xref: /openbmc/linux/arch/x86/kernel/hw_breakpoint.c (revision 24ae0c91)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2007 Alan Stern
5  * Copyright (C) 2009 IBM Corporation
6  * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com>
7  *
8  * Authors: Alan Stern <stern@rowland.harvard.edu>
9  *          K.Prasad <prasad@linux.vnet.ibm.com>
10  *          Frederic Weisbecker <fweisbec@gmail.com>
11  */
12 
13 /*
14  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
15  * using the CPU's debug registers.
16  */
17 
18 #include <linux/perf_event.h>
19 #include <linux/hw_breakpoint.h>
20 #include <linux/irqflags.h>
21 #include <linux/notifier.h>
22 #include <linux/kallsyms.h>
23 #include <linux/kprobes.h>
24 #include <linux/percpu.h>
25 #include <linux/kdebug.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30 
31 #include <asm/hw_breakpoint.h>
32 #include <asm/processor.h>
33 #include <asm/debugreg.h>
34 #include <asm/user.h>
35 
36 /* Per cpu debug control register value */
37 DEFINE_PER_CPU(unsigned long, cpu_dr7);
38 EXPORT_PER_CPU_SYMBOL(cpu_dr7);
39 
40 /* Per cpu debug address registers values */
41 static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]);
42 
43 /*
44  * Stores the breakpoints currently in use on each breakpoint address
45  * register for each cpus
46  */
47 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]);
48 
49 
50 static inline unsigned long
51 __encode_dr7(int drnum, unsigned int len, unsigned int type)
52 {
53 	unsigned long bp_info;
54 
55 	bp_info = (len | type) & 0xf;
56 	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
57 	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));
58 
59 	return bp_info;
60 }
61 
62 /*
63  * Encode the length, type, Exact, and Enable bits for a particular breakpoint
64  * as stored in debug register 7.
65  */
66 unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type)
67 {
68 	return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN;
69 }
70 
71 /*
72  * Decode the length and type bits for a particular breakpoint as
73  * stored in debug register 7.  Return the "enabled" status.
74  */
75 int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type)
76 {
77 	int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE);
78 
79 	*len = (bp_info & 0xc) | 0x40;
80 	*type = (bp_info & 0x3) | 0x80;
81 
82 	return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3;
83 }
84 
85 /*
86  * Install a perf counter breakpoint.
87  *
88  * We seek a free debug address register and use it for this
89  * breakpoint. Eventually we enable it in the debug control register.
90  *
91  * Atomic: we hold the counter->ctx->lock and we only handle variables
92  * and registers local to this cpu.
93  */
94 int arch_install_hw_breakpoint(struct perf_event *bp)
95 {
96 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
97 	unsigned long *dr7;
98 	int i;
99 
100 	for (i = 0; i < HBP_NUM; i++) {
101 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
102 
103 		if (!*slot) {
104 			*slot = bp;
105 			break;
106 		}
107 	}
108 
109 	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
110 		return -EBUSY;
111 
112 	set_debugreg(info->address, i);
113 	__this_cpu_write(cpu_debugreg[i], info->address);
114 
115 	dr7 = this_cpu_ptr(&cpu_dr7);
116 	*dr7 |= encode_dr7(i, info->len, info->type);
117 
118 	set_debugreg(*dr7, 7);
119 	if (info->mask)
120 		set_dr_addr_mask(info->mask, i);
121 
122 	return 0;
123 }
124 
125 /*
126  * Uninstall the breakpoint contained in the given counter.
127  *
128  * First we search the debug address register it uses and then we disable
129  * it.
130  *
131  * Atomic: we hold the counter->ctx->lock and we only handle variables
132  * and registers local to this cpu.
133  */
134 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
135 {
136 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
137 	unsigned long *dr7;
138 	int i;
139 
140 	for (i = 0; i < HBP_NUM; i++) {
141 		struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]);
142 
143 		if (*slot == bp) {
144 			*slot = NULL;
145 			break;
146 		}
147 	}
148 
149 	if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot"))
150 		return;
151 
152 	dr7 = this_cpu_ptr(&cpu_dr7);
153 	*dr7 &= ~__encode_dr7(i, info->len, info->type);
154 
155 	set_debugreg(*dr7, 7);
156 	if (info->mask)
157 		set_dr_addr_mask(0, i);
158 }
159 
160 static int arch_bp_generic_len(int x86_len)
161 {
162 	switch (x86_len) {
163 	case X86_BREAKPOINT_LEN_1:
164 		return HW_BREAKPOINT_LEN_1;
165 	case X86_BREAKPOINT_LEN_2:
166 		return HW_BREAKPOINT_LEN_2;
167 	case X86_BREAKPOINT_LEN_4:
168 		return HW_BREAKPOINT_LEN_4;
169 #ifdef CONFIG_X86_64
170 	case X86_BREAKPOINT_LEN_8:
171 		return HW_BREAKPOINT_LEN_8;
172 #endif
173 	default:
174 		return -EINVAL;
175 	}
176 }
177 
178 int arch_bp_generic_fields(int x86_len, int x86_type,
179 			   int *gen_len, int *gen_type)
180 {
181 	int len;
182 
183 	/* Type */
184 	switch (x86_type) {
185 	case X86_BREAKPOINT_EXECUTE:
186 		if (x86_len != X86_BREAKPOINT_LEN_X)
187 			return -EINVAL;
188 
189 		*gen_type = HW_BREAKPOINT_X;
190 		*gen_len = sizeof(long);
191 		return 0;
192 	case X86_BREAKPOINT_WRITE:
193 		*gen_type = HW_BREAKPOINT_W;
194 		break;
195 	case X86_BREAKPOINT_RW:
196 		*gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R;
197 		break;
198 	default:
199 		return -EINVAL;
200 	}
201 
202 	/* Len */
203 	len = arch_bp_generic_len(x86_len);
204 	if (len < 0)
205 		return -EINVAL;
206 	*gen_len = len;
207 
208 	return 0;
209 }
210 
211 /*
212  * Check for virtual address in kernel space.
213  */
214 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
215 {
216 	unsigned long va;
217 	int len;
218 
219 	va = hw->address;
220 	len = arch_bp_generic_len(hw->len);
221 	WARN_ON_ONCE(len < 0);
222 
223 	/*
224 	 * We don't need to worry about va + len - 1 overflowing:
225 	 * we already require that va is aligned to a multiple of len.
226 	 */
227 	return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX);
228 }
229 
230 /*
231  * Checks whether the range from addr to end, inclusive, overlaps the CPU
232  * entry area range.
233  */
234 static inline bool within_cpu_entry_area(unsigned long addr, unsigned long end)
235 {
236 	return end >= CPU_ENTRY_AREA_BASE &&
237 	       addr < (CPU_ENTRY_AREA_BASE + CPU_ENTRY_AREA_TOTAL_SIZE);
238 }
239 
240 static int arch_build_bp_info(struct perf_event *bp,
241 			      const struct perf_event_attr *attr,
242 			      struct arch_hw_breakpoint *hw)
243 {
244 	unsigned long bp_end;
245 
246 	bp_end = attr->bp_addr + attr->bp_len - 1;
247 	if (bp_end < attr->bp_addr)
248 		return -EINVAL;
249 
250 	/*
251 	 * Prevent any breakpoint of any type that overlaps the
252 	 * cpu_entry_area.  This protects the IST stacks and also
253 	 * reduces the chance that we ever find out what happens if
254 	 * there's a data breakpoint on the GDT, IDT, or TSS.
255 	 */
256 	if (within_cpu_entry_area(attr->bp_addr, bp_end))
257 		return -EINVAL;
258 
259 	hw->address = attr->bp_addr;
260 	hw->mask = 0;
261 
262 	/* Type */
263 	switch (attr->bp_type) {
264 	case HW_BREAKPOINT_W:
265 		hw->type = X86_BREAKPOINT_WRITE;
266 		break;
267 	case HW_BREAKPOINT_W | HW_BREAKPOINT_R:
268 		hw->type = X86_BREAKPOINT_RW;
269 		break;
270 	case HW_BREAKPOINT_X:
271 		/*
272 		 * We don't allow kernel breakpoints in places that are not
273 		 * acceptable for kprobes.  On non-kprobes kernels, we don't
274 		 * allow kernel breakpoints at all.
275 		 */
276 		if (attr->bp_addr >= TASK_SIZE_MAX) {
277 			if (within_kprobe_blacklist(attr->bp_addr))
278 				return -EINVAL;
279 		}
280 
281 		hw->type = X86_BREAKPOINT_EXECUTE;
282 		/*
283 		 * x86 inst breakpoints need to have a specific undefined len.
284 		 * But we still need to check userspace is not trying to setup
285 		 * an unsupported length, to get a range breakpoint for example.
286 		 */
287 		if (attr->bp_len == sizeof(long)) {
288 			hw->len = X86_BREAKPOINT_LEN_X;
289 			return 0;
290 		}
291 		/* fall through */
292 	default:
293 		return -EINVAL;
294 	}
295 
296 	/* Len */
297 	switch (attr->bp_len) {
298 	case HW_BREAKPOINT_LEN_1:
299 		hw->len = X86_BREAKPOINT_LEN_1;
300 		break;
301 	case HW_BREAKPOINT_LEN_2:
302 		hw->len = X86_BREAKPOINT_LEN_2;
303 		break;
304 	case HW_BREAKPOINT_LEN_4:
305 		hw->len = X86_BREAKPOINT_LEN_4;
306 		break;
307 #ifdef CONFIG_X86_64
308 	case HW_BREAKPOINT_LEN_8:
309 		hw->len = X86_BREAKPOINT_LEN_8;
310 		break;
311 #endif
312 	default:
313 		/* AMD range breakpoint */
314 		if (!is_power_of_2(attr->bp_len))
315 			return -EINVAL;
316 		if (attr->bp_addr & (attr->bp_len - 1))
317 			return -EINVAL;
318 
319 		if (!boot_cpu_has(X86_FEATURE_BPEXT))
320 			return -EOPNOTSUPP;
321 
322 		/*
323 		 * It's impossible to use a range breakpoint to fake out
324 		 * user vs kernel detection because bp_len - 1 can't
325 		 * have the high bit set.  If we ever allow range instruction
326 		 * breakpoints, then we'll have to check for kprobe-blacklisted
327 		 * addresses anywhere in the range.
328 		 */
329 		hw->mask = attr->bp_len - 1;
330 		hw->len = X86_BREAKPOINT_LEN_1;
331 	}
332 
333 	return 0;
334 }
335 
336 /*
337  * Validate the arch-specific HW Breakpoint register settings
338  */
339 int hw_breakpoint_arch_parse(struct perf_event *bp,
340 			     const struct perf_event_attr *attr,
341 			     struct arch_hw_breakpoint *hw)
342 {
343 	unsigned int align;
344 	int ret;
345 
346 
347 	ret = arch_build_bp_info(bp, attr, hw);
348 	if (ret)
349 		return ret;
350 
351 	switch (hw->len) {
352 	case X86_BREAKPOINT_LEN_1:
353 		align = 0;
354 		if (hw->mask)
355 			align = hw->mask;
356 		break;
357 	case X86_BREAKPOINT_LEN_2:
358 		align = 1;
359 		break;
360 	case X86_BREAKPOINT_LEN_4:
361 		align = 3;
362 		break;
363 #ifdef CONFIG_X86_64
364 	case X86_BREAKPOINT_LEN_8:
365 		align = 7;
366 		break;
367 #endif
368 	default:
369 		WARN_ON_ONCE(1);
370 		return -EINVAL;
371 	}
372 
373 	/*
374 	 * Check that the low-order bits of the address are appropriate
375 	 * for the alignment implied by len.
376 	 */
377 	if (hw->address & align)
378 		return -EINVAL;
379 
380 	return 0;
381 }
382 
383 /*
384  * Dump the debug register contents to the user.
385  * We can't dump our per cpu values because it
386  * may contain cpu wide breakpoint, something that
387  * doesn't belong to the current task.
388  *
389  * TODO: include non-ptrace user breakpoints (perf)
390  */
391 void aout_dump_debugregs(struct user *dump)
392 {
393 	int i;
394 	int dr7 = 0;
395 	struct perf_event *bp;
396 	struct arch_hw_breakpoint *info;
397 	struct thread_struct *thread = &current->thread;
398 
399 	for (i = 0; i < HBP_NUM; i++) {
400 		bp = thread->ptrace_bps[i];
401 
402 		if (bp && !bp->attr.disabled) {
403 			dump->u_debugreg[i] = bp->attr.bp_addr;
404 			info = counter_arch_bp(bp);
405 			dr7 |= encode_dr7(i, info->len, info->type);
406 		} else {
407 			dump->u_debugreg[i] = 0;
408 		}
409 	}
410 
411 	dump->u_debugreg[4] = 0;
412 	dump->u_debugreg[5] = 0;
413 	dump->u_debugreg[6] = current->thread.debugreg6;
414 
415 	dump->u_debugreg[7] = dr7;
416 }
417 EXPORT_SYMBOL_GPL(aout_dump_debugregs);
418 
419 /*
420  * Release the user breakpoints used by ptrace
421  */
422 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
423 {
424 	int i;
425 	struct thread_struct *t = &tsk->thread;
426 
427 	for (i = 0; i < HBP_NUM; i++) {
428 		unregister_hw_breakpoint(t->ptrace_bps[i]);
429 		t->ptrace_bps[i] = NULL;
430 	}
431 
432 	t->debugreg6 = 0;
433 	t->ptrace_dr7 = 0;
434 }
435 
436 void hw_breakpoint_restore(void)
437 {
438 	set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0);
439 	set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1);
440 	set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2);
441 	set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3);
442 	set_debugreg(current->thread.debugreg6, 6);
443 	set_debugreg(__this_cpu_read(cpu_dr7), 7);
444 }
445 EXPORT_SYMBOL_GPL(hw_breakpoint_restore);
446 
447 /*
448  * Handle debug exception notifications.
449  *
450  * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below.
451  *
452  * NOTIFY_DONE returned if one of the following conditions is true.
453  * i) When the causative address is from user-space and the exception
454  * is a valid one, i.e. not triggered as a result of lazy debug register
455  * switching
456  * ii) When there are more bits than trap<n> set in DR6 register (such
457  * as BD, BS or BT) indicating that more than one debug condition is
458  * met and requires some more action in do_debug().
459  *
460  * NOTIFY_STOP returned for all other cases
461  *
462  */
463 static int hw_breakpoint_handler(struct die_args *args)
464 {
465 	int i, cpu, rc = NOTIFY_STOP;
466 	struct perf_event *bp;
467 	unsigned long dr7, dr6;
468 	unsigned long *dr6_p;
469 
470 	/* The DR6 value is pointed by args->err */
471 	dr6_p = (unsigned long *)ERR_PTR(args->err);
472 	dr6 = *dr6_p;
473 
474 	/* If it's a single step, TRAP bits are random */
475 	if (dr6 & DR_STEP)
476 		return NOTIFY_DONE;
477 
478 	/* Do an early return if no trap bits are set in DR6 */
479 	if ((dr6 & DR_TRAP_BITS) == 0)
480 		return NOTIFY_DONE;
481 
482 	get_debugreg(dr7, 7);
483 	/* Disable breakpoints during exception handling */
484 	set_debugreg(0UL, 7);
485 	/*
486 	 * Assert that local interrupts are disabled
487 	 * Reset the DRn bits in the virtualized register value.
488 	 * The ptrace trigger routine will add in whatever is needed.
489 	 */
490 	current->thread.debugreg6 &= ~DR_TRAP_BITS;
491 	cpu = get_cpu();
492 
493 	/* Handle all the breakpoints that were triggered */
494 	for (i = 0; i < HBP_NUM; ++i) {
495 		if (likely(!(dr6 & (DR_TRAP0 << i))))
496 			continue;
497 
498 		/*
499 		 * The counter may be concurrently released but that can only
500 		 * occur from a call_rcu() path. We can then safely fetch
501 		 * the breakpoint, use its callback, touch its counter
502 		 * while we are in an rcu_read_lock() path.
503 		 */
504 		rcu_read_lock();
505 
506 		bp = per_cpu(bp_per_reg[i], cpu);
507 		/*
508 		 * Reset the 'i'th TRAP bit in dr6 to denote completion of
509 		 * exception handling
510 		 */
511 		(*dr6_p) &= ~(DR_TRAP0 << i);
512 		/*
513 		 * bp can be NULL due to lazy debug register switching
514 		 * or due to concurrent perf counter removing.
515 		 */
516 		if (!bp) {
517 			rcu_read_unlock();
518 			break;
519 		}
520 
521 		perf_bp_event(bp, args->regs);
522 
523 		/*
524 		 * Set up resume flag to avoid breakpoint recursion when
525 		 * returning back to origin.
526 		 */
527 		if (bp->hw.info.type == X86_BREAKPOINT_EXECUTE)
528 			args->regs->flags |= X86_EFLAGS_RF;
529 
530 		rcu_read_unlock();
531 	}
532 	/*
533 	 * Further processing in do_debug() is needed for a) user-space
534 	 * breakpoints (to generate signals) and b) when the system has
535 	 * taken exception due to multiple causes
536 	 */
537 	if ((current->thread.debugreg6 & DR_TRAP_BITS) ||
538 	    (dr6 & (~DR_TRAP_BITS)))
539 		rc = NOTIFY_DONE;
540 
541 	set_debugreg(dr7, 7);
542 	put_cpu();
543 
544 	return rc;
545 }
546 
547 /*
548  * Handle debug exception notifications.
549  */
550 int hw_breakpoint_exceptions_notify(
551 		struct notifier_block *unused, unsigned long val, void *data)
552 {
553 	if (val != DIE_DEBUG)
554 		return NOTIFY_DONE;
555 
556 	return hw_breakpoint_handler(data);
557 }
558 
559 void hw_breakpoint_pmu_read(struct perf_event *bp)
560 {
561 	/* TODO */
562 }
563