enable it in the debug control register.
90  *
91  * Atomic: we hold the counter->ctx->lock and we only handle variables
92  * and registers local to this cpu.
93  */
94 int arch_install_hw_breakpoint(struct perf_event *bp)
95 {
96 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
97 	unsigned long *dr7;
98 	int i;
99 
100 	for (i = 0; i < HBP_NUM; i++) {
101 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
102 
103 		if (!*slot) {
104 			*slot = bp;
105 			break;
106 		}
107 	}
108 
109 	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
110 		return -EBUSY;
111 
112 	set_debugreg(info->address, i);
113 	__this_cpu_write(cpu_debugreg[i], info->address);
114 
115 	dr7 = this_cpu_ptr(&cpu_dr7);
116 	*dr7 |= encode_dr7(i, info->len, info->type);
117 
118 	set_debugreg(*dr7, 7);
119 	if (info->mask)
120 		set_dr_addr_mask(info->mask, i);
121 
122 	return 0;
123 }
124 
125 /*
126  * Uninstall the breakpoint contained in the given counter.
127  *
128  * First we search the debug address register it uses and then we disable
129  * it.
130  *
131  * Atomic: we hold the counter->ctx->lock and we only handle variables
132  * and registers local to this cpu.
133  */
134 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
135 {
136 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
137 	unsigned long *dr7;
138 	int i;
139 
140 	for (i = 0; i < HBP_NUM; i++) {
141 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
142 
143 		if (*slot == bp) {
144 			*slot = NULL;
145 			break;
146 		}
147 	}
148 
149 	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
150 		return;
151 
152 	dr7 = this_cpu_ptr(&cpu_dr7);
153 	*dr7 &= ~__encode_dr7(i, info->len, info->type);
154 
155 	set_debugreg(*dr7, 7);
156 	if (info->mask)
157 		set_dr_addr_mask(0, i);
158 }
159 
160 static int arch_bp_generic_len(int x86_len)
161 {
162 	switch (x86_len) {
163 	case X86_BREAKPOINT_LEN_1:
164 		return HW_BREAKPOINT_LEN_1;
165 	case X86_BREAKPOINT_LEN_2:
166 		return HW_BREAKPOINT_LEN_2;
167 	case X86_BREAKPOINT_LEN_4:
168 		return HW_BREAKPOINT_LEN_4;
169 #ifdef CONFIG_X86_64
170 	case X86_BREAKPOINT_LEN_8:
171 		return HW_BREAKPOINT_LEN_8;
172 #endif
173 	default:
174 		return -EINVAL;
175 	}
176 }
177 
178 int arch_bp_generic_fields(int x86_len, int x86_type,
179 			   int *gen_len, int *gen_type)
180 {
181 	int len;
182 
183 	/* Type */
184 	switch (x86_type) {
185 	case X86_BREAKPOINT_EXECUTE:
186 		if (x86_len != X86_BREAKPOINT_LEN_X)
187 			return -EINVAL;
188 
189 		*gen_type = HW_BREAKPOINT_X;
190 		*gen_len = sizeof(long);
191 		return 0;
192 	case X86_BREAKPOINT_WRITE:
193 		*gen_type = HW_BREAKPOINT_W;
194 		break;
195 	case X86_BREAKPOINT_RW:
196 		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
197 		break;
198 	default:
199 		return -EINVAL;
200 	}
201 
202 	/* Len */
203 	len = arch_bp_generic_len(x86_len);
204 	if (len < 0)
205 		return -EINVAL;
206 	*gen_len = len;
207 
208 	return 0;
209 }
210 
211 /*
212  * Check for virtual address in kernel space.
213  */
214 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
215 {
216 	unsigned long va;
217 	int len;
218 
219 	va = hw->address;
220 	len = arch_bp_generic_len(hw->len);
221 	WARN_ON_ONCE(len < 0);
222 
223 	/*
224 	 * We don't need to worry about va + len - 1 overflowing:
225 	 * we already require that va is aligned to a multiple of len.
226 	 */
227 	return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
228 }
229 
230 /*
231  * Checks whether the range [addr, end], overlaps the area [base, base + size).
232  */
233 static inline bool within_area(unsigned long addr, unsigned long end,
234 			       unsigned long base, unsigned long size)
235 {
236 	return end >= base && addr < (base + size);
237 }
238 
239 /*
240  * Checks whether the range from addr to end, inclusive, overlaps the CPU
241  * entry area range.
242  */
243 static inline bool within_cpu_entry_area(unsigned long addr, unsigned long end)
244 {
245 	return within_area(addr, end, CPU_ENTRY_AREA_BASE,
246 			   CPU_ENTRY_AREA_TOTAL_SIZE);
247 }
248 
249 static int arch_build_bp_info(struct perf_event *bp,
250 			      const struct perf_event_attr *attr,
251 			      struct arch_hw_breakpoint *hw)
252 {
253 	unsigned long bp_end;
254 
255 	bp_end = attr->bp_addr + attr->bp_len - 1;
256 	if (bp_end < attr->bp_addr)
257 		return -EINVAL;
258 
259 	/*
260 	 * Prevent any breakpoint of any type that overlaps the
261 	 * cpu_entry_area.  This protects the IST stacks and also
262 	 * reduces the chance that we ever find out what happens if
263 	 * there's a data breakpoint on the GDT, IDT, or TSS.
264 	 */
265 	if (within_cpu_entry_area(attr->bp_addr, bp_end))
266 		return -EINVAL;
267 
268 	hw->address = attr->bp_addr;
269 	hw->mask = 0;
270 
271 	/* Type */
272 	switch (attr->bp_type) {
273 	case HW_BREAKPOINT_W:
274 		hw->type = X86_BREAKPOINT_WRITE;
275 		break;
276 	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
277 		hw->type = X86_BREAKPOINT_RW;
278 		break;
279 	case HW_BREAKPOINT_X:
280 		/*
281 		 * We don't allow kernel breakpoints in places that are not
282 		 * acceptable for kprobes.  On non-kprobes kernels, we don't
283 		 * allow kernel breakpoints at all.
284 		 */
285 		if (attr->bp_addr >= TASK_SIZE_MAX) {
286 			if (within_kprobe_blacklist(attr->bp_addr))
287 				return -EINVAL;
288 		}
289 
290 		hw->type = X86_BREAKPOINT_EXECUTE;
291 		/*
292 		 * x86 inst breakpoints need to have a specific undefined len.
293 		 * But we still need to check userspace is not trying to setup
294 		 * an unsupported length, to get a range breakpoint for example.
295 		 */
296 		if (attr->bp_len == sizeof(long)) {
297 			hw->len = X86_BREAKPOINT_LEN_X;
298 			return 0;
299 		}
300 		/* fall through */
301 	default:
302 		return -EINVAL;
303 	}
304 
305 	/* Len */
306 	switch (attr->bp_len) {
307 	case HW_BREAKPOINT_LEN_1:
308 		hw->len = X86_BREAKPOINT_LEN_1;
309 		break;
310 	case HW_BREAKPOINT_LEN_2:
311 		hw->len = X86_BREAKPOINT_LEN_2;
312 		break;
313 	case HW_BREAKPOINT_LEN_4:
314 		hw->len = X86_BREAKPOINT_LEN_4;
315 		break;
316 #ifdef CONFIG_X86_64
317 	case HW_BREAKPOINT_LEN_8:
318 		hw->len = X86_BREAKPOINT_LEN_8;
319 		break;
320 #endif
321 	default:
322 		/* AMD range breakpoint */
323 		if (!is_power_of_2(attr->bp_len))
324 			return -EINVAL;
325 		if (attr->bp_addr & (attr->bp_len - 1))
326 			return -EINVAL;
327 
328 		if (!boot_cpu_has(X86_FEATURE_BPEXT))
329 			return -EOPNOTSUPP;
330 
331 		/*
332 		 * It's impossible to use a range breakpoint to fake out
333 		 * user vs kernel detection because bp_len - 1 can't
334 		 * have the high bit set.  If we ever allow range instruction
335 		 * breakpoints, then we'll have to check for kprobe-blacklisted
336 		 * addresses anywhere in the range.
337 		 */
338 		hw->mask = attr->bp_len - 1;
339 		hw->len = X86_BREAKPOINT_LEN_1;
340 	}
341 
342 	return 0;
343 }
344 
345 /*
346  * Validate the arch-specific HW Breakpoint register settings
347  */
348 int hw_breakpoint_arch_parse(struct perf_event *bp,
349 			     const struct perf_event_attr *attr,
350 			     struct arch_hw_breakpoint *hw)
351 {
352 	unsigned int align;
353 	int ret;
354 
355 
356 	ret = arch_build_bp_info(bp, attr, hw);
357 	if (ret)
358 		return ret;
359 
360 	switch (hw->len) {
361 	case X86_BREAKPOINT_LEN_1:
362 		align = 0;
363 		if (hw->mask)
364 			align = hw->mask;
365 		break;
366 	case X86_BREAKPOINT_LEN_2:
367 		align = 1;
368 		break;
369 	case X86_BREAKPOINT_LEN_4:
370 		align = 3;
371 		break;
372 #ifdef CONFIG_X86_64
373 	case X86_BREAKPOINT_LEN_8:
374 		align = 7;
375 		break;
376 #endif
377 	default:
378 		WARN_ON_ONCE(1);
379 		return -EINVAL;
380 	}
381 
382 	/*
383 	 * Check that the low-order bits of the address are appropriate
384 	 * for the alignment implied by len.
385 	 */
386 	if (hw->address & align)
387 		return -EINVAL;
388 
389 	return 0;
390 }
391 
392 /*
393  * Dump the debug register contents to the user.
394  * We can't dump our per cpu values because it
395  * may contain cpu wide breakpoint, something that
396  * doesn't belong to the current task.
397  *
398  * TODO: include non-ptrace user breakpoints (perf)
399  */
400 void aout_dump_debugregs(struct user *dump)
401 {
402 	int i;
403 	int dr7 = 0;
404 	struct perf_event *bp;
405 	struct arch_hw_breakpoint *info;
406 	struct thread_struct *thread = &current->thread;
407 
408 	for (i = 0; i < HBP_NUM; i++) {
409 		bp = thread->ptrace_bps[i];
410 
411 		if (bp && !bp->attr.disabled) {
412 			dump->u_debugreg[i] = bp->attr.bp_addr;
413 			info = counter_arch_bp(bp);
414 			dr7 |= encode_dr7(i, info->len, info->type);
415 		} else {
416 			dump->u_debugreg[i] = 0;
417 		}
418 	}
419 
420 	dump->u_debugreg[4] = 0;
421 	dump->u_debugreg[5] = 0;
422 	dump->u_debugreg[6] = current->thread.debugreg6;
423 
424 	dump->u_debugreg[7] = dr7;
425 }
426 EXPORT_SYMBOL_GPL(aout_dump_debugregs);
427 
428 /*
429  * Release the user breakpoints used by ptrace
430  */
431 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
432 {
433 	int i;
434 	struct thread_struct *t = &tsk->thread;
435 
436 	for (i = 0; i < HBP_NUM; i++) {
437 		unregister_hw_breakpoint(t->ptrace_bps[i]);
438 		t->ptrace_bps[i] = NULL;
439 	}
440 
441 	t->debugreg6 = 0;
442 	t->ptrace_dr7 = 0;
443 }
444 
445 void hw_breakpoint_restore(void)
446 {
447 	set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
448 	set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
449 	set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
450 	set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
451 	set_debugreg(current->thread.debugreg6, 6);
452 	set_debugreg(__this_cpu_read(cpu_dr7), 7);
453 }
454 EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
455 
456 /*
457  * Handle debug exception notifications.
458  *
459  * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
460  *
461  * NOTIFY_DONE returned if one of the following conditions is true.
462  * i) When the causative address is from user-space and the exception
463  * is a valid one, i.e. not triggered as a result of lazy debug register
464  * switching
465  * ii) When there are more bits than trap<n> set in DR6 register (such
466  * as BD, BS or BT) indicating that more than one debug condition is
467  * met and requires some more action in do_debug().
468  *
469  * NOTIFY_STOP returned for all other cases
470  *
471  */
472 static int hw_breakpoint_handler(struct die_args *args)
473 {
474 	int i, cpu, rc = NOTIFY_STOP;
475 	struct perf_event *bp;
476 	unsigned long dr6;
477 	unsigned long *dr6_p;
478 
479 	/* The DR6 value is pointed by args->err */
480 	dr6_p = (unsigned long *)ERR_PTR(args->err);
481 	dr6 = *dr6_p;
482 
483 	/* If it's a single step, TRAP bits are random */
484 	if (dr6 & DR_STEP)
485 		return NOTIFY_DONE;
486 
487 	/* Do an early return if no trap bits are set in DR6 */
488 	if ((dr6 & DR_TRAP_BITS) == 0)
489 		return NOTIFY_DONE;
490 
491 	/*
492 	 * Assert that local interrupts are disabled
493 	 * Reset the DRn bits in the virtualized register value.
494 	 * The ptrace trigger routine will add in whatever is needed.
495 	 */
496 	current->thread.debugreg6 &= ~DR_TRAP_BITS;
497 	cpu = get_cpu();
498 
499 	/* Handle all the breakpoints that were triggered */
500 	for (i = 0; i < HBP_NUM; ++i) {
501 		if (likely(!(dr6 & (DR_TRAP0 << i))))
502 			continue;
503 
504 		/*
505 		 * The counter may be concurrently released but that can only
506 		 * occur from a call_rcu() path. We can then safely fetch
507 		 * the breakpoint, use its callback, touch its counter
508 		 * while we are in an rcu_read_lock() path.
509 		 */
510 		rcu_read_lock();
511 
512 		bp = per_cpu(bp_per_reg[i], cpu);
513 		/*
514 		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
515 		 * exception handling
516 		 */
517 		(*dr6_p) &= ~(DR_TRAP0 << i);
518 		/*
519 		 * bp can be NULL due to lazy debug register switching
520 		 * or due to concurrent perf counter removing.
521 		 */
522 		if (!bp) {
523 			rcu_read_unlock();
524 			break;
525 		}
526 
527 		perf_bp_event(bp, args->regs);
528 
529 		/*
530 		 * Set up resume flag to avoid breakpoint recursion when
531 		 * returning back to origin.
532 		 */
533 		if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
534 			args->regs->flags |= X86_EFLAGS_RF;
535 
536 		rcu_read_unlock();
537 	}
538 	/*
539 	 * Further processing in do_debug() is needed for a) user-space
540 	 * breakpoints (to generate signals) and b) when the system has
541 	 * taken exception due to multiple causes
542 	 */
543 	if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
544 	    (dr6 & (~DR_TRAP_BITS)))
545 		rc = NOTIFY_DONE;
546 
547 	put_cpu();
548 
549 	return rc;
550 }
551 
552 /*
553  * Handle debug exception notifications.
554  */
555 int hw_breakpoint_exceptions_notify(
556 		struct notifier_block *unused, unsigned long val, void *data)
557 {
558 	if (val != DIE_DEBUG)
559 		return NOTIFY_DONE;
560 
561 	return hw_breakpoint_handler(data);
562 }
563 
564 void hw_breakpoint_pmu_read(struct perf_event *bp)
565 {
566 	/* TODO */
567 }
568