1 #include <linux/clocksource.h> 2 #include <linux/clockchips.h> 3 #include <linux/interrupt.h> 4 #include <linux/sysdev.h> 5 #include <linux/delay.h> 6 #include <linux/errno.h> 7 #include <linux/hpet.h> 8 #include <linux/init.h> 9 #include <linux/cpu.h> 10 #include <linux/pm.h> 11 #include <linux/io.h> 12 13 #include <asm/fixmap.h> 14 #include <asm/i8253.h> 15 #include <asm/hpet.h> 16 17 #define HPET_MASK CLOCKSOURCE_MASK(32) 18 #define HPET_SHIFT 22 19 20 /* FSEC = 10^-15 21 NSEC = 10^-9 */ 22 #define FSEC_PER_NSEC 1000000L 23 24 #define HPET_DEV_USED_BIT 2 25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT) 26 #define HPET_DEV_VALID 0x8 27 #define HPET_DEV_FSB_CAP 0x1000 28 #define HPET_DEV_PERI_CAP 0x2000 29 30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt) 31 32 /* 33 * HPET address is set in acpi/boot.c, when an ACPI entry exists 34 */ 35 unsigned long hpet_address; 36 #ifdef CONFIG_PCI_MSI 37 static unsigned long hpet_num_timers; 38 #endif 39 static void __iomem *hpet_virt_address; 40 41 struct hpet_dev { 42 struct clock_event_device evt; 43 unsigned int num; 44 int cpu; 45 unsigned int irq; 46 unsigned int flags; 47 char name[10]; 48 }; 49 50 unsigned long hpet_readl(unsigned long a) 51 { 52 return readl(hpet_virt_address + a); 53 } 54 55 static inline void hpet_writel(unsigned long d, unsigned long a) 56 { 57 writel(d, hpet_virt_address + a); 58 } 59 60 #ifdef CONFIG_X86_64 61 #include <asm/pgtable.h> 62 #endif 63 64 static inline void hpet_set_mapping(void) 65 { 66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); 67 #ifdef CONFIG_X86_64 68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); 69 #endif 70 } 71 72 static inline void hpet_clear_mapping(void) 73 { 74 iounmap(hpet_virt_address); 75 hpet_virt_address = NULL; 76 } 77 78 /* 79 * HPET command line enable / disable 80 */ 81 static int boot_hpet_disable; 82 int hpet_force_user; 83 static int hpet_verbose; 84 85 static int __init hpet_setup(char *str) 86 { 87 if (str) { 88 if (!strncmp("disable", str, 7)) 89 boot_hpet_disable = 1; 90 if (!strncmp("force", str, 5)) 91 hpet_force_user = 1; 92 if (!strncmp("verbose", str, 7)) 93 hpet_verbose = 1; 94 } 95 return 1; 96 } 97 __setup("hpet=", hpet_setup); 98 99 static int __init disable_hpet(char *str) 100 { 101 boot_hpet_disable = 1; 102 return 1; 103 } 104 __setup("nohpet", disable_hpet); 105 106 static inline int is_hpet_capable(void) 107 { 108 return !boot_hpet_disable && hpet_address; 109 } 110 111 /* 112 * HPET timer interrupt enable / disable 113 */ 114 static int hpet_legacy_int_enabled; 115 116 /** 117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled 118 */ 119 int is_hpet_enabled(void) 120 { 121 return is_hpet_capable() && hpet_legacy_int_enabled; 122 } 123 EXPORT_SYMBOL_GPL(is_hpet_enabled); 124 125 static void _hpet_print_config(const char *function, int line) 126 { 127 u32 i, timers, l, h; 128 printk(KERN_INFO "hpet: %s(%d):\n", function, line); 129 l = hpet_readl(HPET_ID); 130 h = hpet_readl(HPET_PERIOD); 131 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; 132 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); 133 l = hpet_readl(HPET_CFG); 134 h = hpet_readl(HPET_STATUS); 135 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); 136 l = hpet_readl(HPET_COUNTER); 137 h = hpet_readl(HPET_COUNTER+4); 138 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); 139 140 for (i = 0; i < timers; i++) { 141 l = hpet_readl(HPET_Tn_CFG(i)); 142 h = hpet_readl(HPET_Tn_CFG(i)+4); 143 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", 144 i, l, h); 145 l = hpet_readl(HPET_Tn_CMP(i)); 146 h = hpet_readl(HPET_Tn_CMP(i)+4); 147 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", 148 i, l, h); 149 l = hpet_readl(HPET_Tn_ROUTE(i)); 150 h = hpet_readl(HPET_Tn_ROUTE(i)+4); 151 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", 152 i, l, h); 153 } 154 } 155 156 #define hpet_print_config() \ 157 do { \ 158 if (hpet_verbose) \ 159 _hpet_print_config(__FUNCTION__, __LINE__); \ 160 } while (0) 161 162 /* 163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve 164 * timer 0 and timer 1 in case of RTC emulation. 165 */ 166 #ifdef CONFIG_HPET 167 168 static void hpet_reserve_msi_timers(struct hpet_data *hd); 169 170 static void hpet_reserve_platform_timers(unsigned long id) 171 { 172 struct hpet __iomem *hpet = hpet_virt_address; 173 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; 174 unsigned int nrtimers, i; 175 struct hpet_data hd; 176 177 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; 178 179 memset(&hd, 0, sizeof(hd)); 180 hd.hd_phys_address = hpet_address; 181 hd.hd_address = hpet; 182 hd.hd_nirqs = nrtimers; 183 hpet_reserve_timer(&hd, 0); 184 185 #ifdef CONFIG_HPET_EMULATE_RTC 186 hpet_reserve_timer(&hd, 1); 187 #endif 188 189 /* 190 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 191 * is wrong for i8259!) not the output IRQ. Many BIOS writers 192 * don't bother configuring *any* comparator interrupts. 193 */ 194 hd.hd_irq[0] = HPET_LEGACY_8254; 195 hd.hd_irq[1] = HPET_LEGACY_RTC; 196 197 for (i = 2; i < nrtimers; timer++, i++) { 198 hd.hd_irq[i] = (readl(&timer->hpet_config) & 199 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; 200 } 201 202 hpet_reserve_msi_timers(&hd); 203 204 hpet_alloc(&hd); 205 206 } 207 #else 208 static void hpet_reserve_platform_timers(unsigned long id) { } 209 #endif 210 211 /* 212 * Common hpet info 213 */ 214 static unsigned long hpet_period; 215 216 static void hpet_legacy_set_mode(enum clock_event_mode mode, 217 struct clock_event_device *evt); 218 static int hpet_legacy_next_event(unsigned long delta, 219 struct clock_event_device *evt); 220 221 /* 222 * The hpet clock event device 223 */ 224 static struct clock_event_device hpet_clockevent = { 225 .name = "hpet", 226 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, 227 .set_mode = hpet_legacy_set_mode, 228 .set_next_event = hpet_legacy_next_event, 229 .shift = 32, 230 .irq = 0, 231 .rating = 50, 232 }; 233 234 static void hpet_stop_counter(void) 235 { 236 unsigned long cfg = hpet_readl(HPET_CFG); 237 cfg &= ~HPET_CFG_ENABLE; 238 hpet_writel(cfg, HPET_CFG); 239 hpet_writel(0, HPET_COUNTER); 240 hpet_writel(0, HPET_COUNTER + 4); 241 } 242 243 static void hpet_start_counter(void) 244 { 245 unsigned long cfg = hpet_readl(HPET_CFG); 246 cfg |= HPET_CFG_ENABLE; 247 hpet_writel(cfg, HPET_CFG); 248 } 249 250 static void hpet_restart_counter(void) 251 { 252 hpet_stop_counter(); 253 hpet_start_counter(); 254 } 255 256 static void hpet_resume_device(void) 257 { 258 force_hpet_resume(); 259 } 260 261 static void hpet_resume_counter(void) 262 { 263 hpet_resume_device(); 264 hpet_restart_counter(); 265 } 266 267 static void hpet_enable_legacy_int(void) 268 { 269 unsigned long cfg = hpet_readl(HPET_CFG); 270 271 cfg |= HPET_CFG_LEGACY; 272 hpet_writel(cfg, HPET_CFG); 273 hpet_legacy_int_enabled = 1; 274 } 275 276 static void hpet_legacy_clockevent_register(void) 277 { 278 /* Start HPET legacy interrupts */ 279 hpet_enable_legacy_int(); 280 281 /* 282 * The mult factor is defined as (include/linux/clockchips.h) 283 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h) 284 * hpet_period is in units of femtoseconds (per cycle), so 285 * mult/2^shift = cyc/ns = 10^6/hpet_period 286 * mult = (10^6 * 2^shift)/hpet_period 287 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period 288 */ 289 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC, 290 hpet_period, hpet_clockevent.shift); 291 /* Calculate the min / max delta */ 292 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, 293 &hpet_clockevent); 294 /* 5 usec minimum reprogramming delta. */ 295 hpet_clockevent.min_delta_ns = 5000; 296 297 /* 298 * Start hpet with the boot cpu mask and make it 299 * global after the IO_APIC has been initialized. 300 */ 301 hpet_clockevent.cpumask = cpumask_of(smp_processor_id()); 302 clockevents_register_device(&hpet_clockevent); 303 global_clock_event = &hpet_clockevent; 304 printk(KERN_DEBUG "hpet clockevent registered\n"); 305 } 306 307 static int hpet_setup_msi_irq(unsigned int irq); 308 309 static void hpet_set_mode(enum clock_event_mode mode, 310 struct clock_event_device *evt, int timer) 311 { 312 unsigned long cfg; 313 uint64_t delta; 314 315 switch (mode) { 316 case CLOCK_EVT_MODE_PERIODIC: 317 hpet_stop_counter(); 318 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult; 319 delta >>= evt->shift; 320 cfg = hpet_readl(HPET_Tn_CFG(timer)); 321 /* Make sure we use edge triggered interrupts */ 322 cfg &= ~HPET_TN_LEVEL; 323 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | 324 HPET_TN_SETVAL | HPET_TN_32BIT; 325 hpet_writel(cfg, HPET_Tn_CFG(timer)); 326 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer)); 327 hpet_start_counter(); 328 hpet_print_config(); 329 break; 330 331 case CLOCK_EVT_MODE_ONESHOT: 332 cfg = hpet_readl(HPET_Tn_CFG(timer)); 333 cfg &= ~HPET_TN_PERIODIC; 334 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; 335 hpet_writel(cfg, HPET_Tn_CFG(timer)); 336 break; 337 338 case CLOCK_EVT_MODE_UNUSED: 339 case CLOCK_EVT_MODE_SHUTDOWN: 340 cfg = hpet_readl(HPET_Tn_CFG(timer)); 341 cfg &= ~HPET_TN_ENABLE; 342 hpet_writel(cfg, HPET_Tn_CFG(timer)); 343 break; 344 345 case CLOCK_EVT_MODE_RESUME: 346 if (timer == 0) { 347 hpet_enable_legacy_int(); 348 } else { 349 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 350 hpet_setup_msi_irq(hdev->irq); 351 disable_irq(hdev->irq); 352 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu)); 353 enable_irq(hdev->irq); 354 } 355 hpet_print_config(); 356 break; 357 } 358 } 359 360 static int hpet_next_event(unsigned long delta, 361 struct clock_event_device *evt, int timer) 362 { 363 u32 cnt; 364 365 cnt = hpet_readl(HPET_COUNTER); 366 cnt += (u32) delta; 367 hpet_writel(cnt, HPET_Tn_CMP(timer)); 368 369 /* 370 * We need to read back the CMP register to make sure that 371 * what we wrote hit the chip before we compare it to the 372 * counter. 373 */ 374 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt); 375 376 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0; 377 } 378 379 static void hpet_legacy_set_mode(enum clock_event_mode mode, 380 struct clock_event_device *evt) 381 { 382 hpet_set_mode(mode, evt, 0); 383 } 384 385 static int hpet_legacy_next_event(unsigned long delta, 386 struct clock_event_device *evt) 387 { 388 return hpet_next_event(delta, evt, 0); 389 } 390 391 /* 392 * HPET MSI Support 393 */ 394 #ifdef CONFIG_PCI_MSI 395 396 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); 397 static struct hpet_dev *hpet_devs; 398 399 void hpet_msi_unmask(unsigned int irq) 400 { 401 struct hpet_dev *hdev = get_irq_data(irq); 402 unsigned long cfg; 403 404 /* unmask it */ 405 cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); 406 cfg |= HPET_TN_FSB; 407 hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); 408 } 409 410 void hpet_msi_mask(unsigned int irq) 411 { 412 unsigned long cfg; 413 struct hpet_dev *hdev = get_irq_data(irq); 414 415 /* mask it */ 416 cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); 417 cfg &= ~HPET_TN_FSB; 418 hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); 419 } 420 421 void hpet_msi_write(unsigned int irq, struct msi_msg *msg) 422 { 423 struct hpet_dev *hdev = get_irq_data(irq); 424 425 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); 426 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); 427 } 428 429 void hpet_msi_read(unsigned int irq, struct msi_msg *msg) 430 { 431 struct hpet_dev *hdev = get_irq_data(irq); 432 433 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); 434 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); 435 msg->address_hi = 0; 436 } 437 438 static void hpet_msi_set_mode(enum clock_event_mode mode, 439 struct clock_event_device *evt) 440 { 441 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 442 hpet_set_mode(mode, evt, hdev->num); 443 } 444 445 static int hpet_msi_next_event(unsigned long delta, 446 struct clock_event_device *evt) 447 { 448 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); 449 return hpet_next_event(delta, evt, hdev->num); 450 } 451 452 static int hpet_setup_msi_irq(unsigned int irq) 453 { 454 if (arch_setup_hpet_msi(irq)) { 455 destroy_irq(irq); 456 return -EINVAL; 457 } 458 return 0; 459 } 460 461 static int hpet_assign_irq(struct hpet_dev *dev) 462 { 463 unsigned int irq; 464 465 irq = create_irq(); 466 if (!irq) 467 return -EINVAL; 468 469 set_irq_data(irq, dev); 470 471 if (hpet_setup_msi_irq(irq)) 472 return -EINVAL; 473 474 dev->irq = irq; 475 return 0; 476 } 477 478 static irqreturn_t hpet_interrupt_handler(int irq, void *data) 479 { 480 struct hpet_dev *dev = (struct hpet_dev *)data; 481 struct clock_event_device *hevt = &dev->evt; 482 483 if (!hevt->event_handler) { 484 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", 485 dev->num); 486 return IRQ_HANDLED; 487 } 488 489 hevt->event_handler(hevt); 490 return IRQ_HANDLED; 491 } 492 493 static int hpet_setup_irq(struct hpet_dev *dev) 494 { 495 496 if (request_irq(dev->irq, hpet_interrupt_handler, 497 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev)) 498 return -1; 499 500 disable_irq(dev->irq); 501 irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); 502 enable_irq(dev->irq); 503 504 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", 505 dev->name, dev->irq); 506 507 return 0; 508 } 509 510 /* This should be called in specific @cpu */ 511 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) 512 { 513 struct clock_event_device *evt = &hdev->evt; 514 uint64_t hpet_freq; 515 516 WARN_ON(cpu != smp_processor_id()); 517 if (!(hdev->flags & HPET_DEV_VALID)) 518 return; 519 520 if (hpet_setup_msi_irq(hdev->irq)) 521 return; 522 523 hdev->cpu = cpu; 524 per_cpu(cpu_hpet_dev, cpu) = hdev; 525 evt->name = hdev->name; 526 hpet_setup_irq(hdev); 527 evt->irq = hdev->irq; 528 529 evt->rating = 110; 530 evt->features = CLOCK_EVT_FEAT_ONESHOT; 531 if (hdev->flags & HPET_DEV_PERI_CAP) 532 evt->features |= CLOCK_EVT_FEAT_PERIODIC; 533 534 evt->set_mode = hpet_msi_set_mode; 535 evt->set_next_event = hpet_msi_next_event; 536 evt->shift = 32; 537 538 /* 539 * The period is a femto seconds value. We need to calculate the 540 * scaled math multiplication factor for nanosecond to hpet tick 541 * conversion. 542 */ 543 hpet_freq = 1000000000000000ULL; 544 do_div(hpet_freq, hpet_period); 545 evt->mult = div_sc((unsigned long) hpet_freq, 546 NSEC_PER_SEC, evt->shift); 547 /* Calculate the max delta */ 548 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt); 549 /* 5 usec minimum reprogramming delta. */ 550 evt->min_delta_ns = 5000; 551 552 evt->cpumask = cpumask_of(hdev->cpu); 553 clockevents_register_device(evt); 554 } 555 556 #ifdef CONFIG_HPET 557 /* Reserve at least one timer for userspace (/dev/hpet) */ 558 #define RESERVE_TIMERS 1 559 #else 560 #define RESERVE_TIMERS 0 561 #endif 562 563 static void hpet_msi_capability_lookup(unsigned int start_timer) 564 { 565 unsigned int id; 566 unsigned int num_timers; 567 unsigned int num_timers_used = 0; 568 int i; 569 570 id = hpet_readl(HPET_ID); 571 572 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); 573 num_timers++; /* Value read out starts from 0 */ 574 hpet_print_config(); 575 576 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL); 577 if (!hpet_devs) 578 return; 579 580 hpet_num_timers = num_timers; 581 582 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { 583 struct hpet_dev *hdev = &hpet_devs[num_timers_used]; 584 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i)); 585 586 /* Only consider HPET timer with MSI support */ 587 if (!(cfg & HPET_TN_FSB_CAP)) 588 continue; 589 590 hdev->flags = 0; 591 if (cfg & HPET_TN_PERIODIC_CAP) 592 hdev->flags |= HPET_DEV_PERI_CAP; 593 hdev->num = i; 594 595 sprintf(hdev->name, "hpet%d", i); 596 if (hpet_assign_irq(hdev)) 597 continue; 598 599 hdev->flags |= HPET_DEV_FSB_CAP; 600 hdev->flags |= HPET_DEV_VALID; 601 num_timers_used++; 602 if (num_timers_used == num_possible_cpus()) 603 break; 604 } 605 606 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", 607 num_timers, num_timers_used); 608 } 609 610 #ifdef CONFIG_HPET 611 static void hpet_reserve_msi_timers(struct hpet_data *hd) 612 { 613 int i; 614 615 if (!hpet_devs) 616 return; 617 618 for (i = 0; i < hpet_num_timers; i++) { 619 struct hpet_dev *hdev = &hpet_devs[i]; 620 621 if (!(hdev->flags & HPET_DEV_VALID)) 622 continue; 623 624 hd->hd_irq[hdev->num] = hdev->irq; 625 hpet_reserve_timer(hd, hdev->num); 626 } 627 } 628 #endif 629 630 static struct hpet_dev *hpet_get_unused_timer(void) 631 { 632 int i; 633 634 if (!hpet_devs) 635 return NULL; 636 637 for (i = 0; i < hpet_num_timers; i++) { 638 struct hpet_dev *hdev = &hpet_devs[i]; 639 640 if (!(hdev->flags & HPET_DEV_VALID)) 641 continue; 642 if (test_and_set_bit(HPET_DEV_USED_BIT, 643 (unsigned long *)&hdev->flags)) 644 continue; 645 return hdev; 646 } 647 return NULL; 648 } 649 650 struct hpet_work_struct { 651 struct delayed_work work; 652 struct completion complete; 653 }; 654 655 static void hpet_work(struct work_struct *w) 656 { 657 struct hpet_dev *hdev; 658 int cpu = smp_processor_id(); 659 struct hpet_work_struct *hpet_work; 660 661 hpet_work = container_of(w, struct hpet_work_struct, work.work); 662 663 hdev = hpet_get_unused_timer(); 664 if (hdev) 665 init_one_hpet_msi_clockevent(hdev, cpu); 666 667 complete(&hpet_work->complete); 668 } 669 670 static int hpet_cpuhp_notify(struct notifier_block *n, 671 unsigned long action, void *hcpu) 672 { 673 unsigned long cpu = (unsigned long)hcpu; 674 struct hpet_work_struct work; 675 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); 676 677 switch (action & 0xf) { 678 case CPU_ONLINE: 679 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work); 680 init_completion(&work.complete); 681 /* FIXME: add schedule_work_on() */ 682 schedule_delayed_work_on(cpu, &work.work, 0); 683 wait_for_completion(&work.complete); 684 destroy_timer_on_stack(&work.work.timer); 685 break; 686 case CPU_DEAD: 687 if (hdev) { 688 free_irq(hdev->irq, hdev); 689 hdev->flags &= ~HPET_DEV_USED; 690 per_cpu(cpu_hpet_dev, cpu) = NULL; 691 } 692 break; 693 } 694 return NOTIFY_OK; 695 } 696 #else 697 698 static int hpet_setup_msi_irq(unsigned int irq) 699 { 700 return 0; 701 } 702 static void hpet_msi_capability_lookup(unsigned int start_timer) 703 { 704 return; 705 } 706 707 #ifdef CONFIG_HPET 708 static void hpet_reserve_msi_timers(struct hpet_data *hd) 709 { 710 return; 711 } 712 #endif 713 714 static int hpet_cpuhp_notify(struct notifier_block *n, 715 unsigned long action, void *hcpu) 716 { 717 return NOTIFY_OK; 718 } 719 720 #endif 721 722 /* 723 * Clock source related code 724 */ 725 static cycle_t read_hpet(void) 726 { 727 return (cycle_t)hpet_readl(HPET_COUNTER); 728 } 729 730 #ifdef CONFIG_X86_64 731 static cycle_t __vsyscall_fn vread_hpet(void) 732 { 733 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); 734 } 735 #endif 736 737 static struct clocksource clocksource_hpet = { 738 .name = "hpet", 739 .rating = 250, 740 .read = read_hpet, 741 .mask = HPET_MASK, 742 .shift = HPET_SHIFT, 743 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 744 .resume = hpet_resume_counter, 745 #ifdef CONFIG_X86_64 746 .vread = vread_hpet, 747 #endif 748 }; 749 750 static int hpet_clocksource_register(void) 751 { 752 u64 start, now; 753 cycle_t t1; 754 755 /* Start the counter */ 756 hpet_restart_counter(); 757 758 /* Verify whether hpet counter works */ 759 t1 = read_hpet(); 760 rdtscll(start); 761 762 /* 763 * We don't know the TSC frequency yet, but waiting for 764 * 200000 TSC cycles is safe: 765 * 4 GHz == 50us 766 * 1 GHz == 200us 767 */ 768 do { 769 rep_nop(); 770 rdtscll(now); 771 } while ((now - start) < 200000UL); 772 773 if (t1 == read_hpet()) { 774 printk(KERN_WARNING 775 "HPET counter not counting. HPET disabled\n"); 776 return -ENODEV; 777 } 778 779 /* 780 * The definition of mult is (include/linux/clocksource.h) 781 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc 782 * so we first need to convert hpet_period to ns/cyc units: 783 * mult/2^shift = ns/cyc = hpet_period/10^6 784 * mult = (hpet_period * 2^shift)/10^6 785 * mult = (hpet_period << shift)/FSEC_PER_NSEC 786 */ 787 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT); 788 789 clocksource_register(&clocksource_hpet); 790 791 return 0; 792 } 793 794 /** 795 * hpet_enable - Try to setup the HPET timer. Returns 1 on success. 796 */ 797 int __init hpet_enable(void) 798 { 799 unsigned long id; 800 int i; 801 802 if (!is_hpet_capable()) 803 return 0; 804 805 hpet_set_mapping(); 806 807 /* 808 * Read the period and check for a sane value: 809 */ 810 hpet_period = hpet_readl(HPET_PERIOD); 811 812 /* 813 * AMD SB700 based systems with spread spectrum enabled use a 814 * SMM based HPET emulation to provide proper frequency 815 * setting. The SMM code is initialized with the first HPET 816 * register access and takes some time to complete. During 817 * this time the config register reads 0xffffffff. We check 818 * for max. 1000 loops whether the config register reads a non 819 * 0xffffffff value to make sure that HPET is up and running 820 * before we go further. A counting loop is safe, as the HPET 821 * access takes thousands of CPU cycles. On non SB700 based 822 * machines this check is only done once and has no side 823 * effects. 824 */ 825 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { 826 if (i == 1000) { 827 printk(KERN_WARNING 828 "HPET config register value = 0xFFFFFFFF. " 829 "Disabling HPET\n"); 830 goto out_nohpet; 831 } 832 } 833 834 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) 835 goto out_nohpet; 836 837 /* 838 * Read the HPET ID register to retrieve the IRQ routing 839 * information and the number of channels 840 */ 841 id = hpet_readl(HPET_ID); 842 hpet_print_config(); 843 844 #ifdef CONFIG_HPET_EMULATE_RTC 845 /* 846 * The legacy routing mode needs at least two channels, tick timer 847 * and the rtc emulation channel. 848 */ 849 if (!(id & HPET_ID_NUMBER)) 850 goto out_nohpet; 851 #endif 852 853 if (hpet_clocksource_register()) 854 goto out_nohpet; 855 856 if (id & HPET_ID_LEGSUP) { 857 hpet_legacy_clockevent_register(); 858 hpet_msi_capability_lookup(2); 859 return 1; 860 } 861 hpet_msi_capability_lookup(0); 862 return 0; 863 864 out_nohpet: 865 hpet_clear_mapping(); 866 hpet_address = 0; 867 return 0; 868 } 869 870 /* 871 * Needs to be late, as the reserve_timer code calls kalloc ! 872 * 873 * Not a problem on i386 as hpet_enable is called from late_time_init, 874 * but on x86_64 it is necessary ! 875 */ 876 static __init int hpet_late_init(void) 877 { 878 int cpu; 879 880 if (boot_hpet_disable) 881 return -ENODEV; 882 883 if (!hpet_address) { 884 if (!force_hpet_address) 885 return -ENODEV; 886 887 hpet_address = force_hpet_address; 888 hpet_enable(); 889 } 890 891 if (!hpet_virt_address) 892 return -ENODEV; 893 894 hpet_reserve_platform_timers(hpet_readl(HPET_ID)); 895 hpet_print_config(); 896 897 for_each_online_cpu(cpu) { 898 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu); 899 } 900 901 /* This notifier should be called after workqueue is ready */ 902 hotcpu_notifier(hpet_cpuhp_notify, -20); 903 904 return 0; 905 } 906 fs_initcall(hpet_late_init); 907 908 void hpet_disable(void) 909 { 910 if (is_hpet_capable()) { 911 unsigned long cfg = hpet_readl(HPET_CFG); 912 913 if (hpet_legacy_int_enabled) { 914 cfg &= ~HPET_CFG_LEGACY; 915 hpet_legacy_int_enabled = 0; 916 } 917 cfg &= ~HPET_CFG_ENABLE; 918 hpet_writel(cfg, HPET_CFG); 919 } 920 } 921 922 #ifdef CONFIG_HPET_EMULATE_RTC 923 924 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET 925 * is enabled, we support RTC interrupt functionality in software. 926 * RTC has 3 kinds of interrupts: 927 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock 928 * is updated 929 * 2) Alarm Interrupt - generate an interrupt at a specific time of day 930 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies 931 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) 932 * (1) and (2) above are implemented using polling at a frequency of 933 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt 934 * overhead. (DEFAULT_RTC_INT_FREQ) 935 * For (3), we use interrupts at 64Hz or user specified periodic 936 * frequency, whichever is higher. 937 */ 938 #include <linux/mc146818rtc.h> 939 #include <linux/rtc.h> 940 #include <asm/rtc.h> 941 942 #define DEFAULT_RTC_INT_FREQ 64 943 #define DEFAULT_RTC_SHIFT 6 944 #define RTC_NUM_INTS 1 945 946 static unsigned long hpet_rtc_flags; 947 static int hpet_prev_update_sec; 948 static struct rtc_time hpet_alarm_time; 949 static unsigned long hpet_pie_count; 950 static u32 hpet_t1_cmp; 951 static unsigned long hpet_default_delta; 952 static unsigned long hpet_pie_delta; 953 static unsigned long hpet_pie_limit; 954 955 static rtc_irq_handler irq_handler; 956 957 /* 958 * Check that the hpet counter c1 is ahead of the c2 959 */ 960 static inline int hpet_cnt_ahead(u32 c1, u32 c2) 961 { 962 return (s32)(c2 - c1) < 0; 963 } 964 965 /* 966 * Registers a IRQ handler. 967 */ 968 int hpet_register_irq_handler(rtc_irq_handler handler) 969 { 970 if (!is_hpet_enabled()) 971 return -ENODEV; 972 if (irq_handler) 973 return -EBUSY; 974 975 irq_handler = handler; 976 977 return 0; 978 } 979 EXPORT_SYMBOL_GPL(hpet_register_irq_handler); 980 981 /* 982 * Deregisters the IRQ handler registered with hpet_register_irq_handler() 983 * and does cleanup. 984 */ 985 void hpet_unregister_irq_handler(rtc_irq_handler handler) 986 { 987 if (!is_hpet_enabled()) 988 return; 989 990 irq_handler = NULL; 991 hpet_rtc_flags = 0; 992 } 993 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); 994 995 /* 996 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode 997 * is not supported by all HPET implementations for timer 1. 998 * 999 * hpet_rtc_timer_init() is called when the rtc is initialized. 1000 */ 1001 int hpet_rtc_timer_init(void) 1002 { 1003 unsigned long cfg, cnt, delta, flags; 1004 1005 if (!is_hpet_enabled()) 1006 return 0; 1007 1008 if (!hpet_default_delta) { 1009 uint64_t clc; 1010 1011 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; 1012 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; 1013 hpet_default_delta = (unsigned long) clc; 1014 } 1015 1016 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) 1017 delta = hpet_default_delta; 1018 else 1019 delta = hpet_pie_delta; 1020 1021 local_irq_save(flags); 1022 1023 cnt = delta + hpet_readl(HPET_COUNTER); 1024 hpet_writel(cnt, HPET_T1_CMP); 1025 hpet_t1_cmp = cnt; 1026 1027 cfg = hpet_readl(HPET_T1_CFG); 1028 cfg &= ~HPET_TN_PERIODIC; 1029 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; 1030 hpet_writel(cfg, HPET_T1_CFG); 1031 1032 local_irq_restore(flags); 1033 1034 return 1; 1035 } 1036 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); 1037 1038 /* 1039 * The functions below are called from rtc driver. 1040 * Return 0 if HPET is not being used. 1041 * Otherwise do the necessary changes and return 1. 1042 */ 1043 int hpet_mask_rtc_irq_bit(unsigned long bit_mask) 1044 { 1045 if (!is_hpet_enabled()) 1046 return 0; 1047 1048 hpet_rtc_flags &= ~bit_mask; 1049 return 1; 1050 } 1051 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); 1052 1053 int hpet_set_rtc_irq_bit(unsigned long bit_mask) 1054 { 1055 unsigned long oldbits = hpet_rtc_flags; 1056 1057 if (!is_hpet_enabled()) 1058 return 0; 1059 1060 hpet_rtc_flags |= bit_mask; 1061 1062 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) 1063 hpet_prev_update_sec = -1; 1064 1065 if (!oldbits) 1066 hpet_rtc_timer_init(); 1067 1068 return 1; 1069 } 1070 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); 1071 1072 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, 1073 unsigned char sec) 1074 { 1075 if (!is_hpet_enabled()) 1076 return 0; 1077 1078 hpet_alarm_time.tm_hour = hrs; 1079 hpet_alarm_time.tm_min = min; 1080 hpet_alarm_time.tm_sec = sec; 1081 1082 return 1; 1083 } 1084 EXPORT_SYMBOL_GPL(hpet_set_alarm_time); 1085 1086 int hpet_set_periodic_freq(unsigned long freq) 1087 { 1088 uint64_t clc; 1089 1090 if (!is_hpet_enabled()) 1091 return 0; 1092 1093 if (freq <= DEFAULT_RTC_INT_FREQ) 1094 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; 1095 else { 1096 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; 1097 do_div(clc, freq); 1098 clc >>= hpet_clockevent.shift; 1099 hpet_pie_delta = (unsigned long) clc; 1100 } 1101 return 1; 1102 } 1103 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); 1104 1105 int hpet_rtc_dropped_irq(void) 1106 { 1107 return is_hpet_enabled(); 1108 } 1109 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); 1110 1111 static void hpet_rtc_timer_reinit(void) 1112 { 1113 unsigned long cfg, delta; 1114 int lost_ints = -1; 1115 1116 if (unlikely(!hpet_rtc_flags)) { 1117 cfg = hpet_readl(HPET_T1_CFG); 1118 cfg &= ~HPET_TN_ENABLE; 1119 hpet_writel(cfg, HPET_T1_CFG); 1120 return; 1121 } 1122 1123 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) 1124 delta = hpet_default_delta; 1125 else 1126 delta = hpet_pie_delta; 1127 1128 /* 1129 * Increment the comparator value until we are ahead of the 1130 * current count. 1131 */ 1132 do { 1133 hpet_t1_cmp += delta; 1134 hpet_writel(hpet_t1_cmp, HPET_T1_CMP); 1135 lost_ints++; 1136 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); 1137 1138 if (lost_ints) { 1139 if (hpet_rtc_flags & RTC_PIE) 1140 hpet_pie_count += lost_ints; 1141 if (printk_ratelimit()) 1142 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", 1143 lost_ints); 1144 } 1145 } 1146 1147 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) 1148 { 1149 struct rtc_time curr_time; 1150 unsigned long rtc_int_flag = 0; 1151 1152 hpet_rtc_timer_reinit(); 1153 memset(&curr_time, 0, sizeof(struct rtc_time)); 1154 1155 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) 1156 get_rtc_time(&curr_time); 1157 1158 if (hpet_rtc_flags & RTC_UIE && 1159 curr_time.tm_sec != hpet_prev_update_sec) { 1160 if (hpet_prev_update_sec >= 0) 1161 rtc_int_flag = RTC_UF; 1162 hpet_prev_update_sec = curr_time.tm_sec; 1163 } 1164 1165 if (hpet_rtc_flags & RTC_PIE && 1166 ++hpet_pie_count >= hpet_pie_limit) { 1167 rtc_int_flag |= RTC_PF; 1168 hpet_pie_count = 0; 1169 } 1170 1171 if (hpet_rtc_flags & RTC_AIE && 1172 (curr_time.tm_sec == hpet_alarm_time.tm_sec) && 1173 (curr_time.tm_min == hpet_alarm_time.tm_min) && 1174 (curr_time.tm_hour == hpet_alarm_time.tm_hour)) 1175 rtc_int_flag |= RTC_AF; 1176 1177 if (rtc_int_flag) { 1178 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); 1179 if (irq_handler) 1180 irq_handler(rtc_int_flag, dev_id); 1181 } 1182 return IRQ_HANDLED; 1183 } 1184 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); 1185 #endif 1186