1 #include <linux/clocksource.h> 2 #include <linux/clockchips.h> 3 #include <linux/interrupt.h> 4 #include <linux/export.h> 5 #include <linux/delay.h> 6 #include <linux/errno.h> 7 #include <linux/i8253.h> 8 #include <linux/slab.h> 9 #include <linux/hpet.h> 10 #include <linux/init.h> 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/io.h> 14 15 #include <asm/cpufeature.h> 16 #include <asm/irqdomain.h> 17 #include <asm/fixmap.h> 18 #include <asm/hpet.h> 19 #include <asm/time.h> 20 21 #define HPET_MASK CLOCKSOURCE_MASK(32) 22 23 /* FSEC = 10^-15 24 NSEC = 10^-9 */ 25 #define FSEC_PER_NSEC 1000000L 26 27 #define HPET_DEV_USED_BIT 2 28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT) 29 #define HPET_DEV_VALID 0x8 30 #define HPET_DEV_FSB_CAP 0x1000 31 #define HPET_DEV_PERI_CAP 0x2000 32 33 #define HPET_MIN_CYCLES 128 34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1)) 35 36 /* 37 * HPET address is set in acpi/boot.c, when an ACPI entry exists 38 */ 39 unsigned long hpet_address; 40 u8 hpet_blockid; /* OS timer block num */ 41 bool hpet_msi_disable; 42 43 #ifdef CONFIG_PCI_MSI 44 static unsigned int hpet_num_timers; 45 #endif 46 static void __iomem *hpet_virt_address; 47 48 struct hpet_dev { 49 struct clock_event_device evt; 50 unsigned int num; 51 int cpu; 52 unsigned int irq; 53 unsigned int flags; 54 char name[10]; 55 }; 56 57 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev) 58 { 59 return container_of(evtdev, struct hpet_dev, evt); 60 } 61 62 inline unsigned int hpet_readl(unsigned int a) 63 { 64 return readl(hpet_virt_address + a); 65 } 66 67 static inline void hpet_writel(unsigned int d, unsigned int a) 68 { 69 writel(d, hpet_virt_address + a); 70 } 71 72 #ifdef CONFIG_X86_64 73 #include <asm/pgtable.h> 74 #endif 75 76 static inline void hpet_set_mapping(void) 77 { 78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); 79 } 80 81 static inline void hpet_clear_mapping(void) 82 { 83 iounmap(hpet_virt_address); 84 hpet_virt_address = NULL; 85 } 86 87 /* 88 * HPET command line enable / disable 89 */ 90 bool boot_hpet_disable; 91 bool hpet_force_user; 92 static bool hpet_verbose; 93 94 static int __init hpet_setup(char *str) 95 { 96 while (str) { 97 char *next = strchr(str, ','); 98 99 if (next) 100 *next++ = 0; 101 if (!strncmp("disable", str, 7)) 102 boot_hpet_disable = true; 103 if (!strncmp("force", str, 5)) 104 hpet_force_user = true; 105 if (!strncmp("verbose", str, 7)) 106 hpet_verbose = true; 107 str = next; 108 } 109 return 1; 110 } 111 __setup("hpet=", hpet_setup); 112 113 static int __init disable_hpet(char *str) 114 { 115 boot_hpet_disable = true; 116 return 1; 117 } 118 __setup("nohpet", disable_hpet); 119 120 static inline int is_hpet_capable(void) 121 { 122 return !boot_hpet_disable && hpet_address; 123 } 124 125 /* 126 * HPET timer interrupt enable / disable 127 */ 128 static bool hpet_legacy_int_enabled; 129 130 /** 131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled 132 */ 133 int is_hpet_enabled(void) 134 { 135 return is_hpet_capable() && hpet_legacy_int_enabled; 136 } 137 EXPORT_SYMBOL_GPL(is_hpet_enabled); 138 139 static void _hpet_print_config(const char *function, int line) 140 { 141 u32 i, timers, l, h; 142 printk(KERN_INFO "hpet: %s(%d):\n", function, line); 143 l = hpet_readl(HPET_ID); 144 h = hpet_readl(HPET_PERIOD); 145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; 146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); 147 l = hpet_readl(HPET_CFG); 148 h = hpet_readl(HPET_STATUS); 149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); 150 l = hpet_readl(HPET_COUNTER); 151 h = hpet_readl(HPET_COUNTER+4); 152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); 153 154 for (i = 0; i < timers; i++) { 155 l = hpet_readl(HPET_Tn_CFG(i)); 156 h = hpet_readl(HPET_Tn_CFG(i)+4); 157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", 158 i, l, h); 159 l = hpet_readl(HPET_Tn_CMP(i)); 160 h = hpet_readl(HPET_Tn_CMP(i)+4); 161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", 162 i, l, h); 163 l = hpet_readl(HPET_Tn_ROUTE(i)); 164 h = hpet_readl(HPET_Tn_ROUTE(i)+4); 165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", 166 i, l, h); 167 } 168 } 169 170 #define hpet_print_config() \ 171 do { \ 172 if (hpet_verbose) \ 173 _hpet_print_config(__func__, __LINE__); \ 174 } while (0) 175 176 /* 177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve 178 * timer 0 and timer 1 in case of RTC emulation. 179 */ 180 #ifdef CONFIG_HPET 181 182 static void hpet_reserve_msi_timers(struct hpet_data *hd); 183 184 static void hpet_reserve_platform_timers(unsigned int id) 185 { 186 struct hpet __iomem *hpet = hpet_virt_address; 187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; 188 unsigned int nrtimers, i; 189 struct hpet_data hd; 190 191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; 192 193 memset(&hd, 0, sizeof(hd)); 194 hd.hd_phys_address = hpet_address; 195 hd.hd_address = hpet; 196 hd.hd_nirqs = nrtimers; 197 hpet_reserve_timer(&hd, 0); 198 199 #ifdef CONFIG_HPET_EMULATE_RTC 200 hpet_reserve_timer(&hd, 1); 201 #endif 202 203 /* 204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 205 * is wrong for i8259!) not the output IRQ. Many BIOS writers 206 * don't bother configuring *any* comparator interrupts. 207 */ 208 hd.hd_irq[0] = HPET_LEGACY_8254; 209 hd.hd_irq[1] = HPET_LEGACY_RTC; 210 211 for (i = 2; i < nrtimers; timer++, i++) { 212 hd.hd_irq[i] = (readl(&timer->hpet_config) & 213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; 214 } 215 216 hpet_reserve_msi_timers(&hd); 217 218 hpet_alloc(&hd); 219 220 } 221 #else 222 static void hpet_reserve_platform_timers(unsigned int id) { } 223 #endif 224 225 /* 226 * Common hpet info 227 */ 228 static unsigned long hpet_freq; 229 230 static struct clock_event_device hpet_clockevent; 231 232 static void hpet_stop_counter(void) 233 { 234 u32 cfg = hpet_readl(HPET_CFG); 235 cfg &= ~HPET_CFG_ENABLE; 236 hpet_writel(cfg, HPET_CFG); 237 } 238 239 static void hpet_reset_counter(void) 240 { 241 hpet_writel(0, HPET_COUNTER); 242 hpet_writel(0, HPET_COUNTER + 4); 243 } 244 245 static void hpet_start_counter(void) 246 { 247 unsigned int cfg = hpet_readl(HPET_CFG); 248 cfg |= HPET_CFG_ENABLE; 249 hpet_writel(cfg, HPET_CFG); 250 } 251 252 static void hpet_restart_counter(void) 253 { 254 hpet_stop_counter(); 255 hpet_reset_counter(); 256 hpet_start_counter(); 257 } 258 259 static void hpet_resume_device(void) 260 { 261 force_hpet_resume(); 262 } 263 264 static void hpet_resume_counter(struct clocksource *cs) 265 { 266 hpet_resume_device(); 267 hpet_restart_counter(); 268 } 269 270 static void hpet_enable_legacy_int(void) 271 { 272 unsigned int cfg = hpet_readl(HPET_CFG); 273 274 cfg |= HPET_CFG_LEGACY; 275 hpet_writel(cfg, HPET_CFG); 276 hpet_legacy_int_enabled = true; 277 } 278 279 static void hpet_legacy_clockevent_register(void) 280 { 281 /* Start HPET legacy interrupts */ 282 hpet_enable_legacy_int(); 283 284 /* 285 * Start hpet with the boot cpu mask and make it 286 * global after the IO_APIC has been initialized. 287 */ 288 hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index); 289 clockevents_config_and_register(&hpet_clockevent, hpet_freq, 290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF); 291 global_clock_event = &hpet_clockevent; 292 printk(KERN_DEBUG "hpet clockevent registered\n"); 293 } 294 295 static int hpet_set_periodic(struct clock_event_device *evt, int timer) 296 { 297 unsigned int cfg, cmp, now; 298 uint64_t delta; 299 300 hpet_stop_counter(); 301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult; 302 delta >>= evt->shift; 303 now = hpet_readl(HPET_COUNTER); 304 cmp = now + (unsigned int)delta; 305 cfg = hpet_readl(HPET_Tn_CFG(timer)); 306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | 307 HPET_TN_32BIT; 308 hpet_writel(cfg, HPET_Tn_CFG(timer)); 309 hpet_writel(cmp, HPET_Tn_CMP(timer)); 310 udelay(1); 311 /* 312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL 313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL 314 * bit is automatically cleared after the first write. 315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet, 316 * Publication # 24674) 317 */ 318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer)); 319 hpet_start_counter(); 320 hpet_print_config(); 321 322 return 0; 323 } 324 325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer) 326 { 327 unsigned int cfg; 328 329 cfg = hpet_readl(HPET_Tn_CFG(timer)); 330 cfg &= ~HPET_TN_PERIODIC; 331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; 332 hpet_writel(cfg, HPET_Tn_CFG(timer)); 333 334 return 0; 335 } 336 337 static int hpet_shutdown(struct clock_event_device *evt, int timer) 338 { 339 unsigned int cfg; 340 341 cfg = hpet_readl(HPET_Tn_CFG(timer)); 342 cfg &= ~HPET_TN_ENABLE; 343 hpet_writel(cfg, HPET_Tn_CFG(timer)); 344 345 return 0; 346 } 347 348 static int hpet_resume(struct clock_event_device *evt) 349 { 350 hpet_enable_legacy_int(); 351 hpet_print_config(); 352 return 0; 353 } 354 355 static int hpet_next_event(unsigned long delta, 356 struct clock_event_device *evt, int timer) 357 { 358 u32 cnt; 359 s32 res; 360 361 cnt = hpet_readl(HPET_COUNTER); 362 cnt += (u32) delta; 363 hpet_writel(cnt, HPET_Tn_CMP(timer)); 364 365 /* 366 * HPETs are a complete disaster. The compare register is 367 * based on a equal comparison and neither provides a less 368 * than or equal functionality (which would require to take 369 * the wraparound into account) nor a simple count down event 370 * mode. Further the write to the comparator register is 371 * delayed internally up to two HPET clock cycles in certain 372 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even 373 * longer delays. We worked around that by reading back the 374 * compare register, but that required another workaround for 375 * ICH9,10 chips where the first readout after write can 376 * return the old stale value. We already had a minimum 377 * programming delta of 5us enforced, but a NMI or SMI hitting 378 * between the counter readout and the comparator write can 379 * move us behind that point easily. Now instead of reading 380 * the compare register back several times, we make the ETIME 381 * decision based on the following: Return ETIME if the 382 * counter value after the write is less than HPET_MIN_CYCLES 383 * away from the event or if the counter is already ahead of 384 * the event. The minimum programming delta for the generic 385 * clockevents code is set to 1.5 * HPET_MIN_CYCLES. 386 */ 387 res = (s32)(cnt - hpet_readl(HPET_COUNTER)); 388 389 return res < HPET_MIN_CYCLES ? -ETIME : 0; 390 } 391 392 static int hpet_legacy_shutdown(struct clock_event_device *evt) 393 { 394 return hpet_shutdown(evt, 0); 395 } 396 397 static int hpet_legacy_set_oneshot(struct clock_event_device *evt) 398 { 399 return hpet_set_oneshot(evt, 0); 400 } 401 402 static int hpet_legacy_set_periodic(struct clock_event_device *evt) 403 { 404 return hpet_set_periodic(evt, 0); 405 } 406 407 static int hpet_legacy_resume(struct clock_event_device *evt) 408 { 409 return hpet_resume(evt); 410 } 411 412 static int hpet_legacy_next_event(unsigned long delta, 413 struct clock_event_device *evt) 414 { 415 return hpet_next_event(delta, evt, 0); 416 } 417 418 /* 419 * The hpet clock event device 420 */ 421 static struct clock_event_device hpet_clockevent = { 422 .name = "hpet", 423 .features = CLOCK_EVT_FEAT_PERIODIC | 424 CLOCK_EVT_FEAT_ONESHOT, 425 .set_state_periodic = hpet_legacy_set_periodic, 426 .set_state_oneshot = hpet_legacy_set_oneshot, 427 .set_state_shutdown = hpet_legacy_shutdown, 428 .tick_resume = hpet_legacy_resume, 429 .set_next_event = hpet_legacy_next_event, 430 .irq = 0, 431 .rating = 50, 432 }; 433 434 /* 435 * HPET MSI Support 436 */ 437 #ifdef CONFIG_PCI_MSI 438 439 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); 440 static struct hpet_dev *hpet_devs; 441 static struct irq_domain *hpet_domain; 442 443 void hpet_msi_unmask(struct irq_data *data) 444 { 445 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data); 446 unsigned int cfg; 447 448 /* unmask it */ 449 cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); 450 cfg |= HPET_TN_ENABLE | HPET_TN_FSB; 451 hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); 452 } 453 454 void hpet_msi_mask(struct irq_data *data) 455 { 456 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data); 457 unsigned int cfg; 458 459 /* mask it */ 460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); 461 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB); 462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); 463 } 464 465 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg) 466 { 467 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); 468 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); 469 } 470 471 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg) 472 { 473 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); 474 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); 475 msg->address_hi = 0; 476 } 477 478 static int hpet_msi_shutdown(struct clock_event_device *evt) 479 { 480 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 481 482 return hpet_shutdown(evt, hdev->num); 483 } 484 485 static int hpet_msi_set_oneshot(struct clock_event_device *evt) 486 { 487 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 488 489 return hpet_set_oneshot(evt, hdev->num); 490 } 491 492 static int hpet_msi_set_periodic(struct clock_event_device *evt) 493 { 494 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 495 496 return hpet_set_periodic(evt, hdev->num); 497 } 498 499 static int hpet_msi_resume(struct clock_event_device *evt) 500 { 501 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 502 struct irq_data *data = irq_get_irq_data(hdev->irq); 503 struct msi_msg msg; 504 505 /* Restore the MSI msg and unmask the interrupt */ 506 irq_chip_compose_msi_msg(data, &msg); 507 hpet_msi_write(hdev, &msg); 508 hpet_msi_unmask(data); 509 return 0; 510 } 511 512 static int hpet_msi_next_event(unsigned long delta, 513 struct clock_event_device *evt) 514 { 515 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 516 return hpet_next_event(delta, evt, hdev->num); 517 } 518 519 static irqreturn_t hpet_interrupt_handler(int irq, void *data) 520 { 521 struct hpet_dev *dev = (struct hpet_dev *)data; 522 struct clock_event_device *hevt = &dev->evt; 523 524 if (!hevt->event_handler) { 525 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", 526 dev->num); 527 return IRQ_HANDLED; 528 } 529 530 hevt->event_handler(hevt); 531 return IRQ_HANDLED; 532 } 533 534 static int hpet_setup_irq(struct hpet_dev *dev) 535 { 536 537 if (request_irq(dev->irq, hpet_interrupt_handler, 538 IRQF_TIMER | IRQF_NOBALANCING, 539 dev->name, dev)) 540 return -1; 541 542 disable_irq(dev->irq); 543 irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); 544 enable_irq(dev->irq); 545 546 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", 547 dev->name, dev->irq); 548 549 return 0; 550 } 551 552 /* This should be called in specific @cpu */ 553 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) 554 { 555 struct clock_event_device *evt = &hdev->evt; 556 557 WARN_ON(cpu != smp_processor_id()); 558 if (!(hdev->flags & HPET_DEV_VALID)) 559 return; 560 561 hdev->cpu = cpu; 562 per_cpu(cpu_hpet_dev, cpu) = hdev; 563 evt->name = hdev->name; 564 hpet_setup_irq(hdev); 565 evt->irq = hdev->irq; 566 567 evt->rating = 110; 568 evt->features = CLOCK_EVT_FEAT_ONESHOT; 569 if (hdev->flags & HPET_DEV_PERI_CAP) { 570 evt->features |= CLOCK_EVT_FEAT_PERIODIC; 571 evt->set_state_periodic = hpet_msi_set_periodic; 572 } 573 574 evt->set_state_shutdown = hpet_msi_shutdown; 575 evt->set_state_oneshot = hpet_msi_set_oneshot; 576 evt->tick_resume = hpet_msi_resume; 577 evt->set_next_event = hpet_msi_next_event; 578 evt->cpumask = cpumask_of(hdev->cpu); 579 580 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA, 581 0x7FFFFFFF); 582 } 583 584 #ifdef CONFIG_HPET 585 /* Reserve at least one timer for userspace (/dev/hpet) */ 586 #define RESERVE_TIMERS 1 587 #else 588 #define RESERVE_TIMERS 0 589 #endif 590 591 static void hpet_msi_capability_lookup(unsigned int start_timer) 592 { 593 unsigned int id; 594 unsigned int num_timers; 595 unsigned int num_timers_used = 0; 596 int i, irq; 597 598 if (hpet_msi_disable) 599 return; 600 601 if (boot_cpu_has(X86_FEATURE_ARAT)) 602 return; 603 id = hpet_readl(HPET_ID); 604 605 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); 606 num_timers++; /* Value read out starts from 0 */ 607 hpet_print_config(); 608 609 hpet_domain = hpet_create_irq_domain(hpet_blockid); 610 if (!hpet_domain) 611 return; 612 613 hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL); 614 if (!hpet_devs) 615 return; 616 617 hpet_num_timers = num_timers; 618 619 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { 620 struct hpet_dev *hdev = &hpet_devs[num_timers_used]; 621 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i)); 622 623 /* Only consider HPET timer with MSI support */ 624 if (!(cfg & HPET_TN_FSB_CAP)) 625 continue; 626 627 hdev->flags = 0; 628 if (cfg & HPET_TN_PERIODIC_CAP) 629 hdev->flags |= HPET_DEV_PERI_CAP; 630 sprintf(hdev->name, "hpet%d", i); 631 hdev->num = i; 632 633 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num); 634 if (irq <= 0) 635 continue; 636 637 hdev->irq = irq; 638 hdev->flags |= HPET_DEV_FSB_CAP; 639 hdev->flags |= HPET_DEV_VALID; 640 num_timers_used++; 641 if (num_timers_used == num_possible_cpus()) 642 break; 643 } 644 645 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", 646 num_timers, num_timers_used); 647 } 648 649 #ifdef CONFIG_HPET 650 static void hpet_reserve_msi_timers(struct hpet_data *hd) 651 { 652 int i; 653 654 if (!hpet_devs) 655 return; 656 657 for (i = 0; i < hpet_num_timers; i++) { 658 struct hpet_dev *hdev = &hpet_devs[i]; 659 660 if (!(hdev->flags & HPET_DEV_VALID)) 661 continue; 662 663 hd->hd_irq[hdev->num] = hdev->irq; 664 hpet_reserve_timer(hd, hdev->num); 665 } 666 } 667 #endif 668 669 static struct hpet_dev *hpet_get_unused_timer(void) 670 { 671 int i; 672 673 if (!hpet_devs) 674 return NULL; 675 676 for (i = 0; i < hpet_num_timers; i++) { 677 struct hpet_dev *hdev = &hpet_devs[i]; 678 679 if (!(hdev->flags & HPET_DEV_VALID)) 680 continue; 681 if (test_and_set_bit(HPET_DEV_USED_BIT, 682 (unsigned long *)&hdev->flags)) 683 continue; 684 return hdev; 685 } 686 return NULL; 687 } 688 689 struct hpet_work_struct { 690 struct delayed_work work; 691 struct completion complete; 692 }; 693 694 static void hpet_work(struct work_struct *w) 695 { 696 struct hpet_dev *hdev; 697 int cpu = smp_processor_id(); 698 struct hpet_work_struct *hpet_work; 699 700 hpet_work = container_of(w, struct hpet_work_struct, work.work); 701 702 hdev = hpet_get_unused_timer(); 703 if (hdev) 704 init_one_hpet_msi_clockevent(hdev, cpu); 705 706 complete(&hpet_work->complete); 707 } 708 709 static int hpet_cpuhp_online(unsigned int cpu) 710 { 711 struct hpet_work_struct work; 712 713 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work); 714 init_completion(&work.complete); 715 /* FIXME: add schedule_work_on() */ 716 schedule_delayed_work_on(cpu, &work.work, 0); 717 wait_for_completion(&work.complete); 718 destroy_delayed_work_on_stack(&work.work); 719 return 0; 720 } 721 722 static int hpet_cpuhp_dead(unsigned int cpu) 723 { 724 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); 725 726 if (!hdev) 727 return 0; 728 free_irq(hdev->irq, hdev); 729 hdev->flags &= ~HPET_DEV_USED; 730 per_cpu(cpu_hpet_dev, cpu) = NULL; 731 return 0; 732 } 733 #else 734 735 static void hpet_msi_capability_lookup(unsigned int start_timer) 736 { 737 return; 738 } 739 740 #ifdef CONFIG_HPET 741 static void hpet_reserve_msi_timers(struct hpet_data *hd) 742 { 743 return; 744 } 745 #endif 746 747 #define hpet_cpuhp_online NULL 748 #define hpet_cpuhp_dead NULL 749 750 #endif 751 752 /* 753 * Clock source related code 754 */ 755 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT) 756 /* 757 * Reading the HPET counter is a very slow operation. If a large number of 758 * CPUs are trying to access the HPET counter simultaneously, it can cause 759 * massive delay and slow down system performance dramatically. This may 760 * happen when HPET is the default clock source instead of TSC. For a 761 * really large system with hundreds of CPUs, the slowdown may be so 762 * severe that it may actually crash the system because of a NMI watchdog 763 * soft lockup, for example. 764 * 765 * If multiple CPUs are trying to access the HPET counter at the same time, 766 * we don't actually need to read the counter multiple times. Instead, the 767 * other CPUs can use the counter value read by the first CPU in the group. 768 * 769 * This special feature is only enabled on x86-64 systems. It is unlikely 770 * that 32-bit x86 systems will have enough CPUs to require this feature 771 * with its associated locking overhead. And we also need 64-bit atomic 772 * read. 773 * 774 * The lock and the hpet value are stored together and can be read in a 775 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t 776 * is 32 bits in size. 777 */ 778 union hpet_lock { 779 struct { 780 arch_spinlock_t lock; 781 u32 value; 782 }; 783 u64 lockval; 784 }; 785 786 static union hpet_lock hpet __cacheline_aligned = { 787 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, }, 788 }; 789 790 static u64 read_hpet(struct clocksource *cs) 791 { 792 unsigned long flags; 793 union hpet_lock old, new; 794 795 BUILD_BUG_ON(sizeof(union hpet_lock) != 8); 796 797 /* 798 * Read HPET directly if in NMI. 799 */ 800 if (in_nmi()) 801 return (u64)hpet_readl(HPET_COUNTER); 802 803 /* 804 * Read the current state of the lock and HPET value atomically. 805 */ 806 old.lockval = READ_ONCE(hpet.lockval); 807 808 if (arch_spin_is_locked(&old.lock)) 809 goto contended; 810 811 local_irq_save(flags); 812 if (arch_spin_trylock(&hpet.lock)) { 813 new.value = hpet_readl(HPET_COUNTER); 814 /* 815 * Use WRITE_ONCE() to prevent store tearing. 816 */ 817 WRITE_ONCE(hpet.value, new.value); 818 arch_spin_unlock(&hpet.lock); 819 local_irq_restore(flags); 820 return (u64)new.value; 821 } 822 local_irq_restore(flags); 823 824 contended: 825 /* 826 * Contended case 827 * -------------- 828 * Wait until the HPET value change or the lock is free to indicate 829 * its value is up-to-date. 830 * 831 * It is possible that old.value has already contained the latest 832 * HPET value while the lock holder was in the process of releasing 833 * the lock. Checking for lock state change will enable us to return 834 * the value immediately instead of waiting for the next HPET reader 835 * to come along. 836 */ 837 do { 838 cpu_relax(); 839 new.lockval = READ_ONCE(hpet.lockval); 840 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock)); 841 842 return (u64)new.value; 843 } 844 #else 845 /* 846 * For UP or 32-bit. 847 */ 848 static u64 read_hpet(struct clocksource *cs) 849 { 850 return (u64)hpet_readl(HPET_COUNTER); 851 } 852 #endif 853 854 static struct clocksource clocksource_hpet = { 855 .name = "hpet", 856 .rating = 250, 857 .read = read_hpet, 858 .mask = HPET_MASK, 859 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 860 .resume = hpet_resume_counter, 861 }; 862 863 static int hpet_clocksource_register(void) 864 { 865 u64 start, now; 866 u64 t1; 867 868 /* Start the counter */ 869 hpet_restart_counter(); 870 871 /* Verify whether hpet counter works */ 872 t1 = hpet_readl(HPET_COUNTER); 873 start = rdtsc(); 874 875 /* 876 * We don't know the TSC frequency yet, but waiting for 877 * 200000 TSC cycles is safe: 878 * 4 GHz == 50us 879 * 1 GHz == 200us 880 */ 881 do { 882 rep_nop(); 883 now = rdtsc(); 884 } while ((now - start) < 200000UL); 885 886 if (t1 == hpet_readl(HPET_COUNTER)) { 887 printk(KERN_WARNING 888 "HPET counter not counting. HPET disabled\n"); 889 return -ENODEV; 890 } 891 892 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); 893 return 0; 894 } 895 896 static u32 *hpet_boot_cfg; 897 898 /** 899 * hpet_enable - Try to setup the HPET timer. Returns 1 on success. 900 */ 901 int __init hpet_enable(void) 902 { 903 u32 hpet_period, cfg, id; 904 u64 freq; 905 unsigned int i, last; 906 907 if (!is_hpet_capable()) 908 return 0; 909 910 hpet_set_mapping(); 911 912 /* 913 * Read the period and check for a sane value: 914 */ 915 hpet_period = hpet_readl(HPET_PERIOD); 916 917 /* 918 * AMD SB700 based systems with spread spectrum enabled use a 919 * SMM based HPET emulation to provide proper frequency 920 * setting. The SMM code is initialized with the first HPET 921 * register access and takes some time to complete. During 922 * this time the config register reads 0xffffffff. We check 923 * for max. 1000 loops whether the config register reads a non 924 * 0xffffffff value to make sure that HPET is up and running 925 * before we go further. A counting loop is safe, as the HPET 926 * access takes thousands of CPU cycles. On non SB700 based 927 * machines this check is only done once and has no side 928 * effects. 929 */ 930 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { 931 if (i == 1000) { 932 printk(KERN_WARNING 933 "HPET config register value = 0xFFFFFFFF. " 934 "Disabling HPET\n"); 935 goto out_nohpet; 936 } 937 } 938 939 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) 940 goto out_nohpet; 941 942 /* 943 * The period is a femto seconds value. Convert it to a 944 * frequency. 945 */ 946 freq = FSEC_PER_SEC; 947 do_div(freq, hpet_period); 948 hpet_freq = freq; 949 950 /* 951 * Read the HPET ID register to retrieve the IRQ routing 952 * information and the number of channels 953 */ 954 id = hpet_readl(HPET_ID); 955 hpet_print_config(); 956 957 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; 958 959 #ifdef CONFIG_HPET_EMULATE_RTC 960 /* 961 * The legacy routing mode needs at least two channels, tick timer 962 * and the rtc emulation channel. 963 */ 964 if (!last) 965 goto out_nohpet; 966 #endif 967 968 cfg = hpet_readl(HPET_CFG); 969 hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg), 970 GFP_KERNEL); 971 if (hpet_boot_cfg) 972 *hpet_boot_cfg = cfg; 973 else 974 pr_warn("HPET initial state will not be saved\n"); 975 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); 976 hpet_writel(cfg, HPET_CFG); 977 if (cfg) 978 pr_warn("Unrecognized bits %#x set in global cfg\n", cfg); 979 980 for (i = 0; i <= last; ++i) { 981 cfg = hpet_readl(HPET_Tn_CFG(i)); 982 if (hpet_boot_cfg) 983 hpet_boot_cfg[i + 1] = cfg; 984 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB); 985 hpet_writel(cfg, HPET_Tn_CFG(i)); 986 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP 987 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE 988 | HPET_TN_FSB | HPET_TN_FSB_CAP); 989 if (cfg) 990 pr_warn("Unrecognized bits %#x set in cfg#%u\n", 991 cfg, i); 992 } 993 hpet_print_config(); 994 995 if (hpet_clocksource_register()) 996 goto out_nohpet; 997 998 if (id & HPET_ID_LEGSUP) { 999 hpet_legacy_clockevent_register(); 1000 return 1; 1001 } 1002 return 0; 1003 1004 out_nohpet: 1005 hpet_clear_mapping(); 1006 hpet_address = 0; 1007 return 0; 1008 } 1009 1010 /* 1011 * Needs to be late, as the reserve_timer code calls kalloc ! 1012 * 1013 * Not a problem on i386 as hpet_enable is called from late_time_init, 1014 * but on x86_64 it is necessary ! 1015 */ 1016 static __init int hpet_late_init(void) 1017 { 1018 int ret; 1019 1020 if (boot_hpet_disable) 1021 return -ENODEV; 1022 1023 if (!hpet_address) { 1024 if (!force_hpet_address) 1025 return -ENODEV; 1026 1027 hpet_address = force_hpet_address; 1028 hpet_enable(); 1029 } 1030 1031 if (!hpet_virt_address) 1032 return -ENODEV; 1033 1034 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP) 1035 hpet_msi_capability_lookup(2); 1036 else 1037 hpet_msi_capability_lookup(0); 1038 1039 hpet_reserve_platform_timers(hpet_readl(HPET_ID)); 1040 hpet_print_config(); 1041 1042 if (hpet_msi_disable) 1043 return 0; 1044 1045 if (boot_cpu_has(X86_FEATURE_ARAT)) 1046 return 0; 1047 1048 /* This notifier should be called after workqueue is ready */ 1049 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online", 1050 hpet_cpuhp_online, NULL); 1051 if (ret) 1052 return ret; 1053 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL, 1054 hpet_cpuhp_dead); 1055 if (ret) 1056 goto err_cpuhp; 1057 return 0; 1058 1059 err_cpuhp: 1060 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE); 1061 return ret; 1062 } 1063 fs_initcall(hpet_late_init); 1064 1065 void hpet_disable(void) 1066 { 1067 if (is_hpet_capable() && hpet_virt_address) { 1068 unsigned int cfg = hpet_readl(HPET_CFG), id, last; 1069 1070 if (hpet_boot_cfg) 1071 cfg = *hpet_boot_cfg; 1072 else if (hpet_legacy_int_enabled) { 1073 cfg &= ~HPET_CFG_LEGACY; 1074 hpet_legacy_int_enabled = false; 1075 } 1076 cfg &= ~HPET_CFG_ENABLE; 1077 hpet_writel(cfg, HPET_CFG); 1078 1079 if (!hpet_boot_cfg) 1080 return; 1081 1082 id = hpet_readl(HPET_ID); 1083 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); 1084 1085 for (id = 0; id <= last; ++id) 1086 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id)); 1087 1088 if (*hpet_boot_cfg & HPET_CFG_ENABLE) 1089 hpet_writel(*hpet_boot_cfg, HPET_CFG); 1090 } 1091 } 1092 1093 #ifdef CONFIG_HPET_EMULATE_RTC 1094 1095 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET 1096 * is enabled, we support RTC interrupt functionality in software. 1097 * RTC has 3 kinds of interrupts: 1098 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock 1099 * is updated 1100 * 2) Alarm Interrupt - generate an interrupt at a specific time of day 1101 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies 1102 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) 1103 * (1) and (2) above are implemented using polling at a frequency of 1104 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt 1105 * overhead. (DEFAULT_RTC_INT_FREQ) 1106 * For (3), we use interrupts at 64Hz or user specified periodic 1107 * frequency, whichever is higher. 1108 */ 1109 #include <linux/mc146818rtc.h> 1110 #include <linux/rtc.h> 1111 1112 #define DEFAULT_RTC_INT_FREQ 64 1113 #define DEFAULT_RTC_SHIFT 6 1114 #define RTC_NUM_INTS 1 1115 1116 static unsigned long hpet_rtc_flags; 1117 static int hpet_prev_update_sec; 1118 static struct rtc_time hpet_alarm_time; 1119 static unsigned long hpet_pie_count; 1120 static u32 hpet_t1_cmp; 1121 static u32 hpet_default_delta; 1122 static u32 hpet_pie_delta; 1123 static unsigned long hpet_pie_limit; 1124 1125 static rtc_irq_handler irq_handler; 1126 1127 /* 1128 * Check that the hpet counter c1 is ahead of the c2 1129 */ 1130 static inline int hpet_cnt_ahead(u32 c1, u32 c2) 1131 { 1132 return (s32)(c2 - c1) < 0; 1133 } 1134 1135 /* 1136 * Registers a IRQ handler. 1137 */ 1138 int hpet_register_irq_handler(rtc_irq_handler handler) 1139 { 1140 if (!is_hpet_enabled()) 1141 return -ENODEV; 1142 if (irq_handler) 1143 return -EBUSY; 1144 1145 irq_handler = handler; 1146 1147 return 0; 1148 } 1149 EXPORT_SYMBOL_GPL(hpet_register_irq_handler); 1150 1151 /* 1152 * Deregisters the IRQ handler registered with hpet_register_irq_handler() 1153 * and does cleanup. 1154 */ 1155 void hpet_unregister_irq_handler(rtc_irq_handler handler) 1156 { 1157 if (!is_hpet_enabled()) 1158 return; 1159 1160 irq_handler = NULL; 1161 hpet_rtc_flags = 0; 1162 } 1163 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); 1164 1165 /* 1166 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode 1167 * is not supported by all HPET implementations for timer 1. 1168 * 1169 * hpet_rtc_timer_init() is called when the rtc is initialized. 1170 */ 1171 int hpet_rtc_timer_init(void) 1172 { 1173 unsigned int cfg, cnt, delta; 1174 unsigned long flags; 1175 1176 if (!is_hpet_enabled()) 1177 return 0; 1178 1179 if (!hpet_default_delta) { 1180 uint64_t clc; 1181 1182 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; 1183 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; 1184 hpet_default_delta = clc; 1185 } 1186 1187 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) 1188 delta = hpet_default_delta; 1189 else 1190 delta = hpet_pie_delta; 1191 1192 local_irq_save(flags); 1193 1194 cnt = delta + hpet_readl(HPET_COUNTER); 1195 hpet_writel(cnt, HPET_T1_CMP); 1196 hpet_t1_cmp = cnt; 1197 1198 cfg = hpet_readl(HPET_T1_CFG); 1199 cfg &= ~HPET_TN_PERIODIC; 1200 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; 1201 hpet_writel(cfg, HPET_T1_CFG); 1202 1203 local_irq_restore(flags); 1204 1205 return 1; 1206 } 1207 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); 1208 1209 static void hpet_disable_rtc_channel(void) 1210 { 1211 u32 cfg = hpet_readl(HPET_T1_CFG); 1212 cfg &= ~HPET_TN_ENABLE; 1213 hpet_writel(cfg, HPET_T1_CFG); 1214 } 1215 1216 /* 1217 * The functions below are called from rtc driver. 1218 * Return 0 if HPET is not being used. 1219 * Otherwise do the necessary changes and return 1. 1220 */ 1221 int hpet_mask_rtc_irq_bit(unsigned long bit_mask) 1222 { 1223 if (!is_hpet_enabled()) 1224 return 0; 1225 1226 hpet_rtc_flags &= ~bit_mask; 1227 if (unlikely(!hpet_rtc_flags)) 1228 hpet_disable_rtc_channel(); 1229 1230 return 1; 1231 } 1232 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); 1233 1234 int hpet_set_rtc_irq_bit(unsigned long bit_mask) 1235 { 1236 unsigned long oldbits = hpet_rtc_flags; 1237 1238 if (!is_hpet_enabled()) 1239 return 0; 1240 1241 hpet_rtc_flags |= bit_mask; 1242 1243 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) 1244 hpet_prev_update_sec = -1; 1245 1246 if (!oldbits) 1247 hpet_rtc_timer_init(); 1248 1249 return 1; 1250 } 1251 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); 1252 1253 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, 1254 unsigned char sec) 1255 { 1256 if (!is_hpet_enabled()) 1257 return 0; 1258 1259 hpet_alarm_time.tm_hour = hrs; 1260 hpet_alarm_time.tm_min = min; 1261 hpet_alarm_time.tm_sec = sec; 1262 1263 return 1; 1264 } 1265 EXPORT_SYMBOL_GPL(hpet_set_alarm_time); 1266 1267 int hpet_set_periodic_freq(unsigned long freq) 1268 { 1269 uint64_t clc; 1270 1271 if (!is_hpet_enabled()) 1272 return 0; 1273 1274 if (freq <= DEFAULT_RTC_INT_FREQ) 1275 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; 1276 else { 1277 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; 1278 do_div(clc, freq); 1279 clc >>= hpet_clockevent.shift; 1280 hpet_pie_delta = clc; 1281 hpet_pie_limit = 0; 1282 } 1283 return 1; 1284 } 1285 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); 1286 1287 int hpet_rtc_dropped_irq(void) 1288 { 1289 return is_hpet_enabled(); 1290 } 1291 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); 1292 1293 static void hpet_rtc_timer_reinit(void) 1294 { 1295 unsigned int delta; 1296 int lost_ints = -1; 1297 1298 if (unlikely(!hpet_rtc_flags)) 1299 hpet_disable_rtc_channel(); 1300 1301 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) 1302 delta = hpet_default_delta; 1303 else 1304 delta = hpet_pie_delta; 1305 1306 /* 1307 * Increment the comparator value until we are ahead of the 1308 * current count. 1309 */ 1310 do { 1311 hpet_t1_cmp += delta; 1312 hpet_writel(hpet_t1_cmp, HPET_T1_CMP); 1313 lost_ints++; 1314 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); 1315 1316 if (lost_ints) { 1317 if (hpet_rtc_flags & RTC_PIE) 1318 hpet_pie_count += lost_ints; 1319 if (printk_ratelimit()) 1320 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", 1321 lost_ints); 1322 } 1323 } 1324 1325 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) 1326 { 1327 struct rtc_time curr_time; 1328 unsigned long rtc_int_flag = 0; 1329 1330 hpet_rtc_timer_reinit(); 1331 memset(&curr_time, 0, sizeof(struct rtc_time)); 1332 1333 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) 1334 mc146818_get_time(&curr_time); 1335 1336 if (hpet_rtc_flags & RTC_UIE && 1337 curr_time.tm_sec != hpet_prev_update_sec) { 1338 if (hpet_prev_update_sec >= 0) 1339 rtc_int_flag = RTC_UF; 1340 hpet_prev_update_sec = curr_time.tm_sec; 1341 } 1342 1343 if (hpet_rtc_flags & RTC_PIE && 1344 ++hpet_pie_count >= hpet_pie_limit) { 1345 rtc_int_flag |= RTC_PF; 1346 hpet_pie_count = 0; 1347 } 1348 1349 if (hpet_rtc_flags & RTC_AIE && 1350 (curr_time.tm_sec == hpet_alarm_time.tm_sec) && 1351 (curr_time.tm_min == hpet_alarm_time.tm_min) && 1352 (curr_time.tm_hour == hpet_alarm_time.tm_hour)) 1353 rtc_int_flag |= RTC_AF; 1354 1355 if (rtc_int_flag) { 1356 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); 1357 if (irq_handler) 1358 irq_handler(rtc_int_flag, dev_id); 1359 } 1360 return IRQ_HANDLED; 1361 } 1362 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); 1363 #endif 1364