xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9 
10 #include <asm/irq_remapping.h>
11 #include <asm/hpet.h>
12 #include <asm/time.h>
13 
14 #undef  pr_fmt
15 #define pr_fmt(fmt) "hpet: " fmt
16 
17 enum hpet_mode {
18 	HPET_MODE_UNUSED,
19 	HPET_MODE_LEGACY,
20 	HPET_MODE_CLOCKEVT,
21 	HPET_MODE_DEVICE,
22 };
23 
24 struct hpet_channel {
25 	struct clock_event_device	evt;
26 	unsigned int			num;
27 	unsigned int			cpu;
28 	unsigned int			irq;
29 	unsigned int			in_use;
30 	enum hpet_mode			mode;
31 	unsigned int			boot_cfg;
32 	char				name[10];
33 };
34 
35 struct hpet_base {
36 	unsigned int			nr_channels;
37 	unsigned int			nr_clockevents;
38 	unsigned int			boot_cfg;
39 	struct hpet_channel		*channels;
40 };
41 
42 #define HPET_MASK			CLOCKSOURCE_MASK(32)
43 
44 #define HPET_MIN_CYCLES			128
45 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
46 
47 /*
48  * HPET address is set in acpi/boot.c, when an ACPI entry exists
49  */
50 unsigned long				hpet_address;
51 u8					hpet_blockid; /* OS timer block num */
52 bool					hpet_msi_disable;
53 
54 #ifdef CONFIG_GENERIC_MSI_IRQ
55 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
56 static struct irq_domain		*hpet_domain;
57 #endif
58 
59 static void __iomem			*hpet_virt_address;
60 
61 static struct hpet_base			hpet_base;
62 
63 static bool				hpet_legacy_int_enabled;
64 static unsigned long			hpet_freq;
65 
66 bool					boot_hpet_disable;
67 bool					hpet_force_user;
68 static bool				hpet_verbose;
69 
70 static inline
71 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
72 {
73 	return container_of(evt, struct hpet_channel, evt);
74 }
75 
76 inline unsigned int hpet_readl(unsigned int a)
77 {
78 	return readl(hpet_virt_address + a);
79 }
80 
81 static inline void hpet_writel(unsigned int d, unsigned int a)
82 {
83 	writel(d, hpet_virt_address + a);
84 }
85 
86 static inline void hpet_set_mapping(void)
87 {
88 	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
89 }
90 
91 static inline void hpet_clear_mapping(void)
92 {
93 	iounmap(hpet_virt_address);
94 	hpet_virt_address = NULL;
95 }
96 
97 /*
98  * HPET command line enable / disable
99  */
100 static int __init hpet_setup(char *str)
101 {
102 	while (str) {
103 		char *next = strchr(str, ',');
104 
105 		if (next)
106 			*next++ = 0;
107 		if (!strncmp("disable", str, 7))
108 			boot_hpet_disable = true;
109 		if (!strncmp("force", str, 5))
110 			hpet_force_user = true;
111 		if (!strncmp("verbose", str, 7))
112 			hpet_verbose = true;
113 		str = next;
114 	}
115 	return 1;
116 }
117 __setup("hpet=", hpet_setup);
118 
119 static int __init disable_hpet(char *str)
120 {
121 	boot_hpet_disable = true;
122 	return 1;
123 }
124 __setup("nohpet", disable_hpet);
125 
126 static inline int is_hpet_capable(void)
127 {
128 	return !boot_hpet_disable && hpet_address;
129 }
130 
131 /**
132  * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
133  */
134 int is_hpet_enabled(void)
135 {
136 	return is_hpet_capable() && hpet_legacy_int_enabled;
137 }
138 EXPORT_SYMBOL_GPL(is_hpet_enabled);
139 
140 static void _hpet_print_config(const char *function, int line)
141 {
142 	u32 i, id, period, cfg, status, channels, l, h;
143 
144 	pr_info("%s(%d):\n", function, line);
145 
146 	id = hpet_readl(HPET_ID);
147 	period = hpet_readl(HPET_PERIOD);
148 	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
149 
150 	cfg = hpet_readl(HPET_CFG);
151 	status = hpet_readl(HPET_STATUS);
152 	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
153 
154 	l = hpet_readl(HPET_COUNTER);
155 	h = hpet_readl(HPET_COUNTER+4);
156 	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
157 
158 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
159 
160 	for (i = 0; i < channels; i++) {
161 		l = hpet_readl(HPET_Tn_CFG(i));
162 		h = hpet_readl(HPET_Tn_CFG(i)+4);
163 		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
164 
165 		l = hpet_readl(HPET_Tn_CMP(i));
166 		h = hpet_readl(HPET_Tn_CMP(i)+4);
167 		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
168 
169 		l = hpet_readl(HPET_Tn_ROUTE(i));
170 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
171 		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
172 	}
173 }
174 
175 #define hpet_print_config()					\
176 do {								\
177 	if (hpet_verbose)					\
178 		_hpet_print_config(__func__, __LINE__);	\
179 } while (0)
180 
181 /*
182  * When the HPET driver (/dev/hpet) is enabled, we need to reserve
183  * timer 0 and timer 1 in case of RTC emulation.
184  */
185 #ifdef CONFIG_HPET
186 
187 static void __init hpet_reserve_platform_timers(void)
188 {
189 	struct hpet_data hd;
190 	unsigned int i;
191 
192 	memset(&hd, 0, sizeof(hd));
193 	hd.hd_phys_address	= hpet_address;
194 	hd.hd_address		= hpet_virt_address;
195 	hd.hd_nirqs		= hpet_base.nr_channels;
196 
197 	/*
198 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
200 	 * don't bother configuring *any* comparator interrupts.
201 	 */
202 	hd.hd_irq[0] = HPET_LEGACY_8254;
203 	hd.hd_irq[1] = HPET_LEGACY_RTC;
204 
205 	for (i = 0; i < hpet_base.nr_channels; i++) {
206 		struct hpet_channel *hc = hpet_base.channels + i;
207 
208 		if (i >= 2)
209 			hd.hd_irq[i] = hc->irq;
210 
211 		switch (hc->mode) {
212 		case HPET_MODE_UNUSED:
213 		case HPET_MODE_DEVICE:
214 			hc->mode = HPET_MODE_DEVICE;
215 			break;
216 		case HPET_MODE_CLOCKEVT:
217 		case HPET_MODE_LEGACY:
218 			hpet_reserve_timer(&hd, hc->num);
219 			break;
220 		}
221 	}
222 
223 	hpet_alloc(&hd);
224 }
225 
226 static void __init hpet_select_device_channel(void)
227 {
228 	int i;
229 
230 	for (i = 0; i < hpet_base.nr_channels; i++) {
231 		struct hpet_channel *hc = hpet_base.channels + i;
232 
233 		/* Associate the first unused channel to /dev/hpet */
234 		if (hc->mode == HPET_MODE_UNUSED) {
235 			hc->mode = HPET_MODE_DEVICE;
236 			return;
237 		}
238 	}
239 }
240 
241 #else
242 static inline void hpet_reserve_platform_timers(void) { }
243 static inline void hpet_select_device_channel(void) {}
244 #endif
245 
246 /* Common HPET functions */
247 static void hpet_stop_counter(void)
248 {
249 	u32 cfg = hpet_readl(HPET_CFG);
250 
251 	cfg &= ~HPET_CFG_ENABLE;
252 	hpet_writel(cfg, HPET_CFG);
253 }
254 
255 static void hpet_reset_counter(void)
256 {
257 	hpet_writel(0, HPET_COUNTER);
258 	hpet_writel(0, HPET_COUNTER + 4);
259 }
260 
261 static void hpet_start_counter(void)
262 {
263 	unsigned int cfg = hpet_readl(HPET_CFG);
264 
265 	cfg |= HPET_CFG_ENABLE;
266 	hpet_writel(cfg, HPET_CFG);
267 }
268 
269 static void hpet_restart_counter(void)
270 {
271 	hpet_stop_counter();
272 	hpet_reset_counter();
273 	hpet_start_counter();
274 }
275 
276 static void hpet_resume_device(void)
277 {
278 	force_hpet_resume();
279 }
280 
281 static void hpet_resume_counter(struct clocksource *cs)
282 {
283 	hpet_resume_device();
284 	hpet_restart_counter();
285 }
286 
287 static void hpet_enable_legacy_int(void)
288 {
289 	unsigned int cfg = hpet_readl(HPET_CFG);
290 
291 	cfg |= HPET_CFG_LEGACY;
292 	hpet_writel(cfg, HPET_CFG);
293 	hpet_legacy_int_enabled = true;
294 }
295 
296 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
297 {
298 	unsigned int channel = clockevent_to_channel(evt)->num;
299 	unsigned int cfg, cmp, now;
300 	uint64_t delta;
301 
302 	hpet_stop_counter();
303 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
304 	delta >>= evt->shift;
305 	now = hpet_readl(HPET_COUNTER);
306 	cmp = now + (unsigned int)delta;
307 	cfg = hpet_readl(HPET_Tn_CFG(channel));
308 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
309 	       HPET_TN_32BIT;
310 	hpet_writel(cfg, HPET_Tn_CFG(channel));
311 	hpet_writel(cmp, HPET_Tn_CMP(channel));
312 	udelay(1);
313 	/*
314 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
315 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
316 	 * bit is automatically cleared after the first write.
317 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
318 	 * Publication # 24674)
319 	 */
320 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
321 	hpet_start_counter();
322 	hpet_print_config();
323 
324 	return 0;
325 }
326 
327 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
328 {
329 	unsigned int channel = clockevent_to_channel(evt)->num;
330 	unsigned int cfg;
331 
332 	cfg = hpet_readl(HPET_Tn_CFG(channel));
333 	cfg &= ~HPET_TN_PERIODIC;
334 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
335 	hpet_writel(cfg, HPET_Tn_CFG(channel));
336 
337 	return 0;
338 }
339 
340 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
341 {
342 	unsigned int channel = clockevent_to_channel(evt)->num;
343 	unsigned int cfg;
344 
345 	cfg = hpet_readl(HPET_Tn_CFG(channel));
346 	cfg &= ~HPET_TN_ENABLE;
347 	hpet_writel(cfg, HPET_Tn_CFG(channel));
348 
349 	return 0;
350 }
351 
352 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
353 {
354 	hpet_enable_legacy_int();
355 	hpet_print_config();
356 	return 0;
357 }
358 
359 static int
360 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
361 {
362 	unsigned int channel = clockevent_to_channel(evt)->num;
363 	u32 cnt;
364 	s32 res;
365 
366 	cnt = hpet_readl(HPET_COUNTER);
367 	cnt += (u32) delta;
368 	hpet_writel(cnt, HPET_Tn_CMP(channel));
369 
370 	/*
371 	 * HPETs are a complete disaster. The compare register is
372 	 * based on a equal comparison and neither provides a less
373 	 * than or equal functionality (which would require to take
374 	 * the wraparound into account) nor a simple count down event
375 	 * mode. Further the write to the comparator register is
376 	 * delayed internally up to two HPET clock cycles in certain
377 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
378 	 * longer delays. We worked around that by reading back the
379 	 * compare register, but that required another workaround for
380 	 * ICH9,10 chips where the first readout after write can
381 	 * return the old stale value. We already had a minimum
382 	 * programming delta of 5us enforced, but a NMI or SMI hitting
383 	 * between the counter readout and the comparator write can
384 	 * move us behind that point easily. Now instead of reading
385 	 * the compare register back several times, we make the ETIME
386 	 * decision based on the following: Return ETIME if the
387 	 * counter value after the write is less than HPET_MIN_CYCLES
388 	 * away from the event or if the counter is already ahead of
389 	 * the event. The minimum programming delta for the generic
390 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
391 	 */
392 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
393 
394 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
395 }
396 
397 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
398 {
399 	struct clock_event_device *evt = &hc->evt;
400 
401 	evt->rating		= rating;
402 	evt->irq		= hc->irq;
403 	evt->name		= hc->name;
404 	evt->cpumask		= cpumask_of(hc->cpu);
405 	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
406 	evt->set_next_event	= hpet_clkevt_set_next_event;
407 	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
408 
409 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
410 	if (hc->boot_cfg & HPET_TN_PERIODIC) {
411 		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
412 		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
413 	}
414 }
415 
416 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
417 {
418 	/*
419 	 * Start HPET with the boot CPU's cpumask and make it global after
420 	 * the IO_APIC has been initialized.
421 	 */
422 	hc->cpu = boot_cpu_data.cpu_index;
423 	strncpy(hc->name, "hpet", sizeof(hc->name));
424 	hpet_init_clockevent(hc, 50);
425 
426 	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
427 
428 	/*
429 	 * Legacy horrors and sins from the past. HPET used periodic mode
430 	 * unconditionally forever on the legacy channel 0. Removing the
431 	 * below hack and using the conditional in hpet_init_clockevent()
432 	 * makes at least Qemu and one hardware machine fail to boot.
433 	 * There are two issues which cause the boot failure:
434 	 *
435 	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
436 	 *    the next interrupt is not delivered despite the HPET channel
437 	 *    being programmed correctly. Reprogramming the HPET after
438 	 *    switching to IOAPIC makes it work again. After fixing this,
439 	 *    the next issue surfaces:
440 	 *
441 	 * #2 Due to the unconditional periodic mode availability the Local
442 	 *    APIC timer calibration can hijack the global clockevents
443 	 *    event handler without causing damage. Using oneshot at this
444 	 *    stage makes if hang because the HPET does not get
445 	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
446 	 *
447 	 * Both issues require major surgery and especially the kick HPET
448 	 * again after enabling IOAPIC results in really nasty hackery.
449 	 * This 'assume periodic works' magic has survived since HPET
450 	 * support got added, so it's questionable whether this should be
451 	 * fixed. Both Qemu and the failing hardware machine support
452 	 * periodic mode despite the fact that both don't advertise it in
453 	 * the configuration register and both need that extra kick after
454 	 * switching to IOAPIC. Seems to be a feature...
455 	 */
456 	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
457 	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
458 
459 	/* Start HPET legacy interrupts */
460 	hpet_enable_legacy_int();
461 
462 	clockevents_config_and_register(&hc->evt, hpet_freq,
463 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
464 	global_clock_event = &hc->evt;
465 	pr_debug("Clockevent registered\n");
466 }
467 
468 /*
469  * HPET MSI Support
470  */
471 #ifdef CONFIG_GENERIC_MSI_IRQ
472 static void hpet_msi_unmask(struct irq_data *data)
473 {
474 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
475 	unsigned int cfg;
476 
477 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
478 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
479 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
480 }
481 
482 static void hpet_msi_mask(struct irq_data *data)
483 {
484 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
485 	unsigned int cfg;
486 
487 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
488 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
489 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
490 }
491 
492 static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
493 {
494 	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
495 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
496 }
497 
498 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
499 {
500 	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
501 }
502 
503 static struct irq_chip hpet_msi_controller __ro_after_init = {
504 	.name = "HPET-MSI",
505 	.irq_unmask = hpet_msi_unmask,
506 	.irq_mask = hpet_msi_mask,
507 	.irq_ack = irq_chip_ack_parent,
508 	.irq_set_affinity = msi_domain_set_affinity,
509 	.irq_retrigger = irq_chip_retrigger_hierarchy,
510 	.irq_write_msi_msg = hpet_msi_write_msg,
511 	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
512 };
513 
514 static int hpet_msi_init(struct irq_domain *domain,
515 			 struct msi_domain_info *info, unsigned int virq,
516 			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
517 {
518 	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
519 	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
520 			    handle_edge_irq, arg->data, "edge");
521 
522 	return 0;
523 }
524 
525 static void hpet_msi_free(struct irq_domain *domain,
526 			  struct msi_domain_info *info, unsigned int virq)
527 {
528 	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
529 }
530 
531 static struct msi_domain_ops hpet_msi_domain_ops = {
532 	.msi_init	= hpet_msi_init,
533 	.msi_free	= hpet_msi_free,
534 };
535 
536 static struct msi_domain_info hpet_msi_domain_info = {
537 	.ops		= &hpet_msi_domain_ops,
538 	.chip		= &hpet_msi_controller,
539 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
540 };
541 
542 static struct irq_domain *hpet_create_irq_domain(int hpet_id)
543 {
544 	struct msi_domain_info *domain_info;
545 	struct irq_domain *parent, *d;
546 	struct fwnode_handle *fn;
547 	struct irq_fwspec fwspec;
548 
549 	if (x86_vector_domain == NULL)
550 		return NULL;
551 
552 	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
553 	if (!domain_info)
554 		return NULL;
555 
556 	*domain_info = hpet_msi_domain_info;
557 	domain_info->data = (void *)(long)hpet_id;
558 
559 	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
560 					      hpet_id);
561 	if (!fn) {
562 		kfree(domain_info);
563 		return NULL;
564 	}
565 
566 	fwspec.fwnode = fn;
567 	fwspec.param_count = 1;
568 	fwspec.param[0] = hpet_id;
569 
570 	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
571 	if (!parent) {
572 		irq_domain_free_fwnode(fn);
573 		kfree(domain_info);
574 		return NULL;
575 	}
576 	if (parent != x86_vector_domain)
577 		hpet_msi_controller.name = "IR-HPET-MSI";
578 
579 	d = msi_create_irq_domain(fn, domain_info, parent);
580 	if (!d) {
581 		irq_domain_free_fwnode(fn);
582 		kfree(domain_info);
583 	}
584 	return d;
585 }
586 
587 static inline int hpet_dev_id(struct irq_domain *domain)
588 {
589 	struct msi_domain_info *info = msi_get_domain_info(domain);
590 
591 	return (int)(long)info->data;
592 }
593 
594 static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
595 			   int dev_num)
596 {
597 	struct irq_alloc_info info;
598 
599 	init_irq_alloc_info(&info, NULL);
600 	info.type = X86_IRQ_ALLOC_TYPE_HPET;
601 	info.data = hc;
602 	info.devid = hpet_dev_id(domain);
603 	info.hwirq = dev_num;
604 
605 	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
606 }
607 
608 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
609 {
610 	struct hpet_channel *hc = clockevent_to_channel(evt);
611 	struct irq_data *data = irq_get_irq_data(hc->irq);
612 	struct msi_msg msg;
613 
614 	/* Restore the MSI msg and unmask the interrupt */
615 	irq_chip_compose_msi_msg(data, &msg);
616 	hpet_msi_write(hc, &msg);
617 	hpet_msi_unmask(data);
618 	return 0;
619 }
620 
621 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
622 {
623 	struct hpet_channel *hc = data;
624 	struct clock_event_device *evt = &hc->evt;
625 
626 	if (!evt->event_handler) {
627 		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
628 		return IRQ_HANDLED;
629 	}
630 
631 	evt->event_handler(evt);
632 	return IRQ_HANDLED;
633 }
634 
635 static int hpet_setup_msi_irq(struct hpet_channel *hc)
636 {
637 	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
638 			IRQF_TIMER | IRQF_NOBALANCING,
639 			hc->name, hc))
640 		return -1;
641 
642 	disable_irq(hc->irq);
643 	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
644 	enable_irq(hc->irq);
645 
646 	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
647 
648 	return 0;
649 }
650 
651 /* Invoked from the hotplug callback on @cpu */
652 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
653 {
654 	struct clock_event_device *evt = &hc->evt;
655 
656 	hc->cpu = cpu;
657 	per_cpu(cpu_hpet_channel, cpu) = hc;
658 	hpet_setup_msi_irq(hc);
659 
660 	hpet_init_clockevent(hc, 110);
661 	evt->tick_resume = hpet_clkevt_msi_resume;
662 
663 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
664 					0x7FFFFFFF);
665 }
666 
667 static struct hpet_channel *hpet_get_unused_clockevent(void)
668 {
669 	int i;
670 
671 	for (i = 0; i < hpet_base.nr_channels; i++) {
672 		struct hpet_channel *hc = hpet_base.channels + i;
673 
674 		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
675 			continue;
676 		hc->in_use = 1;
677 		return hc;
678 	}
679 	return NULL;
680 }
681 
682 static int hpet_cpuhp_online(unsigned int cpu)
683 {
684 	struct hpet_channel *hc = hpet_get_unused_clockevent();
685 
686 	if (hc)
687 		init_one_hpet_msi_clockevent(hc, cpu);
688 	return 0;
689 }
690 
691 static int hpet_cpuhp_dead(unsigned int cpu)
692 {
693 	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
694 
695 	if (!hc)
696 		return 0;
697 	free_irq(hc->irq, hc);
698 	hc->in_use = 0;
699 	per_cpu(cpu_hpet_channel, cpu) = NULL;
700 	return 0;
701 }
702 
703 static void __init hpet_select_clockevents(void)
704 {
705 	unsigned int i;
706 
707 	hpet_base.nr_clockevents = 0;
708 
709 	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
710 	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
711 		return;
712 
713 	hpet_print_config();
714 
715 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
716 	if (!hpet_domain)
717 		return;
718 
719 	for (i = 0; i < hpet_base.nr_channels; i++) {
720 		struct hpet_channel *hc = hpet_base.channels + i;
721 		int irq;
722 
723 		if (hc->mode != HPET_MODE_UNUSED)
724 			continue;
725 
726 		/* Only consider HPET channel with MSI support */
727 		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
728 			continue;
729 
730 		sprintf(hc->name, "hpet%d", i);
731 
732 		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
733 		if (irq <= 0)
734 			continue;
735 
736 		hc->irq = irq;
737 		hc->mode = HPET_MODE_CLOCKEVT;
738 
739 		if (++hpet_base.nr_clockevents == num_possible_cpus())
740 			break;
741 	}
742 
743 	pr_info("%d channels of %d reserved for per-cpu timers\n",
744 		hpet_base.nr_channels, hpet_base.nr_clockevents);
745 }
746 
747 #else
748 
749 static inline void hpet_select_clockevents(void) { }
750 
751 #define hpet_cpuhp_online	NULL
752 #define hpet_cpuhp_dead		NULL
753 
754 #endif
755 
756 /*
757  * Clock source related code
758  */
759 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
760 /*
761  * Reading the HPET counter is a very slow operation. If a large number of
762  * CPUs are trying to access the HPET counter simultaneously, it can cause
763  * massive delays and slow down system performance dramatically. This may
764  * happen when HPET is the default clock source instead of TSC. For a
765  * really large system with hundreds of CPUs, the slowdown may be so
766  * severe, that it can actually crash the system because of a NMI watchdog
767  * soft lockup, for example.
768  *
769  * If multiple CPUs are trying to access the HPET counter at the same time,
770  * we don't actually need to read the counter multiple times. Instead, the
771  * other CPUs can use the counter value read by the first CPU in the group.
772  *
773  * This special feature is only enabled on x86-64 systems. It is unlikely
774  * that 32-bit x86 systems will have enough CPUs to require this feature
775  * with its associated locking overhead. We also need 64-bit atomic read.
776  *
777  * The lock and the HPET value are stored together and can be read in a
778  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
779  * is 32 bits in size.
780  */
781 union hpet_lock {
782 	struct {
783 		arch_spinlock_t lock;
784 		u32 value;
785 	};
786 	u64 lockval;
787 };
788 
789 static union hpet_lock hpet __cacheline_aligned = {
790 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
791 };
792 
793 static u64 read_hpet(struct clocksource *cs)
794 {
795 	unsigned long flags;
796 	union hpet_lock old, new;
797 
798 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
799 
800 	/*
801 	 * Read HPET directly if in NMI.
802 	 */
803 	if (in_nmi())
804 		return (u64)hpet_readl(HPET_COUNTER);
805 
806 	/*
807 	 * Read the current state of the lock and HPET value atomically.
808 	 */
809 	old.lockval = READ_ONCE(hpet.lockval);
810 
811 	if (arch_spin_is_locked(&old.lock))
812 		goto contended;
813 
814 	local_irq_save(flags);
815 	if (arch_spin_trylock(&hpet.lock)) {
816 		new.value = hpet_readl(HPET_COUNTER);
817 		/*
818 		 * Use WRITE_ONCE() to prevent store tearing.
819 		 */
820 		WRITE_ONCE(hpet.value, new.value);
821 		arch_spin_unlock(&hpet.lock);
822 		local_irq_restore(flags);
823 		return (u64)new.value;
824 	}
825 	local_irq_restore(flags);
826 
827 contended:
828 	/*
829 	 * Contended case
830 	 * --------------
831 	 * Wait until the HPET value change or the lock is free to indicate
832 	 * its value is up-to-date.
833 	 *
834 	 * It is possible that old.value has already contained the latest
835 	 * HPET value while the lock holder was in the process of releasing
836 	 * the lock. Checking for lock state change will enable us to return
837 	 * the value immediately instead of waiting for the next HPET reader
838 	 * to come along.
839 	 */
840 	do {
841 		cpu_relax();
842 		new.lockval = READ_ONCE(hpet.lockval);
843 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
844 
845 	return (u64)new.value;
846 }
847 #else
848 /*
849  * For UP or 32-bit.
850  */
851 static u64 read_hpet(struct clocksource *cs)
852 {
853 	return (u64)hpet_readl(HPET_COUNTER);
854 }
855 #endif
856 
857 static struct clocksource clocksource_hpet = {
858 	.name		= "hpet",
859 	.rating		= 250,
860 	.read		= read_hpet,
861 	.mask		= HPET_MASK,
862 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
863 	.resume		= hpet_resume_counter,
864 };
865 
866 /*
867  * AMD SB700 based systems with spread spectrum enabled use a SMM based
868  * HPET emulation to provide proper frequency setting.
869  *
870  * On such systems the SMM code is initialized with the first HPET register
871  * access and takes some time to complete. During this time the config
872  * register reads 0xffffffff. We check for max 1000 loops whether the
873  * config register reads a non-0xffffffff value to make sure that the
874  * HPET is up and running before we proceed any further.
875  *
876  * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
877  *
878  * On non-SB700 based machines this check is only done once and has no
879  * side effects.
880  */
881 static bool __init hpet_cfg_working(void)
882 {
883 	int i;
884 
885 	for (i = 0; i < 1000; i++) {
886 		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
887 			return true;
888 	}
889 
890 	pr_warn("Config register invalid. Disabling HPET\n");
891 	return false;
892 }
893 
894 static bool __init hpet_counting(void)
895 {
896 	u64 start, now, t1;
897 
898 	hpet_restart_counter();
899 
900 	t1 = hpet_readl(HPET_COUNTER);
901 	start = rdtsc();
902 
903 	/*
904 	 * We don't know the TSC frequency yet, but waiting for
905 	 * 200000 TSC cycles is safe:
906 	 * 4 GHz == 50us
907 	 * 1 GHz == 200us
908 	 */
909 	do {
910 		if (t1 != hpet_readl(HPET_COUNTER))
911 			return true;
912 		now = rdtsc();
913 	} while ((now - start) < 200000UL);
914 
915 	pr_warn("Counter not counting. HPET disabled\n");
916 	return false;
917 }
918 
919 /**
920  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
921  */
922 int __init hpet_enable(void)
923 {
924 	u32 hpet_period, cfg, id, irq;
925 	unsigned int i, channels;
926 	struct hpet_channel *hc;
927 	u64 freq;
928 
929 	if (!is_hpet_capable())
930 		return 0;
931 
932 	hpet_set_mapping();
933 	if (!hpet_virt_address)
934 		return 0;
935 
936 	/* Validate that the config register is working */
937 	if (!hpet_cfg_working())
938 		goto out_nohpet;
939 
940 	/*
941 	 * Read the period and check for a sane value:
942 	 */
943 	hpet_period = hpet_readl(HPET_PERIOD);
944 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
945 		goto out_nohpet;
946 
947 	/* The period is a femtoseconds value. Convert it to a frequency. */
948 	freq = FSEC_PER_SEC;
949 	do_div(freq, hpet_period);
950 	hpet_freq = freq;
951 
952 	/*
953 	 * Read the HPET ID register to retrieve the IRQ routing
954 	 * information and the number of channels
955 	 */
956 	id = hpet_readl(HPET_ID);
957 	hpet_print_config();
958 
959 	/* This is the HPET channel number which is zero based */
960 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
961 
962 	/*
963 	 * The legacy routing mode needs at least two channels, tick timer
964 	 * and the rtc emulation channel.
965 	 */
966 	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
967 		goto out_nohpet;
968 
969 	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
970 	if (!hc) {
971 		pr_warn("Disabling HPET.\n");
972 		goto out_nohpet;
973 	}
974 	hpet_base.channels = hc;
975 	hpet_base.nr_channels = channels;
976 
977 	/* Read, store and sanitize the global configuration */
978 	cfg = hpet_readl(HPET_CFG);
979 	hpet_base.boot_cfg = cfg;
980 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
981 	hpet_writel(cfg, HPET_CFG);
982 	if (cfg)
983 		pr_warn("Global config: Unknown bits %#x\n", cfg);
984 
985 	/* Read, store and sanitize the per channel configuration */
986 	for (i = 0; i < channels; i++, hc++) {
987 		hc->num = i;
988 
989 		cfg = hpet_readl(HPET_Tn_CFG(i));
990 		hc->boot_cfg = cfg;
991 		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
992 		hc->irq = irq;
993 
994 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
995 		hpet_writel(cfg, HPET_Tn_CFG(i));
996 
997 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
998 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
999 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1000 		if (cfg)
1001 			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1002 	}
1003 	hpet_print_config();
1004 
1005 	/*
1006 	 * Validate that the counter is counting. This needs to be done
1007 	 * after sanitizing the config registers to properly deal with
1008 	 * force enabled HPETs.
1009 	 */
1010 	if (!hpet_counting())
1011 		goto out_nohpet;
1012 
1013 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1014 
1015 	if (id & HPET_ID_LEGSUP) {
1016 		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1017 		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1018 		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1019 			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1020 		return 1;
1021 	}
1022 	return 0;
1023 
1024 out_nohpet:
1025 	kfree(hpet_base.channels);
1026 	hpet_base.channels = NULL;
1027 	hpet_base.nr_channels = 0;
1028 	hpet_clear_mapping();
1029 	hpet_address = 0;
1030 	return 0;
1031 }
1032 
1033 /*
1034  * The late initialization runs after the PCI quirks have been invoked
1035  * which might have detected a system on which the HPET can be enforced.
1036  *
1037  * Also, the MSI machinery is not working yet when the HPET is initialized
1038  * early.
1039  *
1040  * If the HPET is enabled, then:
1041  *
1042  *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1043  *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1044  *  3) Setup /dev/hpet if CONFIG_HPET=y
1045  *  4) Register hotplug callbacks when clockevents are available
1046  */
1047 static __init int hpet_late_init(void)
1048 {
1049 	int ret;
1050 
1051 	if (!hpet_address) {
1052 		if (!force_hpet_address)
1053 			return -ENODEV;
1054 
1055 		hpet_address = force_hpet_address;
1056 		hpet_enable();
1057 	}
1058 
1059 	if (!hpet_virt_address)
1060 		return -ENODEV;
1061 
1062 	hpet_select_device_channel();
1063 	hpet_select_clockevents();
1064 	hpet_reserve_platform_timers();
1065 	hpet_print_config();
1066 
1067 	if (!hpet_base.nr_clockevents)
1068 		return 0;
1069 
1070 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1071 				hpet_cpuhp_online, NULL);
1072 	if (ret)
1073 		return ret;
1074 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1075 				hpet_cpuhp_dead);
1076 	if (ret)
1077 		goto err_cpuhp;
1078 	return 0;
1079 
1080 err_cpuhp:
1081 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1082 	return ret;
1083 }
1084 fs_initcall(hpet_late_init);
1085 
1086 void hpet_disable(void)
1087 {
1088 	unsigned int i;
1089 	u32 cfg;
1090 
1091 	if (!is_hpet_capable() || !hpet_virt_address)
1092 		return;
1093 
1094 	/* Restore boot configuration with the enable bit cleared */
1095 	cfg = hpet_base.boot_cfg;
1096 	cfg &= ~HPET_CFG_ENABLE;
1097 	hpet_writel(cfg, HPET_CFG);
1098 
1099 	/* Restore the channel boot configuration */
1100 	for (i = 0; i < hpet_base.nr_channels; i++)
1101 		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1102 
1103 	/* If the HPET was enabled at boot time, reenable it */
1104 	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1105 		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1106 }
1107 
1108 #ifdef CONFIG_HPET_EMULATE_RTC
1109 
1110 /*
1111  * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1112  * is enabled, we support RTC interrupt functionality in software.
1113  *
1114  * RTC has 3 kinds of interrupts:
1115  *
1116  *  1) Update Interrupt - generate an interrupt, every second, when the
1117  *     RTC clock is updated
1118  *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1119  *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1120  *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1121  *
1122  * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1123  * DEFAULT_RTC_INT_FREQ.
1124  *
1125  * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1126  *
1127  * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1128  * if it's higher.
1129  */
1130 #include <linux/mc146818rtc.h>
1131 #include <linux/rtc.h>
1132 
1133 #define DEFAULT_RTC_INT_FREQ	64
1134 #define DEFAULT_RTC_SHIFT	6
1135 #define RTC_NUM_INTS		1
1136 
1137 static unsigned long hpet_rtc_flags;
1138 static int hpet_prev_update_sec;
1139 static struct rtc_time hpet_alarm_time;
1140 static unsigned long hpet_pie_count;
1141 static u32 hpet_t1_cmp;
1142 static u32 hpet_default_delta;
1143 static u32 hpet_pie_delta;
1144 static unsigned long hpet_pie_limit;
1145 
1146 static rtc_irq_handler irq_handler;
1147 
1148 /*
1149  * Check that the HPET counter c1 is ahead of c2
1150  */
1151 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1152 {
1153 	return (s32)(c2 - c1) < 0;
1154 }
1155 
1156 /*
1157  * Registers a IRQ handler.
1158  */
1159 int hpet_register_irq_handler(rtc_irq_handler handler)
1160 {
1161 	if (!is_hpet_enabled())
1162 		return -ENODEV;
1163 	if (irq_handler)
1164 		return -EBUSY;
1165 
1166 	irq_handler = handler;
1167 
1168 	return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1171 
1172 /*
1173  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1174  * and does cleanup.
1175  */
1176 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1177 {
1178 	if (!is_hpet_enabled())
1179 		return;
1180 
1181 	irq_handler = NULL;
1182 	hpet_rtc_flags = 0;
1183 }
1184 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1185 
1186 /*
1187  * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1188  * is not supported by all HPET implementations for channel 1.
1189  *
1190  * hpet_rtc_timer_init() is called when the rtc is initialized.
1191  */
1192 int hpet_rtc_timer_init(void)
1193 {
1194 	unsigned int cfg, cnt, delta;
1195 	unsigned long flags;
1196 
1197 	if (!is_hpet_enabled())
1198 		return 0;
1199 
1200 	if (!hpet_default_delta) {
1201 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1202 		uint64_t clc;
1203 
1204 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1205 		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1206 		hpet_default_delta = clc;
1207 	}
1208 
1209 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1210 		delta = hpet_default_delta;
1211 	else
1212 		delta = hpet_pie_delta;
1213 
1214 	local_irq_save(flags);
1215 
1216 	cnt = delta + hpet_readl(HPET_COUNTER);
1217 	hpet_writel(cnt, HPET_T1_CMP);
1218 	hpet_t1_cmp = cnt;
1219 
1220 	cfg = hpet_readl(HPET_T1_CFG);
1221 	cfg &= ~HPET_TN_PERIODIC;
1222 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1223 	hpet_writel(cfg, HPET_T1_CFG);
1224 
1225 	local_irq_restore(flags);
1226 
1227 	return 1;
1228 }
1229 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1230 
1231 static void hpet_disable_rtc_channel(void)
1232 {
1233 	u32 cfg = hpet_readl(HPET_T1_CFG);
1234 
1235 	cfg &= ~HPET_TN_ENABLE;
1236 	hpet_writel(cfg, HPET_T1_CFG);
1237 }
1238 
1239 /*
1240  * The functions below are called from rtc driver.
1241  * Return 0 if HPET is not being used.
1242  * Otherwise do the necessary changes and return 1.
1243  */
1244 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1245 {
1246 	if (!is_hpet_enabled())
1247 		return 0;
1248 
1249 	hpet_rtc_flags &= ~bit_mask;
1250 	if (unlikely(!hpet_rtc_flags))
1251 		hpet_disable_rtc_channel();
1252 
1253 	return 1;
1254 }
1255 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1256 
1257 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1258 {
1259 	unsigned long oldbits = hpet_rtc_flags;
1260 
1261 	if (!is_hpet_enabled())
1262 		return 0;
1263 
1264 	hpet_rtc_flags |= bit_mask;
1265 
1266 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1267 		hpet_prev_update_sec = -1;
1268 
1269 	if (!oldbits)
1270 		hpet_rtc_timer_init();
1271 
1272 	return 1;
1273 }
1274 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1275 
1276 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1277 {
1278 	if (!is_hpet_enabled())
1279 		return 0;
1280 
1281 	hpet_alarm_time.tm_hour = hrs;
1282 	hpet_alarm_time.tm_min = min;
1283 	hpet_alarm_time.tm_sec = sec;
1284 
1285 	return 1;
1286 }
1287 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1288 
1289 int hpet_set_periodic_freq(unsigned long freq)
1290 {
1291 	uint64_t clc;
1292 
1293 	if (!is_hpet_enabled())
1294 		return 0;
1295 
1296 	if (freq <= DEFAULT_RTC_INT_FREQ) {
1297 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1298 	} else {
1299 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1300 
1301 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1302 		do_div(clc, freq);
1303 		clc >>= evt->shift;
1304 		hpet_pie_delta = clc;
1305 		hpet_pie_limit = 0;
1306 	}
1307 
1308 	return 1;
1309 }
1310 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1311 
1312 int hpet_rtc_dropped_irq(void)
1313 {
1314 	return is_hpet_enabled();
1315 }
1316 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1317 
1318 static void hpet_rtc_timer_reinit(void)
1319 {
1320 	unsigned int delta;
1321 	int lost_ints = -1;
1322 
1323 	if (unlikely(!hpet_rtc_flags))
1324 		hpet_disable_rtc_channel();
1325 
1326 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1327 		delta = hpet_default_delta;
1328 	else
1329 		delta = hpet_pie_delta;
1330 
1331 	/*
1332 	 * Increment the comparator value until we are ahead of the
1333 	 * current count.
1334 	 */
1335 	do {
1336 		hpet_t1_cmp += delta;
1337 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1338 		lost_ints++;
1339 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1340 
1341 	if (lost_ints) {
1342 		if (hpet_rtc_flags & RTC_PIE)
1343 			hpet_pie_count += lost_ints;
1344 		if (printk_ratelimit())
1345 			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1346 	}
1347 }
1348 
1349 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1350 {
1351 	struct rtc_time curr_time;
1352 	unsigned long rtc_int_flag = 0;
1353 
1354 	hpet_rtc_timer_reinit();
1355 	memset(&curr_time, 0, sizeof(struct rtc_time));
1356 
1357 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1358 		mc146818_get_time(&curr_time);
1359 
1360 	if (hpet_rtc_flags & RTC_UIE &&
1361 	    curr_time.tm_sec != hpet_prev_update_sec) {
1362 		if (hpet_prev_update_sec >= 0)
1363 			rtc_int_flag = RTC_UF;
1364 		hpet_prev_update_sec = curr_time.tm_sec;
1365 	}
1366 
1367 	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1368 		rtc_int_flag |= RTC_PF;
1369 		hpet_pie_count = 0;
1370 	}
1371 
1372 	if (hpet_rtc_flags & RTC_AIE &&
1373 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1374 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1375 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1376 		rtc_int_flag |= RTC_AF;
1377 
1378 	if (rtc_int_flag) {
1379 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1380 		if (irq_handler)
1381 			irq_handler(rtc_int_flag, dev_id);
1382 	}
1383 	return IRQ_HANDLED;
1384 }
1385 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1386 #endif
1387