xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
14 
15 #define HPET_MASK	CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT	22
17 
18 /* FSEC = 10^-15
19    NSEC = 10^-9 */
20 #define FSEC_PER_NSEC	1000000L
21 
22 /*
23  * HPET address is set in acpi/boot.c, when an ACPI entry exists
24  */
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
27 
28 unsigned long hpet_readl(unsigned long a)
29 {
30 	return readl(hpet_virt_address + a);
31 }
32 
33 static inline void hpet_writel(unsigned long d, unsigned long a)
34 {
35 	writel(d, hpet_virt_address + a);
36 }
37 
38 #ifdef CONFIG_X86_64
39 #include <asm/pgtable.h>
40 #endif
41 
42 static inline void hpet_set_mapping(void)
43 {
44 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
45 #ifdef CONFIG_X86_64
46 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
47 #endif
48 }
49 
50 static inline void hpet_clear_mapping(void)
51 {
52 	iounmap(hpet_virt_address);
53 	hpet_virt_address = NULL;
54 }
55 
56 /*
57  * HPET command line enable / disable
58  */
59 static int boot_hpet_disable;
60 int hpet_force_user;
61 
62 static int __init hpet_setup(char* str)
63 {
64 	if (str) {
65 		if (!strncmp("disable", str, 7))
66 			boot_hpet_disable = 1;
67 		if (!strncmp("force", str, 5))
68 			hpet_force_user = 1;
69 	}
70 	return 1;
71 }
72 __setup("hpet=", hpet_setup);
73 
74 static int __init disable_hpet(char *str)
75 {
76 	boot_hpet_disable = 1;
77 	return 1;
78 }
79 __setup("nohpet", disable_hpet);
80 
81 static inline int is_hpet_capable(void)
82 {
83 	return (!boot_hpet_disable && hpet_address);
84 }
85 
86 /*
87  * HPET timer interrupt enable / disable
88  */
89 static int hpet_legacy_int_enabled;
90 
91 /**
92  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
93  */
94 int is_hpet_enabled(void)
95 {
96 	return is_hpet_capable() && hpet_legacy_int_enabled;
97 }
98 EXPORT_SYMBOL_GPL(is_hpet_enabled);
99 
100 /*
101  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
102  * timer 0 and timer 1 in case of RTC emulation.
103  */
104 #ifdef CONFIG_HPET
105 static void hpet_reserve_platform_timers(unsigned long id)
106 {
107 	struct hpet __iomem *hpet = hpet_virt_address;
108 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
109 	unsigned int nrtimers, i;
110 	struct hpet_data hd;
111 
112 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
113 
114 	memset(&hd, 0, sizeof (hd));
115 	hd.hd_phys_address = hpet_address;
116 	hd.hd_address = hpet;
117 	hd.hd_nirqs = nrtimers;
118 	hd.hd_flags = HPET_DATA_PLATFORM;
119 	hpet_reserve_timer(&hd, 0);
120 
121 #ifdef CONFIG_HPET_EMULATE_RTC
122 	hpet_reserve_timer(&hd, 1);
123 #endif
124 
125 	hd.hd_irq[0] = HPET_LEGACY_8254;
126 	hd.hd_irq[1] = HPET_LEGACY_RTC;
127 
128 	for (i = 2; i < nrtimers; timer++, i++) {
129 		hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
130 			Tn_INT_ROUTE_CNF_SHIFT;
131 	}
132 
133 	hpet_alloc(&hd);
134 
135 }
136 #else
137 static void hpet_reserve_platform_timers(unsigned long id) { }
138 #endif
139 
140 /*
141  * Common hpet info
142  */
143 static unsigned long hpet_period;
144 
145 static void hpet_legacy_set_mode(enum clock_event_mode mode,
146 			  struct clock_event_device *evt);
147 static int hpet_legacy_next_event(unsigned long delta,
148 			   struct clock_event_device *evt);
149 
150 /*
151  * The hpet clock event device
152  */
153 static struct clock_event_device hpet_clockevent = {
154 	.name		= "hpet",
155 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
156 	.set_mode	= hpet_legacy_set_mode,
157 	.set_next_event = hpet_legacy_next_event,
158 	.shift		= 32,
159 	.irq		= 0,
160 	.rating		= 50,
161 };
162 
163 static void hpet_start_counter(void)
164 {
165 	unsigned long cfg = hpet_readl(HPET_CFG);
166 
167 	cfg &= ~HPET_CFG_ENABLE;
168 	hpet_writel(cfg, HPET_CFG);
169 	hpet_writel(0, HPET_COUNTER);
170 	hpet_writel(0, HPET_COUNTER + 4);
171 	cfg |= HPET_CFG_ENABLE;
172 	hpet_writel(cfg, HPET_CFG);
173 }
174 
175 static void hpet_resume_device(void)
176 {
177 	force_hpet_resume();
178 }
179 
180 static void hpet_restart_counter(void)
181 {
182 	hpet_resume_device();
183 	hpet_start_counter();
184 }
185 
186 static void hpet_enable_legacy_int(void)
187 {
188 	unsigned long cfg = hpet_readl(HPET_CFG);
189 
190 	cfg |= HPET_CFG_LEGACY;
191 	hpet_writel(cfg, HPET_CFG);
192 	hpet_legacy_int_enabled = 1;
193 }
194 
195 static void hpet_legacy_clockevent_register(void)
196 {
197 	/* Start HPET legacy interrupts */
198 	hpet_enable_legacy_int();
199 
200 	/*
201 	 * The mult factor is defined as (include/linux/clockchips.h)
202 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
203 	 * hpet_period is in units of femtoseconds (per cycle), so
204 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
205 	 *  mult = (10^6 * 2^shift)/hpet_period
206 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
207 	 */
208 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
209 				      hpet_period, hpet_clockevent.shift);
210 	/* Calculate the min / max delta */
211 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
212 							   &hpet_clockevent);
213 	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
214 							   &hpet_clockevent);
215 
216 	/*
217 	 * Start hpet with the boot cpu mask and make it
218 	 * global after the IO_APIC has been initialized.
219 	 */
220 	hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
221 	clockevents_register_device(&hpet_clockevent);
222 	global_clock_event = &hpet_clockevent;
223 	printk(KERN_DEBUG "hpet clockevent registered\n");
224 }
225 
226 static void hpet_legacy_set_mode(enum clock_event_mode mode,
227 			  struct clock_event_device *evt)
228 {
229 	unsigned long cfg, cmp, now;
230 	uint64_t delta;
231 
232 	switch(mode) {
233 	case CLOCK_EVT_MODE_PERIODIC:
234 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
235 		delta >>= hpet_clockevent.shift;
236 		now = hpet_readl(HPET_COUNTER);
237 		cmp = now + (unsigned long) delta;
238 		cfg = hpet_readl(HPET_T0_CFG);
239 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
240 		       HPET_TN_SETVAL | HPET_TN_32BIT;
241 		hpet_writel(cfg, HPET_T0_CFG);
242 		/*
243 		 * The first write after writing TN_SETVAL to the
244 		 * config register sets the counter value, the second
245 		 * write sets the period.
246 		 */
247 		hpet_writel(cmp, HPET_T0_CMP);
248 		udelay(1);
249 		hpet_writel((unsigned long) delta, HPET_T0_CMP);
250 		break;
251 
252 	case CLOCK_EVT_MODE_ONESHOT:
253 		cfg = hpet_readl(HPET_T0_CFG);
254 		cfg &= ~HPET_TN_PERIODIC;
255 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
256 		hpet_writel(cfg, HPET_T0_CFG);
257 		break;
258 
259 	case CLOCK_EVT_MODE_UNUSED:
260 	case CLOCK_EVT_MODE_SHUTDOWN:
261 		cfg = hpet_readl(HPET_T0_CFG);
262 		cfg &= ~HPET_TN_ENABLE;
263 		hpet_writel(cfg, HPET_T0_CFG);
264 		break;
265 
266 	case CLOCK_EVT_MODE_RESUME:
267 		hpet_enable_legacy_int();
268 		break;
269 	}
270 }
271 
272 static int hpet_legacy_next_event(unsigned long delta,
273 			   struct clock_event_device *evt)
274 {
275 	unsigned long cnt;
276 
277 	cnt = hpet_readl(HPET_COUNTER);
278 	cnt += delta;
279 	hpet_writel(cnt, HPET_T0_CMP);
280 
281 	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
282 }
283 
284 /*
285  * Clock source related code
286  */
287 static cycle_t read_hpet(void)
288 {
289 	return (cycle_t)hpet_readl(HPET_COUNTER);
290 }
291 
292 #ifdef CONFIG_X86_64
293 static cycle_t __vsyscall_fn vread_hpet(void)
294 {
295 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
296 }
297 #endif
298 
299 static struct clocksource clocksource_hpet = {
300 	.name		= "hpet",
301 	.rating		= 250,
302 	.read		= read_hpet,
303 	.mask		= HPET_MASK,
304 	.shift		= HPET_SHIFT,
305 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
306 	.resume		= hpet_restart_counter,
307 #ifdef CONFIG_X86_64
308 	.vread		= vread_hpet,
309 #endif
310 };
311 
312 static int hpet_clocksource_register(void)
313 {
314 	u64 start, now;
315 	cycle_t t1;
316 
317 	/* Start the counter */
318 	hpet_start_counter();
319 
320 	/* Verify whether hpet counter works */
321 	t1 = read_hpet();
322 	rdtscll(start);
323 
324 	/*
325 	 * We don't know the TSC frequency yet, but waiting for
326 	 * 200000 TSC cycles is safe:
327 	 * 4 GHz == 50us
328 	 * 1 GHz == 200us
329 	 */
330 	do {
331 		rep_nop();
332 		rdtscll(now);
333 	} while ((now - start) < 200000UL);
334 
335 	if (t1 == read_hpet()) {
336 		printk(KERN_WARNING
337 		       "HPET counter not counting. HPET disabled\n");
338 		return -ENODEV;
339 	}
340 
341 	/*
342 	 * The definition of mult is (include/linux/clocksource.h)
343 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
344 	 * so we first need to convert hpet_period to ns/cyc units:
345 	 *  mult/2^shift = ns/cyc = hpet_period/10^6
346 	 *  mult = (hpet_period * 2^shift)/10^6
347 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
348 	 */
349 	clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
350 
351 	clocksource_register(&clocksource_hpet);
352 
353 	return 0;
354 }
355 
356 /**
357  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
358  */
359 int __init hpet_enable(void)
360 {
361 	unsigned long id;
362 
363 	if (!is_hpet_capable())
364 		return 0;
365 
366 	hpet_set_mapping();
367 
368 	/*
369 	 * Read the period and check for a sane value:
370 	 */
371 	hpet_period = hpet_readl(HPET_PERIOD);
372 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
373 		goto out_nohpet;
374 
375 	/*
376 	 * Read the HPET ID register to retrieve the IRQ routing
377 	 * information and the number of channels
378 	 */
379 	id = hpet_readl(HPET_ID);
380 
381 #ifdef CONFIG_HPET_EMULATE_RTC
382 	/*
383 	 * The legacy routing mode needs at least two channels, tick timer
384 	 * and the rtc emulation channel.
385 	 */
386 	if (!(id & HPET_ID_NUMBER))
387 		goto out_nohpet;
388 #endif
389 
390 	if (hpet_clocksource_register())
391 		goto out_nohpet;
392 
393 	if (id & HPET_ID_LEGSUP) {
394 		hpet_legacy_clockevent_register();
395 		return 1;
396 	}
397 	return 0;
398 
399 out_nohpet:
400 	hpet_clear_mapping();
401 	boot_hpet_disable = 1;
402 	return 0;
403 }
404 
405 /*
406  * Needs to be late, as the reserve_timer code calls kalloc !
407  *
408  * Not a problem on i386 as hpet_enable is called from late_time_init,
409  * but on x86_64 it is necessary !
410  */
411 static __init int hpet_late_init(void)
412 {
413 	if (boot_hpet_disable)
414 		return -ENODEV;
415 
416 	if (!hpet_address) {
417 		if (!force_hpet_address)
418 			return -ENODEV;
419 
420 		hpet_address = force_hpet_address;
421 		hpet_enable();
422 		if (!hpet_virt_address)
423 			return -ENODEV;
424 	}
425 
426 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
427 
428 	return 0;
429 }
430 fs_initcall(hpet_late_init);
431 
432 void hpet_disable(void)
433 {
434 	if (is_hpet_capable()) {
435 		unsigned long cfg = hpet_readl(HPET_CFG);
436 
437 		if (hpet_legacy_int_enabled) {
438 			cfg &= ~HPET_CFG_LEGACY;
439 			hpet_legacy_int_enabled = 0;
440 		}
441 		cfg &= ~HPET_CFG_ENABLE;
442 		hpet_writel(cfg, HPET_CFG);
443 	}
444 }
445 
446 #ifdef CONFIG_HPET_EMULATE_RTC
447 
448 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
449  * is enabled, we support RTC interrupt functionality in software.
450  * RTC has 3 kinds of interrupts:
451  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
452  *    is updated
453  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
454  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
455  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
456  * (1) and (2) above are implemented using polling at a frequency of
457  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
458  * overhead. (DEFAULT_RTC_INT_FREQ)
459  * For (3), we use interrupts at 64Hz or user specified periodic
460  * frequency, whichever is higher.
461  */
462 #include <linux/mc146818rtc.h>
463 #include <linux/rtc.h>
464 #include <asm/rtc.h>
465 
466 #define DEFAULT_RTC_INT_FREQ	64
467 #define DEFAULT_RTC_SHIFT	6
468 #define RTC_NUM_INTS		1
469 
470 static unsigned long hpet_rtc_flags;
471 static int hpet_prev_update_sec;
472 static struct rtc_time hpet_alarm_time;
473 static unsigned long hpet_pie_count;
474 static unsigned long hpet_t1_cmp;
475 static unsigned long hpet_default_delta;
476 static unsigned long hpet_pie_delta;
477 static unsigned long hpet_pie_limit;
478 
479 static rtc_irq_handler irq_handler;
480 
481 /*
482  * Registers a IRQ handler.
483  */
484 int hpet_register_irq_handler(rtc_irq_handler handler)
485 {
486 	if (!is_hpet_enabled())
487 		return -ENODEV;
488 	if (irq_handler)
489 		return -EBUSY;
490 
491 	irq_handler = handler;
492 
493 	return 0;
494 }
495 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
496 
497 /*
498  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
499  * and does cleanup.
500  */
501 void hpet_unregister_irq_handler(rtc_irq_handler handler)
502 {
503 	if (!is_hpet_enabled())
504 		return;
505 
506 	irq_handler = NULL;
507 	hpet_rtc_flags = 0;
508 }
509 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
510 
511 /*
512  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
513  * is not supported by all HPET implementations for timer 1.
514  *
515  * hpet_rtc_timer_init() is called when the rtc is initialized.
516  */
517 int hpet_rtc_timer_init(void)
518 {
519 	unsigned long cfg, cnt, delta, flags;
520 
521 	if (!is_hpet_enabled())
522 		return 0;
523 
524 	if (!hpet_default_delta) {
525 		uint64_t clc;
526 
527 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
528 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
529 		hpet_default_delta = (unsigned long) clc;
530 	}
531 
532 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
533 		delta = hpet_default_delta;
534 	else
535 		delta = hpet_pie_delta;
536 
537 	local_irq_save(flags);
538 
539 	cnt = delta + hpet_readl(HPET_COUNTER);
540 	hpet_writel(cnt, HPET_T1_CMP);
541 	hpet_t1_cmp = cnt;
542 
543 	cfg = hpet_readl(HPET_T1_CFG);
544 	cfg &= ~HPET_TN_PERIODIC;
545 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
546 	hpet_writel(cfg, HPET_T1_CFG);
547 
548 	local_irq_restore(flags);
549 
550 	return 1;
551 }
552 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
553 
554 /*
555  * The functions below are called from rtc driver.
556  * Return 0 if HPET is not being used.
557  * Otherwise do the necessary changes and return 1.
558  */
559 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
560 {
561 	if (!is_hpet_enabled())
562 		return 0;
563 
564 	hpet_rtc_flags &= ~bit_mask;
565 	return 1;
566 }
567 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
568 
569 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
570 {
571 	unsigned long oldbits = hpet_rtc_flags;
572 
573 	if (!is_hpet_enabled())
574 		return 0;
575 
576 	hpet_rtc_flags |= bit_mask;
577 
578 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
579 		hpet_prev_update_sec = -1;
580 
581 	if (!oldbits)
582 		hpet_rtc_timer_init();
583 
584 	return 1;
585 }
586 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
587 
588 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
589 			unsigned char sec)
590 {
591 	if (!is_hpet_enabled())
592 		return 0;
593 
594 	hpet_alarm_time.tm_hour = hrs;
595 	hpet_alarm_time.tm_min = min;
596 	hpet_alarm_time.tm_sec = sec;
597 
598 	return 1;
599 }
600 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
601 
602 int hpet_set_periodic_freq(unsigned long freq)
603 {
604 	uint64_t clc;
605 
606 	if (!is_hpet_enabled())
607 		return 0;
608 
609 	if (freq <= DEFAULT_RTC_INT_FREQ)
610 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
611 	else {
612 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
613 		do_div(clc, freq);
614 		clc >>= hpet_clockevent.shift;
615 		hpet_pie_delta = (unsigned long) clc;
616 	}
617 	return 1;
618 }
619 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
620 
621 int hpet_rtc_dropped_irq(void)
622 {
623 	return is_hpet_enabled();
624 }
625 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
626 
627 static void hpet_rtc_timer_reinit(void)
628 {
629 	unsigned long cfg, delta;
630 	int lost_ints = -1;
631 
632 	if (unlikely(!hpet_rtc_flags)) {
633 		cfg = hpet_readl(HPET_T1_CFG);
634 		cfg &= ~HPET_TN_ENABLE;
635 		hpet_writel(cfg, HPET_T1_CFG);
636 		return;
637 	}
638 
639 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
640 		delta = hpet_default_delta;
641 	else
642 		delta = hpet_pie_delta;
643 
644 	/*
645 	 * Increment the comparator value until we are ahead of the
646 	 * current count.
647 	 */
648 	do {
649 		hpet_t1_cmp += delta;
650 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
651 		lost_ints++;
652 	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
653 
654 	if (lost_ints) {
655 		if (hpet_rtc_flags & RTC_PIE)
656 			hpet_pie_count += lost_ints;
657 		if (printk_ratelimit())
658 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
659 				lost_ints);
660 	}
661 }
662 
663 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
664 {
665 	struct rtc_time curr_time;
666 	unsigned long rtc_int_flag = 0;
667 
668 	hpet_rtc_timer_reinit();
669 	memset(&curr_time, 0, sizeof(struct rtc_time));
670 
671 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
672 		get_rtc_time(&curr_time);
673 
674 	if (hpet_rtc_flags & RTC_UIE &&
675 	    curr_time.tm_sec != hpet_prev_update_sec) {
676 		if (hpet_prev_update_sec >= 0)
677 			rtc_int_flag = RTC_UF;
678 		hpet_prev_update_sec = curr_time.tm_sec;
679 	}
680 
681 	if (hpet_rtc_flags & RTC_PIE &&
682 	    ++hpet_pie_count >= hpet_pie_limit) {
683 		rtc_int_flag |= RTC_PF;
684 		hpet_pie_count = 0;
685 	}
686 
687 	if (hpet_rtc_flags & RTC_AIE &&
688 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
689 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
690 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
691 			rtc_int_flag |= RTC_AF;
692 
693 	if (rtc_int_flag) {
694 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
695 		if (irq_handler)
696 			irq_handler(rtc_int_flag, dev_id);
697 	}
698 	return IRQ_HANDLED;
699 }
700 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
701 #endif
702