1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright (C) 2007 Alan Stern 5 * Copyright (C) 2009 IBM Corporation 6 * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com> 7 * 8 * Authors: Alan Stern <stern@rowland.harvard.edu> 9 * K.Prasad <prasad@linux.vnet.ibm.com> 10 * Frederic Weisbecker <fweisbec@gmail.com> 11 */ 12 13 /* 14 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, 15 * using the CPU's debug registers. 16 */ 17 18 #include <linux/perf_event.h> 19 #include <linux/hw_breakpoint.h> 20 #include <linux/irqflags.h> 21 #include <linux/notifier.h> 22 #include <linux/kallsyms.h> 23 #include <linux/kprobes.h> 24 #include <linux/percpu.h> 25 #include <linux/kdebug.h> 26 #include <linux/kernel.h> 27 #include <linux/export.h> 28 #include <linux/sched.h> 29 #include <linux/smp.h> 30 31 #include <asm/hw_breakpoint.h> 32 #include <asm/processor.h> 33 #include <asm/debugreg.h> 34 #include <asm/user.h> 35 #include <asm/desc.h> 36 #include <asm/tlbflush.h> 37 38 /* Per cpu debug control register value */ 39 DEFINE_PER_CPU(unsigned long, cpu_dr7); 40 EXPORT_PER_CPU_SYMBOL(cpu_dr7); 41 42 /* Per cpu debug address registers values */ 43 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]); 44 45 /* 46 * Stores the breakpoints currently in use on each breakpoint address 47 * register for each cpus 48 */ 49 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); 50 51 52 static inline unsigned long 53 __encode_dr7(int drnum, unsigned int len, unsigned int type) 54 { 55 unsigned long bp_info; 56 57 bp_info = (len | type) & 0xf; 58 bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE); 59 bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE)); 60 61 return bp_info; 62 } 63 64 /* 65 * Encode the length, type, Exact, and Enable bits for a particular breakpoint 66 * as stored in debug register 7. 67 */ 68 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type) 69 { 70 return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN; 71 } 72 73 /* 74 * Decode the length and type bits for a particular breakpoint as 75 * stored in debug register 7. Return the "enabled" status. 76 */ 77 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type) 78 { 79 int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE); 80 81 *len = (bp_info & 0xc) | 0x40; 82 *type = (bp_info & 0x3) | 0x80; 83 84 return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3; 85 } 86 87 /* 88 * Install a perf counter breakpoint. 89 * 90 * We seek a free debug address register and use it for this 91 * breakpoint. Eventually we enable it in the debug control register. 92 * 93 * Atomic: we hold the counter->ctx->lock and we only handle variables 94 * and registers local to this cpu. 95 */ 96 int arch_install_hw_breakpoint(struct perf_event *bp) 97 { 98 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 99 unsigned long *dr7; 100 int i; 101 102 lockdep_assert_irqs_disabled(); 103 104 for (i = 0; i < HBP_NUM; i++) { 105 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); 106 107 if (!*slot) { 108 *slot = bp; 109 break; 110 } 111 } 112 113 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) 114 return -EBUSY; 115 116 set_debugreg(info->address, i); 117 __this_cpu_write(cpu_debugreg[i], info->address); 118 119 dr7 = this_cpu_ptr(&cpu_dr7); 120 *dr7 |= encode_dr7(i, info->len, info->type); 121 122 /* 123 * Ensure we first write cpu_dr7 before we set the DR7 register. 124 * This ensures an NMI never see cpu_dr7 0 when DR7 is not. 125 */ 126 barrier(); 127 128 set_debugreg(*dr7, 7); 129 if (info->mask) 130 set_dr_addr_mask(info->mask, i); 131 132 return 0; 133 } 134 135 /* 136 * Uninstall the breakpoint contained in the given counter. 137 * 138 * First we search the debug address register it uses and then we disable 139 * it. 140 * 141 * Atomic: we hold the counter->ctx->lock and we only handle variables 142 * and registers local to this cpu. 143 */ 144 void arch_uninstall_hw_breakpoint(struct perf_event *bp) 145 { 146 struct arch_hw_breakpoint *info = counter_arch_bp(bp); 147 unsigned long dr7; 148 int i; 149 150 lockdep_assert_irqs_disabled(); 151 152 for (i = 0; i < HBP_NUM; i++) { 153 struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); 154 155 if (*slot == bp) { 156 *slot = NULL; 157 break; 158 } 159 } 160 161 if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) 162 return; 163 164 dr7 = this_cpu_read(cpu_dr7); 165 dr7 &= ~__encode_dr7(i, info->len, info->type); 166 167 set_debugreg(dr7, 7); 168 if (info->mask) 169 set_dr_addr_mask(0, i); 170 171 /* 172 * Ensure the write to cpu_dr7 is after we've set the DR7 register. 173 * This ensures an NMI never see cpu_dr7 0 when DR7 is not. 174 */ 175 barrier(); 176 177 this_cpu_write(cpu_dr7, dr7); 178 } 179 180 static int arch_bp_generic_len(int x86_len) 181 { 182 switch (x86_len) { 183 case X86_BREAKPOINT_LEN_1: 184 return HW_BREAKPOINT_LEN_1; 185 case X86_BREAKPOINT_LEN_2: 186 return HW_BREAKPOINT_LEN_2; 187 case X86_BREAKPOINT_LEN_4: 188 return HW_BREAKPOINT_LEN_4; 189 #ifdef CONFIG_X86_64 190 case X86_BREAKPOINT_LEN_8: 191 return HW_BREAKPOINT_LEN_8; 192 #endif 193 default: 194 return -EINVAL; 195 } 196 } 197 198 int arch_bp_generic_fields(int x86_len, int x86_type, 199 int *gen_len, int *gen_type) 200 { 201 int len; 202 203 /* Type */ 204 switch (x86_type) { 205 case X86_BREAKPOINT_EXECUTE: 206 if (x86_len != X86_BREAKPOINT_LEN_X) 207 return -EINVAL; 208 209 *gen_type = HW_BREAKPOINT_X; 210 *gen_len = sizeof(long); 211 return 0; 212 case X86_BREAKPOINT_WRITE: 213 *gen_type = HW_BREAKPOINT_W; 214 break; 215 case X86_BREAKPOINT_RW: 216 *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; 217 break; 218 default: 219 return -EINVAL; 220 } 221 222 /* Len */ 223 len = arch_bp_generic_len(x86_len); 224 if (len < 0) 225 return -EINVAL; 226 *gen_len = len; 227 228 return 0; 229 } 230 231 /* 232 * Check for virtual address in kernel space. 233 */ 234 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) 235 { 236 unsigned long va; 237 int len; 238 239 va = hw->address; 240 len = arch_bp_generic_len(hw->len); 241 WARN_ON_ONCE(len < 0); 242 243 /* 244 * We don't need to worry about va + len - 1 overflowing: 245 * we already require that va is aligned to a multiple of len. 246 */ 247 return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX); 248 } 249 250 /* 251 * Checks whether the range [addr, end], overlaps the area [base, base + size). 252 */ 253 static inline bool within_area(unsigned long addr, unsigned long end, 254 unsigned long base, unsigned long size) 255 { 256 return end >= base && addr < (base + size); 257 } 258 259 /* 260 * Checks whether the range from addr to end, inclusive, overlaps the fixed 261 * mapped CPU entry area range or other ranges used for CPU entry. 262 */ 263 static inline bool within_cpu_entry(unsigned long addr, unsigned long end) 264 { 265 int cpu; 266 267 /* CPU entry erea is always used for CPU entry */ 268 if (within_area(addr, end, CPU_ENTRY_AREA_BASE, 269 CPU_ENTRY_AREA_MAP_SIZE)) 270 return true; 271 272 /* 273 * When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU 274 * GSBASE value via __per_cpu_offset or pcpu_unit_offsets. 275 */ 276 #ifdef CONFIG_SMP 277 if (within_area(addr, end, (unsigned long)__per_cpu_offset, 278 sizeof(unsigned long) * nr_cpu_ids)) 279 return true; 280 #else 281 if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets, 282 sizeof(pcpu_unit_offsets))) 283 return true; 284 #endif 285 286 for_each_possible_cpu(cpu) { 287 /* The original rw GDT is being used after load_direct_gdt() */ 288 if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu), 289 GDT_SIZE)) 290 return true; 291 292 /* 293 * cpu_tss_rw is not directly referenced by hardware, but 294 * cpu_tss_rw is also used in CPU entry code, 295 */ 296 if (within_area(addr, end, 297 (unsigned long)&per_cpu(cpu_tss_rw, cpu), 298 sizeof(struct tss_struct))) 299 return true; 300 301 /* 302 * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry. 303 * If a data breakpoint on it, it will cause an unwanted #DB. 304 * Protect the full cpu_tlbstate structure to be sure. 305 */ 306 if (within_area(addr, end, 307 (unsigned long)&per_cpu(cpu_tlbstate, cpu), 308 sizeof(struct tlb_state))) 309 return true; 310 311 /* 312 * When in guest (X86_FEATURE_HYPERVISOR), local_db_save() 313 * will read per-cpu cpu_dr7 before clear dr7 register. 314 */ 315 if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu), 316 sizeof(cpu_dr7))) 317 return true; 318 } 319 320 return false; 321 } 322 323 static int arch_build_bp_info(struct perf_event *bp, 324 const struct perf_event_attr *attr, 325 struct arch_hw_breakpoint *hw) 326 { 327 unsigned long bp_end; 328 329 bp_end = attr->bp_addr + attr->bp_len - 1; 330 if (bp_end < attr->bp_addr) 331 return -EINVAL; 332 333 /* 334 * Prevent any breakpoint of any type that overlaps the CPU 335 * entry area and data. This protects the IST stacks and also 336 * reduces the chance that we ever find out what happens if 337 * there's a data breakpoint on the GDT, IDT, or TSS. 338 */ 339 if (within_cpu_entry(attr->bp_addr, bp_end)) 340 return -EINVAL; 341 342 hw->address = attr->bp_addr; 343 hw->mask = 0; 344 345 /* Type */ 346 switch (attr->bp_type) { 347 case HW_BREAKPOINT_W: 348 hw->type = X86_BREAKPOINT_WRITE; 349 break; 350 case HW_BREAKPOINT_W | HW_BREAKPOINT_R: 351 hw->type = X86_BREAKPOINT_RW; 352 break; 353 case HW_BREAKPOINT_X: 354 /* 355 * We don't allow kernel breakpoints in places that are not 356 * acceptable for kprobes. On non-kprobes kernels, we don't 357 * allow kernel breakpoints at all. 358 */ 359 if (attr->bp_addr >= TASK_SIZE_MAX) { 360 if (within_kprobe_blacklist(attr->bp_addr)) 361 return -EINVAL; 362 } 363 364 hw->type = X86_BREAKPOINT_EXECUTE; 365 /* 366 * x86 inst breakpoints need to have a specific undefined len. 367 * But we still need to check userspace is not trying to setup 368 * an unsupported length, to get a range breakpoint for example. 369 */ 370 if (attr->bp_len == sizeof(long)) { 371 hw->len = X86_BREAKPOINT_LEN_X; 372 return 0; 373 } 374 fallthrough; 375 default: 376 return -EINVAL; 377 } 378 379 /* Len */ 380 switch (attr->bp_len) { 381 case HW_BREAKPOINT_LEN_1: 382 hw->len = X86_BREAKPOINT_LEN_1; 383 break; 384 case HW_BREAKPOINT_LEN_2: 385 hw->len = X86_BREAKPOINT_LEN_2; 386 break; 387 case HW_BREAKPOINT_LEN_4: 388 hw->len = X86_BREAKPOINT_LEN_4; 389 break; 390 #ifdef CONFIG_X86_64 391 case HW_BREAKPOINT_LEN_8: 392 hw->len = X86_BREAKPOINT_LEN_8; 393 break; 394 #endif 395 default: 396 /* AMD range breakpoint */ 397 if (!is_power_of_2(attr->bp_len)) 398 return -EINVAL; 399 if (attr->bp_addr & (attr->bp_len - 1)) 400 return -EINVAL; 401 402 if (!boot_cpu_has(X86_FEATURE_BPEXT)) 403 return -EOPNOTSUPP; 404 405 /* 406 * It's impossible to use a range breakpoint to fake out 407 * user vs kernel detection because bp_len - 1 can't 408 * have the high bit set. If we ever allow range instruction 409 * breakpoints, then we'll have to check for kprobe-blacklisted 410 * addresses anywhere in the range. 411 */ 412 hw->mask = attr->bp_len - 1; 413 hw->len = X86_BREAKPOINT_LEN_1; 414 } 415 416 return 0; 417 } 418 419 /* 420 * Validate the arch-specific HW Breakpoint register settings 421 */ 422 int hw_breakpoint_arch_parse(struct perf_event *bp, 423 const struct perf_event_attr *attr, 424 struct arch_hw_breakpoint *hw) 425 { 426 unsigned int align; 427 int ret; 428 429 430 ret = arch_build_bp_info(bp, attr, hw); 431 if (ret) 432 return ret; 433 434 switch (hw->len) { 435 case X86_BREAKPOINT_LEN_1: 436 align = 0; 437 if (hw->mask) 438 align = hw->mask; 439 break; 440 case X86_BREAKPOINT_LEN_2: 441 align = 1; 442 break; 443 case X86_BREAKPOINT_LEN_4: 444 align = 3; 445 break; 446 #ifdef CONFIG_X86_64 447 case X86_BREAKPOINT_LEN_8: 448 align = 7; 449 break; 450 #endif 451 default: 452 WARN_ON_ONCE(1); 453 return -EINVAL; 454 } 455 456 /* 457 * Check that the low-order bits of the address are appropriate 458 * for the alignment implied by len. 459 */ 460 if (hw->address & align) 461 return -EINVAL; 462 463 return 0; 464 } 465 466 /* 467 * Release the user breakpoints used by ptrace 468 */ 469 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 470 { 471 int i; 472 struct thread_struct *t = &tsk->thread; 473 474 for (i = 0; i < HBP_NUM; i++) { 475 unregister_hw_breakpoint(t->ptrace_bps[i]); 476 t->ptrace_bps[i] = NULL; 477 } 478 479 t->virtual_dr6 = 0; 480 t->ptrace_dr7 = 0; 481 } 482 483 void hw_breakpoint_restore(void) 484 { 485 set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0); 486 set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1); 487 set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2); 488 set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3); 489 set_debugreg(DR6_RESERVED, 6); 490 set_debugreg(__this_cpu_read(cpu_dr7), 7); 491 } 492 EXPORT_SYMBOL_GPL(hw_breakpoint_restore); 493 494 /* 495 * Handle debug exception notifications. 496 * 497 * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below. 498 * 499 * NOTIFY_DONE returned if one of the following conditions is true. 500 * i) When the causative address is from user-space and the exception 501 * is a valid one, i.e. not triggered as a result of lazy debug register 502 * switching 503 * ii) When there are more bits than trap<n> set in DR6 register (such 504 * as BD, BS or BT) indicating that more than one debug condition is 505 * met and requires some more action in do_debug(). 506 * 507 * NOTIFY_STOP returned for all other cases 508 * 509 */ 510 static int hw_breakpoint_handler(struct die_args *args) 511 { 512 int i, rc = NOTIFY_STOP; 513 struct perf_event *bp; 514 unsigned long *dr6_p; 515 unsigned long dr6; 516 bool bpx; 517 518 /* The DR6 value is pointed by args->err */ 519 dr6_p = (unsigned long *)ERR_PTR(args->err); 520 dr6 = *dr6_p; 521 522 /* Do an early return if no trap bits are set in DR6 */ 523 if ((dr6 & DR_TRAP_BITS) == 0) 524 return NOTIFY_DONE; 525 526 /* Handle all the breakpoints that were triggered */ 527 for (i = 0; i < HBP_NUM; ++i) { 528 if (likely(!(dr6 & (DR_TRAP0 << i)))) 529 continue; 530 531 bp = this_cpu_read(bp_per_reg[i]); 532 if (!bp) 533 continue; 534 535 bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE; 536 537 /* 538 * TF and data breakpoints are traps and can be merged, however 539 * instruction breakpoints are faults and will be raised 540 * separately. 541 * 542 * However DR6 can indicate both TF and instruction 543 * breakpoints. In that case take TF as that has precedence and 544 * delay the instruction breakpoint for the next exception. 545 */ 546 if (bpx && (dr6 & DR_STEP)) 547 continue; 548 549 /* 550 * Reset the 'i'th TRAP bit in dr6 to denote completion of 551 * exception handling 552 */ 553 (*dr6_p) &= ~(DR_TRAP0 << i); 554 555 perf_bp_event(bp, args->regs); 556 557 /* 558 * Set up resume flag to avoid breakpoint recursion when 559 * returning back to origin. 560 */ 561 if (bpx) 562 args->regs->flags |= X86_EFLAGS_RF; 563 } 564 565 /* 566 * Further processing in do_debug() is needed for a) user-space 567 * breakpoints (to generate signals) and b) when the system has 568 * taken exception due to multiple causes 569 */ 570 if ((current->thread.virtual_dr6 & DR_TRAP_BITS) || 571 (dr6 & (~DR_TRAP_BITS))) 572 rc = NOTIFY_DONE; 573 574 return rc; 575 } 576 577 /* 578 * Handle debug exception notifications. 579 */ 580 int hw_breakpoint_exceptions_notify( 581 struct notifier_block *unused, unsigned long val, void *data) 582 { 583 if (val != DIE_DEBUG) 584 return NOTIFY_DONE; 585 586 return hw_breakpoint_handler(data); 587 } 588 589 void hw_breakpoint_pmu_read(struct perf_event *bp) 590 { 591 /* TODO */ 592 } 593