xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision ff148d8a)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/export.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
15 
16 #include <asm/cpufeature.h>
17 #include <asm/irqdomain.h>
18 #include <asm/fixmap.h>
19 #include <asm/hpet.h>
20 #include <asm/time.h>
21 
22 #define HPET_MASK			CLOCKSOURCE_MASK(32)
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define HPET_MIN_CYCLES			128
31 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32 
33 /*
34  * HPET address is set in acpi/boot.c, when an ACPI entry exists
35  */
36 unsigned long				hpet_address;
37 u8					hpet_blockid; /* OS timer block num */
38 bool					hpet_msi_disable;
39 
40 #ifdef CONFIG_PCI_MSI
41 static unsigned int			hpet_num_timers;
42 #endif
43 static void __iomem			*hpet_virt_address;
44 
45 struct hpet_dev {
46 	struct clock_event_device	evt;
47 	unsigned int			num;
48 	int				cpu;
49 	unsigned int			irq;
50 	unsigned int			flags;
51 	char				name[10];
52 };
53 
54 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
55 {
56 	return container_of(evtdev, struct hpet_dev, evt);
57 }
58 
59 inline unsigned int hpet_readl(unsigned int a)
60 {
61 	return readl(hpet_virt_address + a);
62 }
63 
64 static inline void hpet_writel(unsigned int d, unsigned int a)
65 {
66 	writel(d, hpet_virt_address + a);
67 }
68 
69 #ifdef CONFIG_X86_64
70 #include <asm/pgtable.h>
71 #endif
72 
73 static inline void hpet_set_mapping(void)
74 {
75 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
76 }
77 
78 static inline void hpet_clear_mapping(void)
79 {
80 	iounmap(hpet_virt_address);
81 	hpet_virt_address = NULL;
82 }
83 
84 /*
85  * HPET command line enable / disable
86  */
87 bool boot_hpet_disable;
88 bool hpet_force_user;
89 static bool hpet_verbose;
90 
91 static int __init hpet_setup(char *str)
92 {
93 	while (str) {
94 		char *next = strchr(str, ',');
95 
96 		if (next)
97 			*next++ = 0;
98 		if (!strncmp("disable", str, 7))
99 			boot_hpet_disable = true;
100 		if (!strncmp("force", str, 5))
101 			hpet_force_user = true;
102 		if (!strncmp("verbose", str, 7))
103 			hpet_verbose = true;
104 		str = next;
105 	}
106 	return 1;
107 }
108 __setup("hpet=", hpet_setup);
109 
110 static int __init disable_hpet(char *str)
111 {
112 	boot_hpet_disable = true;
113 	return 1;
114 }
115 __setup("nohpet", disable_hpet);
116 
117 static inline int is_hpet_capable(void)
118 {
119 	return !boot_hpet_disable && hpet_address;
120 }
121 
122 /*
123  * HPET timer interrupt enable / disable
124  */
125 static bool hpet_legacy_int_enabled;
126 
127 /**
128  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
129  */
130 int is_hpet_enabled(void)
131 {
132 	return is_hpet_capable() && hpet_legacy_int_enabled;
133 }
134 EXPORT_SYMBOL_GPL(is_hpet_enabled);
135 
136 static void _hpet_print_config(const char *function, int line)
137 {
138 	u32 i, timers, l, h;
139 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
140 	l = hpet_readl(HPET_ID);
141 	h = hpet_readl(HPET_PERIOD);
142 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
143 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
144 	l = hpet_readl(HPET_CFG);
145 	h = hpet_readl(HPET_STATUS);
146 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
147 	l = hpet_readl(HPET_COUNTER);
148 	h = hpet_readl(HPET_COUNTER+4);
149 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
150 
151 	for (i = 0; i < timers; i++) {
152 		l = hpet_readl(HPET_Tn_CFG(i));
153 		h = hpet_readl(HPET_Tn_CFG(i)+4);
154 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
155 		       i, l, h);
156 		l = hpet_readl(HPET_Tn_CMP(i));
157 		h = hpet_readl(HPET_Tn_CMP(i)+4);
158 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
159 		       i, l, h);
160 		l = hpet_readl(HPET_Tn_ROUTE(i));
161 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
162 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
163 		       i, l, h);
164 	}
165 }
166 
167 #define hpet_print_config()					\
168 do {								\
169 	if (hpet_verbose)					\
170 		_hpet_print_config(__func__, __LINE__);	\
171 } while (0)
172 
173 /*
174  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
175  * timer 0 and timer 1 in case of RTC emulation.
176  */
177 #ifdef CONFIG_HPET
178 
179 static void hpet_reserve_msi_timers(struct hpet_data *hd);
180 
181 static void hpet_reserve_platform_timers(unsigned int id)
182 {
183 	struct hpet __iomem *hpet = hpet_virt_address;
184 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
185 	unsigned int nrtimers, i;
186 	struct hpet_data hd;
187 
188 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
189 
190 	memset(&hd, 0, sizeof(hd));
191 	hd.hd_phys_address	= hpet_address;
192 	hd.hd_address		= hpet;
193 	hd.hd_nirqs		= nrtimers;
194 	hpet_reserve_timer(&hd, 0);
195 
196 #ifdef CONFIG_HPET_EMULATE_RTC
197 	hpet_reserve_timer(&hd, 1);
198 #endif
199 
200 	/*
201 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
202 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
203 	 * don't bother configuring *any* comparator interrupts.
204 	 */
205 	hd.hd_irq[0] = HPET_LEGACY_8254;
206 	hd.hd_irq[1] = HPET_LEGACY_RTC;
207 
208 	for (i = 2; i < nrtimers; timer++, i++) {
209 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
210 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
211 	}
212 
213 	hpet_reserve_msi_timers(&hd);
214 
215 	hpet_alloc(&hd);
216 
217 }
218 #else
219 static void hpet_reserve_platform_timers(unsigned int id) { }
220 #endif
221 
222 /*
223  * Common hpet info
224  */
225 static unsigned long hpet_freq;
226 
227 static struct clock_event_device hpet_clockevent;
228 
229 static void hpet_stop_counter(void)
230 {
231 	u32 cfg = hpet_readl(HPET_CFG);
232 	cfg &= ~HPET_CFG_ENABLE;
233 	hpet_writel(cfg, HPET_CFG);
234 }
235 
236 static void hpet_reset_counter(void)
237 {
238 	hpet_writel(0, HPET_COUNTER);
239 	hpet_writel(0, HPET_COUNTER + 4);
240 }
241 
242 static void hpet_start_counter(void)
243 {
244 	unsigned int cfg = hpet_readl(HPET_CFG);
245 	cfg |= HPET_CFG_ENABLE;
246 	hpet_writel(cfg, HPET_CFG);
247 }
248 
249 static void hpet_restart_counter(void)
250 {
251 	hpet_stop_counter();
252 	hpet_reset_counter();
253 	hpet_start_counter();
254 }
255 
256 static void hpet_resume_device(void)
257 {
258 	force_hpet_resume();
259 }
260 
261 static void hpet_resume_counter(struct clocksource *cs)
262 {
263 	hpet_resume_device();
264 	hpet_restart_counter();
265 }
266 
267 static void hpet_enable_legacy_int(void)
268 {
269 	unsigned int cfg = hpet_readl(HPET_CFG);
270 
271 	cfg |= HPET_CFG_LEGACY;
272 	hpet_writel(cfg, HPET_CFG);
273 	hpet_legacy_int_enabled = true;
274 }
275 
276 static void hpet_legacy_clockevent_register(void)
277 {
278 	/* Start HPET legacy interrupts */
279 	hpet_enable_legacy_int();
280 
281 	/*
282 	 * Start hpet with the boot cpu mask and make it
283 	 * global after the IO_APIC has been initialized.
284 	 */
285 	hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
286 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
287 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
288 	global_clock_event = &hpet_clockevent;
289 	printk(KERN_DEBUG "hpet clockevent registered\n");
290 }
291 
292 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
293 {
294 	unsigned int cfg, cmp, now;
295 	uint64_t delta;
296 
297 	hpet_stop_counter();
298 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
299 	delta >>= evt->shift;
300 	now = hpet_readl(HPET_COUNTER);
301 	cmp = now + (unsigned int)delta;
302 	cfg = hpet_readl(HPET_Tn_CFG(timer));
303 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
304 	       HPET_TN_32BIT;
305 	hpet_writel(cfg, HPET_Tn_CFG(timer));
306 	hpet_writel(cmp, HPET_Tn_CMP(timer));
307 	udelay(1);
308 	/*
309 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
310 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
311 	 * bit is automatically cleared after the first write.
312 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
313 	 * Publication # 24674)
314 	 */
315 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
316 	hpet_start_counter();
317 	hpet_print_config();
318 
319 	return 0;
320 }
321 
322 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
323 {
324 	unsigned int cfg;
325 
326 	cfg = hpet_readl(HPET_Tn_CFG(timer));
327 	cfg &= ~HPET_TN_PERIODIC;
328 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
329 	hpet_writel(cfg, HPET_Tn_CFG(timer));
330 
331 	return 0;
332 }
333 
334 static int hpet_shutdown(struct clock_event_device *evt, int timer)
335 {
336 	unsigned int cfg;
337 
338 	cfg = hpet_readl(HPET_Tn_CFG(timer));
339 	cfg &= ~HPET_TN_ENABLE;
340 	hpet_writel(cfg, HPET_Tn_CFG(timer));
341 
342 	return 0;
343 }
344 
345 static int hpet_resume(struct clock_event_device *evt)
346 {
347 	hpet_enable_legacy_int();
348 	hpet_print_config();
349 	return 0;
350 }
351 
352 static int hpet_next_event(unsigned long delta,
353 			   struct clock_event_device *evt, int timer)
354 {
355 	u32 cnt;
356 	s32 res;
357 
358 	cnt = hpet_readl(HPET_COUNTER);
359 	cnt += (u32) delta;
360 	hpet_writel(cnt, HPET_Tn_CMP(timer));
361 
362 	/*
363 	 * HPETs are a complete disaster. The compare register is
364 	 * based on a equal comparison and neither provides a less
365 	 * than or equal functionality (which would require to take
366 	 * the wraparound into account) nor a simple count down event
367 	 * mode. Further the write to the comparator register is
368 	 * delayed internally up to two HPET clock cycles in certain
369 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
370 	 * longer delays. We worked around that by reading back the
371 	 * compare register, but that required another workaround for
372 	 * ICH9,10 chips where the first readout after write can
373 	 * return the old stale value. We already had a minimum
374 	 * programming delta of 5us enforced, but a NMI or SMI hitting
375 	 * between the counter readout and the comparator write can
376 	 * move us behind that point easily. Now instead of reading
377 	 * the compare register back several times, we make the ETIME
378 	 * decision based on the following: Return ETIME if the
379 	 * counter value after the write is less than HPET_MIN_CYCLES
380 	 * away from the event or if the counter is already ahead of
381 	 * the event. The minimum programming delta for the generic
382 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
383 	 */
384 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
385 
386 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
387 }
388 
389 static int hpet_legacy_shutdown(struct clock_event_device *evt)
390 {
391 	return hpet_shutdown(evt, 0);
392 }
393 
394 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
395 {
396 	return hpet_set_oneshot(evt, 0);
397 }
398 
399 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
400 {
401 	return hpet_set_periodic(evt, 0);
402 }
403 
404 static int hpet_legacy_resume(struct clock_event_device *evt)
405 {
406 	return hpet_resume(evt);
407 }
408 
409 static int hpet_legacy_next_event(unsigned long delta,
410 			struct clock_event_device *evt)
411 {
412 	return hpet_next_event(delta, evt, 0);
413 }
414 
415 /*
416  * The hpet clock event device
417  */
418 static struct clock_event_device hpet_clockevent = {
419 	.name			= "hpet",
420 	.features		= CLOCK_EVT_FEAT_PERIODIC |
421 				  CLOCK_EVT_FEAT_ONESHOT,
422 	.set_state_periodic	= hpet_legacy_set_periodic,
423 	.set_state_oneshot	= hpet_legacy_set_oneshot,
424 	.set_state_shutdown	= hpet_legacy_shutdown,
425 	.tick_resume		= hpet_legacy_resume,
426 	.set_next_event		= hpet_legacy_next_event,
427 	.irq			= 0,
428 	.rating			= 50,
429 };
430 
431 /*
432  * HPET MSI Support
433  */
434 #ifdef CONFIG_PCI_MSI
435 
436 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
437 static struct hpet_dev	*hpet_devs;
438 static struct irq_domain *hpet_domain;
439 
440 void hpet_msi_unmask(struct irq_data *data)
441 {
442 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
443 	unsigned int cfg;
444 
445 	/* unmask it */
446 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
448 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 }
450 
451 void hpet_msi_mask(struct irq_data *data)
452 {
453 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
454 	unsigned int cfg;
455 
456 	/* mask it */
457 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
458 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
459 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
460 }
461 
462 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
463 {
464 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
465 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
466 }
467 
468 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
469 {
470 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
471 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
472 	msg->address_hi = 0;
473 }
474 
475 static int hpet_msi_shutdown(struct clock_event_device *evt)
476 {
477 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
478 
479 	return hpet_shutdown(evt, hdev->num);
480 }
481 
482 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
483 {
484 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
485 
486 	return hpet_set_oneshot(evt, hdev->num);
487 }
488 
489 static int hpet_msi_set_periodic(struct clock_event_device *evt)
490 {
491 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492 
493 	return hpet_set_periodic(evt, hdev->num);
494 }
495 
496 static int hpet_msi_resume(struct clock_event_device *evt)
497 {
498 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499 	struct irq_data *data = irq_get_irq_data(hdev->irq);
500 	struct msi_msg msg;
501 
502 	/* Restore the MSI msg and unmask the interrupt */
503 	irq_chip_compose_msi_msg(data, &msg);
504 	hpet_msi_write(hdev, &msg);
505 	hpet_msi_unmask(data);
506 	return 0;
507 }
508 
509 static int hpet_msi_next_event(unsigned long delta,
510 				struct clock_event_device *evt)
511 {
512 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513 	return hpet_next_event(delta, evt, hdev->num);
514 }
515 
516 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
517 {
518 	struct hpet_dev *dev = (struct hpet_dev *)data;
519 	struct clock_event_device *hevt = &dev->evt;
520 
521 	if (!hevt->event_handler) {
522 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
523 				dev->num);
524 		return IRQ_HANDLED;
525 	}
526 
527 	hevt->event_handler(hevt);
528 	return IRQ_HANDLED;
529 }
530 
531 static int hpet_setup_irq(struct hpet_dev *dev)
532 {
533 
534 	if (request_irq(dev->irq, hpet_interrupt_handler,
535 			IRQF_TIMER | IRQF_NOBALANCING,
536 			dev->name, dev))
537 		return -1;
538 
539 	disable_irq(dev->irq);
540 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
541 	enable_irq(dev->irq);
542 
543 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
544 			 dev->name, dev->irq);
545 
546 	return 0;
547 }
548 
549 /* This should be called in specific @cpu */
550 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
551 {
552 	struct clock_event_device *evt = &hdev->evt;
553 
554 	WARN_ON(cpu != smp_processor_id());
555 	if (!(hdev->flags & HPET_DEV_VALID))
556 		return;
557 
558 	hdev->cpu = cpu;
559 	per_cpu(cpu_hpet_dev, cpu) = hdev;
560 	evt->name = hdev->name;
561 	hpet_setup_irq(hdev);
562 	evt->irq = hdev->irq;
563 
564 	evt->rating = 110;
565 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
566 	if (hdev->flags & HPET_DEV_PERI_CAP) {
567 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
568 		evt->set_state_periodic = hpet_msi_set_periodic;
569 	}
570 
571 	evt->set_state_shutdown = hpet_msi_shutdown;
572 	evt->set_state_oneshot = hpet_msi_set_oneshot;
573 	evt->tick_resume = hpet_msi_resume;
574 	evt->set_next_event = hpet_msi_next_event;
575 	evt->cpumask = cpumask_of(hdev->cpu);
576 
577 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
578 					0x7FFFFFFF);
579 }
580 
581 #ifdef CONFIG_HPET
582 /* Reserve at least one timer for userspace (/dev/hpet) */
583 #define RESERVE_TIMERS 1
584 #else
585 #define RESERVE_TIMERS 0
586 #endif
587 
588 static void hpet_msi_capability_lookup(unsigned int start_timer)
589 {
590 	unsigned int id;
591 	unsigned int num_timers;
592 	unsigned int num_timers_used = 0;
593 	int i, irq;
594 
595 	if (hpet_msi_disable)
596 		return;
597 
598 	if (boot_cpu_has(X86_FEATURE_ARAT))
599 		return;
600 	id = hpet_readl(HPET_ID);
601 
602 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
603 	num_timers++; /* Value read out starts from 0 */
604 	hpet_print_config();
605 
606 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
607 	if (!hpet_domain)
608 		return;
609 
610 	hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL);
611 	if (!hpet_devs)
612 		return;
613 
614 	hpet_num_timers = num_timers;
615 
616 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
617 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
618 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
619 
620 		/* Only consider HPET timer with MSI support */
621 		if (!(cfg & HPET_TN_FSB_CAP))
622 			continue;
623 
624 		hdev->flags = 0;
625 		if (cfg & HPET_TN_PERIODIC_CAP)
626 			hdev->flags |= HPET_DEV_PERI_CAP;
627 		sprintf(hdev->name, "hpet%d", i);
628 		hdev->num = i;
629 
630 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
631 		if (irq <= 0)
632 			continue;
633 
634 		hdev->irq = irq;
635 		hdev->flags |= HPET_DEV_FSB_CAP;
636 		hdev->flags |= HPET_DEV_VALID;
637 		num_timers_used++;
638 		if (num_timers_used == num_possible_cpus())
639 			break;
640 	}
641 
642 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
643 		num_timers, num_timers_used);
644 }
645 
646 #ifdef CONFIG_HPET
647 static void hpet_reserve_msi_timers(struct hpet_data *hd)
648 {
649 	int i;
650 
651 	if (!hpet_devs)
652 		return;
653 
654 	for (i = 0; i < hpet_num_timers; i++) {
655 		struct hpet_dev *hdev = &hpet_devs[i];
656 
657 		if (!(hdev->flags & HPET_DEV_VALID))
658 			continue;
659 
660 		hd->hd_irq[hdev->num] = hdev->irq;
661 		hpet_reserve_timer(hd, hdev->num);
662 	}
663 }
664 #endif
665 
666 static struct hpet_dev *hpet_get_unused_timer(void)
667 {
668 	int i;
669 
670 	if (!hpet_devs)
671 		return NULL;
672 
673 	for (i = 0; i < hpet_num_timers; i++) {
674 		struct hpet_dev *hdev = &hpet_devs[i];
675 
676 		if (!(hdev->flags & HPET_DEV_VALID))
677 			continue;
678 		if (test_and_set_bit(HPET_DEV_USED_BIT,
679 			(unsigned long *)&hdev->flags))
680 			continue;
681 		return hdev;
682 	}
683 	return NULL;
684 }
685 
686 struct hpet_work_struct {
687 	struct delayed_work work;
688 	struct completion complete;
689 };
690 
691 static void hpet_work(struct work_struct *w)
692 {
693 	struct hpet_dev *hdev;
694 	int cpu = smp_processor_id();
695 	struct hpet_work_struct *hpet_work;
696 
697 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
698 
699 	hdev = hpet_get_unused_timer();
700 	if (hdev)
701 		init_one_hpet_msi_clockevent(hdev, cpu);
702 
703 	complete(&hpet_work->complete);
704 }
705 
706 static int hpet_cpuhp_online(unsigned int cpu)
707 {
708 	struct hpet_work_struct work;
709 
710 	INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
711 	init_completion(&work.complete);
712 	/* FIXME: add schedule_work_on() */
713 	schedule_delayed_work_on(cpu, &work.work, 0);
714 	wait_for_completion(&work.complete);
715 	destroy_delayed_work_on_stack(&work.work);
716 	return 0;
717 }
718 
719 static int hpet_cpuhp_dead(unsigned int cpu)
720 {
721 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
722 
723 	if (!hdev)
724 		return 0;
725 	free_irq(hdev->irq, hdev);
726 	hdev->flags &= ~HPET_DEV_USED;
727 	per_cpu(cpu_hpet_dev, cpu) = NULL;
728 	return 0;
729 }
730 #else
731 
732 static void hpet_msi_capability_lookup(unsigned int start_timer)
733 {
734 	return;
735 }
736 
737 #ifdef CONFIG_HPET
738 static void hpet_reserve_msi_timers(struct hpet_data *hd)
739 {
740 	return;
741 }
742 #endif
743 
744 #define hpet_cpuhp_online	NULL
745 #define hpet_cpuhp_dead		NULL
746 
747 #endif
748 
749 /*
750  * Clock source related code
751  */
752 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
753 /*
754  * Reading the HPET counter is a very slow operation. If a large number of
755  * CPUs are trying to access the HPET counter simultaneously, it can cause
756  * massive delay and slow down system performance dramatically. This may
757  * happen when HPET is the default clock source instead of TSC. For a
758  * really large system with hundreds of CPUs, the slowdown may be so
759  * severe that it may actually crash the system because of a NMI watchdog
760  * soft lockup, for example.
761  *
762  * If multiple CPUs are trying to access the HPET counter at the same time,
763  * we don't actually need to read the counter multiple times. Instead, the
764  * other CPUs can use the counter value read by the first CPU in the group.
765  *
766  * This special feature is only enabled on x86-64 systems. It is unlikely
767  * that 32-bit x86 systems will have enough CPUs to require this feature
768  * with its associated locking overhead. And we also need 64-bit atomic
769  * read.
770  *
771  * The lock and the hpet value are stored together and can be read in a
772  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
773  * is 32 bits in size.
774  */
775 union hpet_lock {
776 	struct {
777 		arch_spinlock_t lock;
778 		u32 value;
779 	};
780 	u64 lockval;
781 };
782 
783 static union hpet_lock hpet __cacheline_aligned = {
784 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
785 };
786 
787 static u64 read_hpet(struct clocksource *cs)
788 {
789 	unsigned long flags;
790 	union hpet_lock old, new;
791 
792 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
793 
794 	/*
795 	 * Read HPET directly if in NMI.
796 	 */
797 	if (in_nmi())
798 		return (u64)hpet_readl(HPET_COUNTER);
799 
800 	/*
801 	 * Read the current state of the lock and HPET value atomically.
802 	 */
803 	old.lockval = READ_ONCE(hpet.lockval);
804 
805 	if (arch_spin_is_locked(&old.lock))
806 		goto contended;
807 
808 	local_irq_save(flags);
809 	if (arch_spin_trylock(&hpet.lock)) {
810 		new.value = hpet_readl(HPET_COUNTER);
811 		/*
812 		 * Use WRITE_ONCE() to prevent store tearing.
813 		 */
814 		WRITE_ONCE(hpet.value, new.value);
815 		arch_spin_unlock(&hpet.lock);
816 		local_irq_restore(flags);
817 		return (u64)new.value;
818 	}
819 	local_irq_restore(flags);
820 
821 contended:
822 	/*
823 	 * Contended case
824 	 * --------------
825 	 * Wait until the HPET value change or the lock is free to indicate
826 	 * its value is up-to-date.
827 	 *
828 	 * It is possible that old.value has already contained the latest
829 	 * HPET value while the lock holder was in the process of releasing
830 	 * the lock. Checking for lock state change will enable us to return
831 	 * the value immediately instead of waiting for the next HPET reader
832 	 * to come along.
833 	 */
834 	do {
835 		cpu_relax();
836 		new.lockval = READ_ONCE(hpet.lockval);
837 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
838 
839 	return (u64)new.value;
840 }
841 #else
842 /*
843  * For UP or 32-bit.
844  */
845 static u64 read_hpet(struct clocksource *cs)
846 {
847 	return (u64)hpet_readl(HPET_COUNTER);
848 }
849 #endif
850 
851 static struct clocksource clocksource_hpet = {
852 	.name		= "hpet",
853 	.rating		= 250,
854 	.read		= read_hpet,
855 	.mask		= HPET_MASK,
856 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
857 	.resume		= hpet_resume_counter,
858 };
859 
860 static int hpet_clocksource_register(void)
861 {
862 	u64 start, now;
863 	u64 t1;
864 
865 	/* Start the counter */
866 	hpet_restart_counter();
867 
868 	/* Verify whether hpet counter works */
869 	t1 = hpet_readl(HPET_COUNTER);
870 	start = rdtsc();
871 
872 	/*
873 	 * We don't know the TSC frequency yet, but waiting for
874 	 * 200000 TSC cycles is safe:
875 	 * 4 GHz == 50us
876 	 * 1 GHz == 200us
877 	 */
878 	do {
879 		rep_nop();
880 		now = rdtsc();
881 	} while ((now - start) < 200000UL);
882 
883 	if (t1 == hpet_readl(HPET_COUNTER)) {
884 		printk(KERN_WARNING
885 		       "HPET counter not counting. HPET disabled\n");
886 		return -ENODEV;
887 	}
888 
889 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
890 	return 0;
891 }
892 
893 static u32 *hpet_boot_cfg;
894 
895 /**
896  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
897  */
898 int __init hpet_enable(void)
899 {
900 	u32 hpet_period, cfg, id;
901 	u64 freq;
902 	unsigned int i, last;
903 
904 	if (!is_hpet_capable())
905 		return 0;
906 
907 	hpet_set_mapping();
908 	if (!hpet_virt_address)
909 		return 0;
910 
911 	/*
912 	 * Read the period and check for a sane value:
913 	 */
914 	hpet_period = hpet_readl(HPET_PERIOD);
915 
916 	/*
917 	 * AMD SB700 based systems with spread spectrum enabled use a
918 	 * SMM based HPET emulation to provide proper frequency
919 	 * setting. The SMM code is initialized with the first HPET
920 	 * register access and takes some time to complete. During
921 	 * this time the config register reads 0xffffffff. We check
922 	 * for max. 1000 loops whether the config register reads a non
923 	 * 0xffffffff value to make sure that HPET is up and running
924 	 * before we go further. A counting loop is safe, as the HPET
925 	 * access takes thousands of CPU cycles. On non SB700 based
926 	 * machines this check is only done once and has no side
927 	 * effects.
928 	 */
929 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
930 		if (i == 1000) {
931 			printk(KERN_WARNING
932 			       "HPET config register value = 0xFFFFFFFF. "
933 			       "Disabling HPET\n");
934 			goto out_nohpet;
935 		}
936 	}
937 
938 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
939 		goto out_nohpet;
940 
941 	/*
942 	 * The period is a femto seconds value. Convert it to a
943 	 * frequency.
944 	 */
945 	freq = FSEC_PER_SEC;
946 	do_div(freq, hpet_period);
947 	hpet_freq = freq;
948 
949 	/*
950 	 * Read the HPET ID register to retrieve the IRQ routing
951 	 * information and the number of channels
952 	 */
953 	id = hpet_readl(HPET_ID);
954 	hpet_print_config();
955 
956 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
957 
958 #ifdef CONFIG_HPET_EMULATE_RTC
959 	/*
960 	 * The legacy routing mode needs at least two channels, tick timer
961 	 * and the rtc emulation channel.
962 	 */
963 	if (!last)
964 		goto out_nohpet;
965 #endif
966 
967 	cfg = hpet_readl(HPET_CFG);
968 	hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg),
969 				      GFP_KERNEL);
970 	if (hpet_boot_cfg)
971 		*hpet_boot_cfg = cfg;
972 	else
973 		pr_warn("HPET initial state will not be saved\n");
974 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
975 	hpet_writel(cfg, HPET_CFG);
976 	if (cfg)
977 		pr_warn("Unrecognized bits %#x set in global cfg\n", cfg);
978 
979 	for (i = 0; i <= last; ++i) {
980 		cfg = hpet_readl(HPET_Tn_CFG(i));
981 		if (hpet_boot_cfg)
982 			hpet_boot_cfg[i + 1] = cfg;
983 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
984 		hpet_writel(cfg, HPET_Tn_CFG(i));
985 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
986 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
987 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
988 		if (cfg)
989 			pr_warn("Unrecognized bits %#x set in cfg#%u\n",
990 				cfg, i);
991 	}
992 	hpet_print_config();
993 
994 	if (hpet_clocksource_register())
995 		goto out_nohpet;
996 
997 	if (id & HPET_ID_LEGSUP) {
998 		hpet_legacy_clockevent_register();
999 		return 1;
1000 	}
1001 	return 0;
1002 
1003 out_nohpet:
1004 	hpet_clear_mapping();
1005 	hpet_address = 0;
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Needs to be late, as the reserve_timer code calls kalloc !
1011  *
1012  * Not a problem on i386 as hpet_enable is called from late_time_init,
1013  * but on x86_64 it is necessary !
1014  */
1015 static __init int hpet_late_init(void)
1016 {
1017 	int ret;
1018 
1019 	if (boot_hpet_disable)
1020 		return -ENODEV;
1021 
1022 	if (!hpet_address) {
1023 		if (!force_hpet_address)
1024 			return -ENODEV;
1025 
1026 		hpet_address = force_hpet_address;
1027 		hpet_enable();
1028 	}
1029 
1030 	if (!hpet_virt_address)
1031 		return -ENODEV;
1032 
1033 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1034 		hpet_msi_capability_lookup(2);
1035 	else
1036 		hpet_msi_capability_lookup(0);
1037 
1038 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1039 	hpet_print_config();
1040 
1041 	if (hpet_msi_disable)
1042 		return 0;
1043 
1044 	if (boot_cpu_has(X86_FEATURE_ARAT))
1045 		return 0;
1046 
1047 	/* This notifier should be called after workqueue is ready */
1048 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1049 				hpet_cpuhp_online, NULL);
1050 	if (ret)
1051 		return ret;
1052 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1053 				hpet_cpuhp_dead);
1054 	if (ret)
1055 		goto err_cpuhp;
1056 	return 0;
1057 
1058 err_cpuhp:
1059 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1060 	return ret;
1061 }
1062 fs_initcall(hpet_late_init);
1063 
1064 void hpet_disable(void)
1065 {
1066 	if (is_hpet_capable() && hpet_virt_address) {
1067 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1068 
1069 		if (hpet_boot_cfg)
1070 			cfg = *hpet_boot_cfg;
1071 		else if (hpet_legacy_int_enabled) {
1072 			cfg &= ~HPET_CFG_LEGACY;
1073 			hpet_legacy_int_enabled = false;
1074 		}
1075 		cfg &= ~HPET_CFG_ENABLE;
1076 		hpet_writel(cfg, HPET_CFG);
1077 
1078 		if (!hpet_boot_cfg)
1079 			return;
1080 
1081 		id = hpet_readl(HPET_ID);
1082 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1083 
1084 		for (id = 0; id <= last; ++id)
1085 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1086 
1087 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1088 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1089 	}
1090 }
1091 
1092 #ifdef CONFIG_HPET_EMULATE_RTC
1093 
1094 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1095  * is enabled, we support RTC interrupt functionality in software.
1096  * RTC has 3 kinds of interrupts:
1097  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1098  *    is updated
1099  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1100  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1101  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1102  * (1) and (2) above are implemented using polling at a frequency of
1103  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1104  * overhead. (DEFAULT_RTC_INT_FREQ)
1105  * For (3), we use interrupts at 64Hz or user specified periodic
1106  * frequency, whichever is higher.
1107  */
1108 #include <linux/mc146818rtc.h>
1109 #include <linux/rtc.h>
1110 
1111 #define DEFAULT_RTC_INT_FREQ	64
1112 #define DEFAULT_RTC_SHIFT	6
1113 #define RTC_NUM_INTS		1
1114 
1115 static unsigned long hpet_rtc_flags;
1116 static int hpet_prev_update_sec;
1117 static struct rtc_time hpet_alarm_time;
1118 static unsigned long hpet_pie_count;
1119 static u32 hpet_t1_cmp;
1120 static u32 hpet_default_delta;
1121 static u32 hpet_pie_delta;
1122 static unsigned long hpet_pie_limit;
1123 
1124 static rtc_irq_handler irq_handler;
1125 
1126 /*
1127  * Check that the hpet counter c1 is ahead of the c2
1128  */
1129 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1130 {
1131 	return (s32)(c2 - c1) < 0;
1132 }
1133 
1134 /*
1135  * Registers a IRQ handler.
1136  */
1137 int hpet_register_irq_handler(rtc_irq_handler handler)
1138 {
1139 	if (!is_hpet_enabled())
1140 		return -ENODEV;
1141 	if (irq_handler)
1142 		return -EBUSY;
1143 
1144 	irq_handler = handler;
1145 
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1149 
1150 /*
1151  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1152  * and does cleanup.
1153  */
1154 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1155 {
1156 	if (!is_hpet_enabled())
1157 		return;
1158 
1159 	irq_handler = NULL;
1160 	hpet_rtc_flags = 0;
1161 }
1162 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1163 
1164 /*
1165  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1166  * is not supported by all HPET implementations for timer 1.
1167  *
1168  * hpet_rtc_timer_init() is called when the rtc is initialized.
1169  */
1170 int hpet_rtc_timer_init(void)
1171 {
1172 	unsigned int cfg, cnt, delta;
1173 	unsigned long flags;
1174 
1175 	if (!is_hpet_enabled())
1176 		return 0;
1177 
1178 	if (!hpet_default_delta) {
1179 		uint64_t clc;
1180 
1181 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1182 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1183 		hpet_default_delta = clc;
1184 	}
1185 
1186 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1187 		delta = hpet_default_delta;
1188 	else
1189 		delta = hpet_pie_delta;
1190 
1191 	local_irq_save(flags);
1192 
1193 	cnt = delta + hpet_readl(HPET_COUNTER);
1194 	hpet_writel(cnt, HPET_T1_CMP);
1195 	hpet_t1_cmp = cnt;
1196 
1197 	cfg = hpet_readl(HPET_T1_CFG);
1198 	cfg &= ~HPET_TN_PERIODIC;
1199 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1200 	hpet_writel(cfg, HPET_T1_CFG);
1201 
1202 	local_irq_restore(flags);
1203 
1204 	return 1;
1205 }
1206 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1207 
1208 static void hpet_disable_rtc_channel(void)
1209 {
1210 	u32 cfg = hpet_readl(HPET_T1_CFG);
1211 	cfg &= ~HPET_TN_ENABLE;
1212 	hpet_writel(cfg, HPET_T1_CFG);
1213 }
1214 
1215 /*
1216  * The functions below are called from rtc driver.
1217  * Return 0 if HPET is not being used.
1218  * Otherwise do the necessary changes and return 1.
1219  */
1220 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1221 {
1222 	if (!is_hpet_enabled())
1223 		return 0;
1224 
1225 	hpet_rtc_flags &= ~bit_mask;
1226 	if (unlikely(!hpet_rtc_flags))
1227 		hpet_disable_rtc_channel();
1228 
1229 	return 1;
1230 }
1231 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1232 
1233 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1234 {
1235 	unsigned long oldbits = hpet_rtc_flags;
1236 
1237 	if (!is_hpet_enabled())
1238 		return 0;
1239 
1240 	hpet_rtc_flags |= bit_mask;
1241 
1242 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1243 		hpet_prev_update_sec = -1;
1244 
1245 	if (!oldbits)
1246 		hpet_rtc_timer_init();
1247 
1248 	return 1;
1249 }
1250 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1251 
1252 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1253 			unsigned char sec)
1254 {
1255 	if (!is_hpet_enabled())
1256 		return 0;
1257 
1258 	hpet_alarm_time.tm_hour = hrs;
1259 	hpet_alarm_time.tm_min = min;
1260 	hpet_alarm_time.tm_sec = sec;
1261 
1262 	return 1;
1263 }
1264 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1265 
1266 int hpet_set_periodic_freq(unsigned long freq)
1267 {
1268 	uint64_t clc;
1269 
1270 	if (!is_hpet_enabled())
1271 		return 0;
1272 
1273 	if (freq <= DEFAULT_RTC_INT_FREQ)
1274 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1275 	else {
1276 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1277 		do_div(clc, freq);
1278 		clc >>= hpet_clockevent.shift;
1279 		hpet_pie_delta = clc;
1280 		hpet_pie_limit = 0;
1281 	}
1282 	return 1;
1283 }
1284 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1285 
1286 int hpet_rtc_dropped_irq(void)
1287 {
1288 	return is_hpet_enabled();
1289 }
1290 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1291 
1292 static void hpet_rtc_timer_reinit(void)
1293 {
1294 	unsigned int delta;
1295 	int lost_ints = -1;
1296 
1297 	if (unlikely(!hpet_rtc_flags))
1298 		hpet_disable_rtc_channel();
1299 
1300 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1301 		delta = hpet_default_delta;
1302 	else
1303 		delta = hpet_pie_delta;
1304 
1305 	/*
1306 	 * Increment the comparator value until we are ahead of the
1307 	 * current count.
1308 	 */
1309 	do {
1310 		hpet_t1_cmp += delta;
1311 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1312 		lost_ints++;
1313 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1314 
1315 	if (lost_ints) {
1316 		if (hpet_rtc_flags & RTC_PIE)
1317 			hpet_pie_count += lost_ints;
1318 		if (printk_ratelimit())
1319 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1320 				lost_ints);
1321 	}
1322 }
1323 
1324 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1325 {
1326 	struct rtc_time curr_time;
1327 	unsigned long rtc_int_flag = 0;
1328 
1329 	hpet_rtc_timer_reinit();
1330 	memset(&curr_time, 0, sizeof(struct rtc_time));
1331 
1332 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1333 		mc146818_get_time(&curr_time);
1334 
1335 	if (hpet_rtc_flags & RTC_UIE &&
1336 	    curr_time.tm_sec != hpet_prev_update_sec) {
1337 		if (hpet_prev_update_sec >= 0)
1338 			rtc_int_flag = RTC_UF;
1339 		hpet_prev_update_sec = curr_time.tm_sec;
1340 	}
1341 
1342 	if (hpet_rtc_flags & RTC_PIE &&
1343 	    ++hpet_pie_count >= hpet_pie_limit) {
1344 		rtc_int_flag |= RTC_PF;
1345 		hpet_pie_count = 0;
1346 	}
1347 
1348 	if (hpet_rtc_flags & RTC_AIE &&
1349 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1350 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1351 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1352 			rtc_int_flag |= RTC_AF;
1353 
1354 	if (rtc_int_flag) {
1355 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1356 		if (irq_handler)
1357 			irq_handler(rtc_int_flag, dev_id);
1358 	}
1359 	return IRQ_HANDLED;
1360 }
1361 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1362 #endif
1363