xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision b627b4ed)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12 
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16 
17 #define HPET_MASK			CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT			22
19 
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC			1000000L
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31 
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long				hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long			hpet_num_timers;
38 #endif
39 static void __iomem			*hpet_virt_address;
40 
41 struct hpet_dev {
42 	struct clock_event_device	evt;
43 	unsigned int			num;
44 	int				cpu;
45 	unsigned int			irq;
46 	unsigned int			flags;
47 	char				name[10];
48 };
49 
50 unsigned long hpet_readl(unsigned long a)
51 {
52 	return readl(hpet_virt_address + a);
53 }
54 
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57 	writel(d, hpet_virt_address + a);
58 }
59 
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63 
64 static inline void hpet_set_mapping(void)
65 {
66 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71 
72 static inline void hpet_clear_mapping(void)
73 {
74 	iounmap(hpet_virt_address);
75 	hpet_virt_address = NULL;
76 }
77 
78 /*
79  * HPET command line enable / disable
80  */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83 static int hpet_verbose;
84 
85 static int __init hpet_setup(char *str)
86 {
87 	if (str) {
88 		if (!strncmp("disable", str, 7))
89 			boot_hpet_disable = 1;
90 		if (!strncmp("force", str, 5))
91 			hpet_force_user = 1;
92 		if (!strncmp("verbose", str, 7))
93 			hpet_verbose = 1;
94 	}
95 	return 1;
96 }
97 __setup("hpet=", hpet_setup);
98 
99 static int __init disable_hpet(char *str)
100 {
101 	boot_hpet_disable = 1;
102 	return 1;
103 }
104 __setup("nohpet", disable_hpet);
105 
106 static inline int is_hpet_capable(void)
107 {
108 	return !boot_hpet_disable && hpet_address;
109 }
110 
111 /*
112  * HPET timer interrupt enable / disable
113  */
114 static int hpet_legacy_int_enabled;
115 
116 /**
117  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118  */
119 int is_hpet_enabled(void)
120 {
121 	return is_hpet_capable() && hpet_legacy_int_enabled;
122 }
123 EXPORT_SYMBOL_GPL(is_hpet_enabled);
124 
125 static void _hpet_print_config(const char *function, int line)
126 {
127 	u32 i, timers, l, h;
128 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129 	l = hpet_readl(HPET_ID);
130 	h = hpet_readl(HPET_PERIOD);
131 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133 	l = hpet_readl(HPET_CFG);
134 	h = hpet_readl(HPET_STATUS);
135 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136 	l = hpet_readl(HPET_COUNTER);
137 	h = hpet_readl(HPET_COUNTER+4);
138 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139 
140 	for (i = 0; i < timers; i++) {
141 		l = hpet_readl(HPET_Tn_CFG(i));
142 		h = hpet_readl(HPET_Tn_CFG(i)+4);
143 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144 		       i, l, h);
145 		l = hpet_readl(HPET_Tn_CMP(i));
146 		h = hpet_readl(HPET_Tn_CMP(i)+4);
147 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148 		       i, l, h);
149 		l = hpet_readl(HPET_Tn_ROUTE(i));
150 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152 		       i, l, h);
153 	}
154 }
155 
156 #define hpet_print_config()					\
157 do {								\
158 	if (hpet_verbose)					\
159 		_hpet_print_config(__FUNCTION__, __LINE__);	\
160 } while (0)
161 
162 /*
163  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164  * timer 0 and timer 1 in case of RTC emulation.
165  */
166 #ifdef CONFIG_HPET
167 
168 static void hpet_reserve_msi_timers(struct hpet_data *hd);
169 
170 static void hpet_reserve_platform_timers(unsigned long id)
171 {
172 	struct hpet __iomem *hpet = hpet_virt_address;
173 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174 	unsigned int nrtimers, i;
175 	struct hpet_data hd;
176 
177 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178 
179 	memset(&hd, 0, sizeof(hd));
180 	hd.hd_phys_address	= hpet_address;
181 	hd.hd_address		= hpet;
182 	hd.hd_nirqs		= nrtimers;
183 	hpet_reserve_timer(&hd, 0);
184 
185 #ifdef CONFIG_HPET_EMULATE_RTC
186 	hpet_reserve_timer(&hd, 1);
187 #endif
188 
189 	/*
190 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
192 	 * don't bother configuring *any* comparator interrupts.
193 	 */
194 	hd.hd_irq[0] = HPET_LEGACY_8254;
195 	hd.hd_irq[1] = HPET_LEGACY_RTC;
196 
197 	for (i = 2; i < nrtimers; timer++, i++) {
198 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
199 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
200 	}
201 
202 	hpet_reserve_msi_timers(&hd);
203 
204 	hpet_alloc(&hd);
205 
206 }
207 #else
208 static void hpet_reserve_platform_timers(unsigned long id) { }
209 #endif
210 
211 /*
212  * Common hpet info
213  */
214 static unsigned long hpet_period;
215 
216 static void hpet_legacy_set_mode(enum clock_event_mode mode,
217 			  struct clock_event_device *evt);
218 static int hpet_legacy_next_event(unsigned long delta,
219 			   struct clock_event_device *evt);
220 
221 /*
222  * The hpet clock event device
223  */
224 static struct clock_event_device hpet_clockevent = {
225 	.name		= "hpet",
226 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
227 	.set_mode	= hpet_legacy_set_mode,
228 	.set_next_event = hpet_legacy_next_event,
229 	.shift		= 32,
230 	.irq		= 0,
231 	.rating		= 50,
232 };
233 
234 static void hpet_stop_counter(void)
235 {
236 	unsigned long cfg = hpet_readl(HPET_CFG);
237 	cfg &= ~HPET_CFG_ENABLE;
238 	hpet_writel(cfg, HPET_CFG);
239 	hpet_writel(0, HPET_COUNTER);
240 	hpet_writel(0, HPET_COUNTER + 4);
241 }
242 
243 static void hpet_start_counter(void)
244 {
245 	unsigned long cfg = hpet_readl(HPET_CFG);
246 	cfg |= HPET_CFG_ENABLE;
247 	hpet_writel(cfg, HPET_CFG);
248 }
249 
250 static void hpet_restart_counter(void)
251 {
252 	hpet_stop_counter();
253 	hpet_start_counter();
254 }
255 
256 static void hpet_resume_device(void)
257 {
258 	force_hpet_resume();
259 }
260 
261 static void hpet_resume_counter(void)
262 {
263 	hpet_resume_device();
264 	hpet_restart_counter();
265 }
266 
267 static void hpet_enable_legacy_int(void)
268 {
269 	unsigned long cfg = hpet_readl(HPET_CFG);
270 
271 	cfg |= HPET_CFG_LEGACY;
272 	hpet_writel(cfg, HPET_CFG);
273 	hpet_legacy_int_enabled = 1;
274 }
275 
276 static void hpet_legacy_clockevent_register(void)
277 {
278 	/* Start HPET legacy interrupts */
279 	hpet_enable_legacy_int();
280 
281 	/*
282 	 * The mult factor is defined as (include/linux/clockchips.h)
283 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
284 	 * hpet_period is in units of femtoseconds (per cycle), so
285 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
286 	 *  mult = (10^6 * 2^shift)/hpet_period
287 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
288 	 */
289 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
290 				      hpet_period, hpet_clockevent.shift);
291 	/* Calculate the min / max delta */
292 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
293 							   &hpet_clockevent);
294 	/* 5 usec minimum reprogramming delta. */
295 	hpet_clockevent.min_delta_ns = 5000;
296 
297 	/*
298 	 * Start hpet with the boot cpu mask and make it
299 	 * global after the IO_APIC has been initialized.
300 	 */
301 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
302 	clockevents_register_device(&hpet_clockevent);
303 	global_clock_event = &hpet_clockevent;
304 	printk(KERN_DEBUG "hpet clockevent registered\n");
305 }
306 
307 static int hpet_setup_msi_irq(unsigned int irq);
308 
309 static void hpet_set_mode(enum clock_event_mode mode,
310 			  struct clock_event_device *evt, int timer)
311 {
312 	unsigned long cfg;
313 	uint64_t delta;
314 
315 	switch (mode) {
316 	case CLOCK_EVT_MODE_PERIODIC:
317 		hpet_stop_counter();
318 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
319 		delta >>= evt->shift;
320 		cfg = hpet_readl(HPET_Tn_CFG(timer));
321 		/* Make sure we use edge triggered interrupts */
322 		cfg &= ~HPET_TN_LEVEL;
323 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
324 		       HPET_TN_SETVAL | HPET_TN_32BIT;
325 		hpet_writel(cfg, HPET_Tn_CFG(timer));
326 		hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
327 		hpet_start_counter();
328 		hpet_print_config();
329 		break;
330 
331 	case CLOCK_EVT_MODE_ONESHOT:
332 		cfg = hpet_readl(HPET_Tn_CFG(timer));
333 		cfg &= ~HPET_TN_PERIODIC;
334 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
335 		hpet_writel(cfg, HPET_Tn_CFG(timer));
336 		break;
337 
338 	case CLOCK_EVT_MODE_UNUSED:
339 	case CLOCK_EVT_MODE_SHUTDOWN:
340 		cfg = hpet_readl(HPET_Tn_CFG(timer));
341 		cfg &= ~HPET_TN_ENABLE;
342 		hpet_writel(cfg, HPET_Tn_CFG(timer));
343 		break;
344 
345 	case CLOCK_EVT_MODE_RESUME:
346 		if (timer == 0) {
347 			hpet_enable_legacy_int();
348 		} else {
349 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
350 			hpet_setup_msi_irq(hdev->irq);
351 			disable_irq(hdev->irq);
352 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
353 			enable_irq(hdev->irq);
354 		}
355 		hpet_print_config();
356 		break;
357 	}
358 }
359 
360 static int hpet_next_event(unsigned long delta,
361 			   struct clock_event_device *evt, int timer)
362 {
363 	u32 cnt;
364 
365 	cnt = hpet_readl(HPET_COUNTER);
366 	cnt += (u32) delta;
367 	hpet_writel(cnt, HPET_Tn_CMP(timer));
368 
369 	/*
370 	 * We need to read back the CMP register to make sure that
371 	 * what we wrote hit the chip before we compare it to the
372 	 * counter.
373 	 */
374 	WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
375 
376 	return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
377 }
378 
379 static void hpet_legacy_set_mode(enum clock_event_mode mode,
380 			struct clock_event_device *evt)
381 {
382 	hpet_set_mode(mode, evt, 0);
383 }
384 
385 static int hpet_legacy_next_event(unsigned long delta,
386 			struct clock_event_device *evt)
387 {
388 	return hpet_next_event(delta, evt, 0);
389 }
390 
391 /*
392  * HPET MSI Support
393  */
394 #ifdef CONFIG_PCI_MSI
395 
396 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
397 static struct hpet_dev	*hpet_devs;
398 
399 void hpet_msi_unmask(unsigned int irq)
400 {
401 	struct hpet_dev *hdev = get_irq_data(irq);
402 	unsigned long cfg;
403 
404 	/* unmask it */
405 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
406 	cfg |= HPET_TN_FSB;
407 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
408 }
409 
410 void hpet_msi_mask(unsigned int irq)
411 {
412 	unsigned long cfg;
413 	struct hpet_dev *hdev = get_irq_data(irq);
414 
415 	/* mask it */
416 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
417 	cfg &= ~HPET_TN_FSB;
418 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
419 }
420 
421 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
422 {
423 	struct hpet_dev *hdev = get_irq_data(irq);
424 
425 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
426 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
427 }
428 
429 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
430 {
431 	struct hpet_dev *hdev = get_irq_data(irq);
432 
433 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
434 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
435 	msg->address_hi = 0;
436 }
437 
438 static void hpet_msi_set_mode(enum clock_event_mode mode,
439 				struct clock_event_device *evt)
440 {
441 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
442 	hpet_set_mode(mode, evt, hdev->num);
443 }
444 
445 static int hpet_msi_next_event(unsigned long delta,
446 				struct clock_event_device *evt)
447 {
448 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
449 	return hpet_next_event(delta, evt, hdev->num);
450 }
451 
452 static int hpet_setup_msi_irq(unsigned int irq)
453 {
454 	if (arch_setup_hpet_msi(irq)) {
455 		destroy_irq(irq);
456 		return -EINVAL;
457 	}
458 	return 0;
459 }
460 
461 static int hpet_assign_irq(struct hpet_dev *dev)
462 {
463 	unsigned int irq;
464 
465 	irq = create_irq();
466 	if (!irq)
467 		return -EINVAL;
468 
469 	set_irq_data(irq, dev);
470 
471 	if (hpet_setup_msi_irq(irq))
472 		return -EINVAL;
473 
474 	dev->irq = irq;
475 	return 0;
476 }
477 
478 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
479 {
480 	struct hpet_dev *dev = (struct hpet_dev *)data;
481 	struct clock_event_device *hevt = &dev->evt;
482 
483 	if (!hevt->event_handler) {
484 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
485 				dev->num);
486 		return IRQ_HANDLED;
487 	}
488 
489 	hevt->event_handler(hevt);
490 	return IRQ_HANDLED;
491 }
492 
493 static int hpet_setup_irq(struct hpet_dev *dev)
494 {
495 
496 	if (request_irq(dev->irq, hpet_interrupt_handler,
497 			IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
498 		return -1;
499 
500 	disable_irq(dev->irq);
501 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
502 	enable_irq(dev->irq);
503 
504 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
505 			 dev->name, dev->irq);
506 
507 	return 0;
508 }
509 
510 /* This should be called in specific @cpu */
511 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
512 {
513 	struct clock_event_device *evt = &hdev->evt;
514 	uint64_t hpet_freq;
515 
516 	WARN_ON(cpu != smp_processor_id());
517 	if (!(hdev->flags & HPET_DEV_VALID))
518 		return;
519 
520 	if (hpet_setup_msi_irq(hdev->irq))
521 		return;
522 
523 	hdev->cpu = cpu;
524 	per_cpu(cpu_hpet_dev, cpu) = hdev;
525 	evt->name = hdev->name;
526 	hpet_setup_irq(hdev);
527 	evt->irq = hdev->irq;
528 
529 	evt->rating = 110;
530 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
531 	if (hdev->flags & HPET_DEV_PERI_CAP)
532 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
533 
534 	evt->set_mode = hpet_msi_set_mode;
535 	evt->set_next_event = hpet_msi_next_event;
536 	evt->shift = 32;
537 
538 	/*
539 	 * The period is a femto seconds value. We need to calculate the
540 	 * scaled math multiplication factor for nanosecond to hpet tick
541 	 * conversion.
542 	 */
543 	hpet_freq = 1000000000000000ULL;
544 	do_div(hpet_freq, hpet_period);
545 	evt->mult = div_sc((unsigned long) hpet_freq,
546 				      NSEC_PER_SEC, evt->shift);
547 	/* Calculate the max delta */
548 	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
549 	/* 5 usec minimum reprogramming delta. */
550 	evt->min_delta_ns = 5000;
551 
552 	evt->cpumask = cpumask_of(hdev->cpu);
553 	clockevents_register_device(evt);
554 }
555 
556 #ifdef CONFIG_HPET
557 /* Reserve at least one timer for userspace (/dev/hpet) */
558 #define RESERVE_TIMERS 1
559 #else
560 #define RESERVE_TIMERS 0
561 #endif
562 
563 static void hpet_msi_capability_lookup(unsigned int start_timer)
564 {
565 	unsigned int id;
566 	unsigned int num_timers;
567 	unsigned int num_timers_used = 0;
568 	int i;
569 
570 	id = hpet_readl(HPET_ID);
571 
572 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
573 	num_timers++; /* Value read out starts from 0 */
574 	hpet_print_config();
575 
576 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
577 	if (!hpet_devs)
578 		return;
579 
580 	hpet_num_timers = num_timers;
581 
582 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
583 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
584 		unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
585 
586 		/* Only consider HPET timer with MSI support */
587 		if (!(cfg & HPET_TN_FSB_CAP))
588 			continue;
589 
590 		hdev->flags = 0;
591 		if (cfg & HPET_TN_PERIODIC_CAP)
592 			hdev->flags |= HPET_DEV_PERI_CAP;
593 		hdev->num = i;
594 
595 		sprintf(hdev->name, "hpet%d", i);
596 		if (hpet_assign_irq(hdev))
597 			continue;
598 
599 		hdev->flags |= HPET_DEV_FSB_CAP;
600 		hdev->flags |= HPET_DEV_VALID;
601 		num_timers_used++;
602 		if (num_timers_used == num_possible_cpus())
603 			break;
604 	}
605 
606 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
607 		num_timers, num_timers_used);
608 }
609 
610 #ifdef CONFIG_HPET
611 static void hpet_reserve_msi_timers(struct hpet_data *hd)
612 {
613 	int i;
614 
615 	if (!hpet_devs)
616 		return;
617 
618 	for (i = 0; i < hpet_num_timers; i++) {
619 		struct hpet_dev *hdev = &hpet_devs[i];
620 
621 		if (!(hdev->flags & HPET_DEV_VALID))
622 			continue;
623 
624 		hd->hd_irq[hdev->num] = hdev->irq;
625 		hpet_reserve_timer(hd, hdev->num);
626 	}
627 }
628 #endif
629 
630 static struct hpet_dev *hpet_get_unused_timer(void)
631 {
632 	int i;
633 
634 	if (!hpet_devs)
635 		return NULL;
636 
637 	for (i = 0; i < hpet_num_timers; i++) {
638 		struct hpet_dev *hdev = &hpet_devs[i];
639 
640 		if (!(hdev->flags & HPET_DEV_VALID))
641 			continue;
642 		if (test_and_set_bit(HPET_DEV_USED_BIT,
643 			(unsigned long *)&hdev->flags))
644 			continue;
645 		return hdev;
646 	}
647 	return NULL;
648 }
649 
650 struct hpet_work_struct {
651 	struct delayed_work work;
652 	struct completion complete;
653 };
654 
655 static void hpet_work(struct work_struct *w)
656 {
657 	struct hpet_dev *hdev;
658 	int cpu = smp_processor_id();
659 	struct hpet_work_struct *hpet_work;
660 
661 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
662 
663 	hdev = hpet_get_unused_timer();
664 	if (hdev)
665 		init_one_hpet_msi_clockevent(hdev, cpu);
666 
667 	complete(&hpet_work->complete);
668 }
669 
670 static int hpet_cpuhp_notify(struct notifier_block *n,
671 		unsigned long action, void *hcpu)
672 {
673 	unsigned long cpu = (unsigned long)hcpu;
674 	struct hpet_work_struct work;
675 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
676 
677 	switch (action & 0xf) {
678 	case CPU_ONLINE:
679 		INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
680 		init_completion(&work.complete);
681 		/* FIXME: add schedule_work_on() */
682 		schedule_delayed_work_on(cpu, &work.work, 0);
683 		wait_for_completion(&work.complete);
684 		destroy_timer_on_stack(&work.work.timer);
685 		break;
686 	case CPU_DEAD:
687 		if (hdev) {
688 			free_irq(hdev->irq, hdev);
689 			hdev->flags &= ~HPET_DEV_USED;
690 			per_cpu(cpu_hpet_dev, cpu) = NULL;
691 		}
692 		break;
693 	}
694 	return NOTIFY_OK;
695 }
696 #else
697 
698 static int hpet_setup_msi_irq(unsigned int irq)
699 {
700 	return 0;
701 }
702 static void hpet_msi_capability_lookup(unsigned int start_timer)
703 {
704 	return;
705 }
706 
707 #ifdef CONFIG_HPET
708 static void hpet_reserve_msi_timers(struct hpet_data *hd)
709 {
710 	return;
711 }
712 #endif
713 
714 static int hpet_cpuhp_notify(struct notifier_block *n,
715 		unsigned long action, void *hcpu)
716 {
717 	return NOTIFY_OK;
718 }
719 
720 #endif
721 
722 /*
723  * Clock source related code
724  */
725 static cycle_t read_hpet(void)
726 {
727 	return (cycle_t)hpet_readl(HPET_COUNTER);
728 }
729 
730 #ifdef CONFIG_X86_64
731 static cycle_t __vsyscall_fn vread_hpet(void)
732 {
733 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
734 }
735 #endif
736 
737 static struct clocksource clocksource_hpet = {
738 	.name		= "hpet",
739 	.rating		= 250,
740 	.read		= read_hpet,
741 	.mask		= HPET_MASK,
742 	.shift		= HPET_SHIFT,
743 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
744 	.resume		= hpet_resume_counter,
745 #ifdef CONFIG_X86_64
746 	.vread		= vread_hpet,
747 #endif
748 };
749 
750 static int hpet_clocksource_register(void)
751 {
752 	u64 start, now;
753 	cycle_t t1;
754 
755 	/* Start the counter */
756 	hpet_restart_counter();
757 
758 	/* Verify whether hpet counter works */
759 	t1 = read_hpet();
760 	rdtscll(start);
761 
762 	/*
763 	 * We don't know the TSC frequency yet, but waiting for
764 	 * 200000 TSC cycles is safe:
765 	 * 4 GHz == 50us
766 	 * 1 GHz == 200us
767 	 */
768 	do {
769 		rep_nop();
770 		rdtscll(now);
771 	} while ((now - start) < 200000UL);
772 
773 	if (t1 == read_hpet()) {
774 		printk(KERN_WARNING
775 		       "HPET counter not counting. HPET disabled\n");
776 		return -ENODEV;
777 	}
778 
779 	/*
780 	 * The definition of mult is (include/linux/clocksource.h)
781 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
782 	 * so we first need to convert hpet_period to ns/cyc units:
783 	 *  mult/2^shift = ns/cyc = hpet_period/10^6
784 	 *  mult = (hpet_period * 2^shift)/10^6
785 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
786 	 */
787 	clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
788 
789 	clocksource_register(&clocksource_hpet);
790 
791 	return 0;
792 }
793 
794 /**
795  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
796  */
797 int __init hpet_enable(void)
798 {
799 	unsigned long id;
800 	int i;
801 
802 	if (!is_hpet_capable())
803 		return 0;
804 
805 	hpet_set_mapping();
806 
807 	/*
808 	 * Read the period and check for a sane value:
809 	 */
810 	hpet_period = hpet_readl(HPET_PERIOD);
811 
812 	/*
813 	 * AMD SB700 based systems with spread spectrum enabled use a
814 	 * SMM based HPET emulation to provide proper frequency
815 	 * setting. The SMM code is initialized with the first HPET
816 	 * register access and takes some time to complete. During
817 	 * this time the config register reads 0xffffffff. We check
818 	 * for max. 1000 loops whether the config register reads a non
819 	 * 0xffffffff value to make sure that HPET is up and running
820 	 * before we go further. A counting loop is safe, as the HPET
821 	 * access takes thousands of CPU cycles. On non SB700 based
822 	 * machines this check is only done once and has no side
823 	 * effects.
824 	 */
825 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
826 		if (i == 1000) {
827 			printk(KERN_WARNING
828 			       "HPET config register value = 0xFFFFFFFF. "
829 			       "Disabling HPET\n");
830 			goto out_nohpet;
831 		}
832 	}
833 
834 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
835 		goto out_nohpet;
836 
837 	/*
838 	 * Read the HPET ID register to retrieve the IRQ routing
839 	 * information and the number of channels
840 	 */
841 	id = hpet_readl(HPET_ID);
842 	hpet_print_config();
843 
844 #ifdef CONFIG_HPET_EMULATE_RTC
845 	/*
846 	 * The legacy routing mode needs at least two channels, tick timer
847 	 * and the rtc emulation channel.
848 	 */
849 	if (!(id & HPET_ID_NUMBER))
850 		goto out_nohpet;
851 #endif
852 
853 	if (hpet_clocksource_register())
854 		goto out_nohpet;
855 
856 	if (id & HPET_ID_LEGSUP) {
857 		hpet_legacy_clockevent_register();
858 		hpet_msi_capability_lookup(2);
859 		return 1;
860 	}
861 	hpet_msi_capability_lookup(0);
862 	return 0;
863 
864 out_nohpet:
865 	hpet_clear_mapping();
866 	hpet_address = 0;
867 	return 0;
868 }
869 
870 /*
871  * Needs to be late, as the reserve_timer code calls kalloc !
872  *
873  * Not a problem on i386 as hpet_enable is called from late_time_init,
874  * but on x86_64 it is necessary !
875  */
876 static __init int hpet_late_init(void)
877 {
878 	int cpu;
879 
880 	if (boot_hpet_disable)
881 		return -ENODEV;
882 
883 	if (!hpet_address) {
884 		if (!force_hpet_address)
885 			return -ENODEV;
886 
887 		hpet_address = force_hpet_address;
888 		hpet_enable();
889 	}
890 
891 	if (!hpet_virt_address)
892 		return -ENODEV;
893 
894 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
895 	hpet_print_config();
896 
897 	for_each_online_cpu(cpu) {
898 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
899 	}
900 
901 	/* This notifier should be called after workqueue is ready */
902 	hotcpu_notifier(hpet_cpuhp_notify, -20);
903 
904 	return 0;
905 }
906 fs_initcall(hpet_late_init);
907 
908 void hpet_disable(void)
909 {
910 	if (is_hpet_capable()) {
911 		unsigned long cfg = hpet_readl(HPET_CFG);
912 
913 		if (hpet_legacy_int_enabled) {
914 			cfg &= ~HPET_CFG_LEGACY;
915 			hpet_legacy_int_enabled = 0;
916 		}
917 		cfg &= ~HPET_CFG_ENABLE;
918 		hpet_writel(cfg, HPET_CFG);
919 	}
920 }
921 
922 #ifdef CONFIG_HPET_EMULATE_RTC
923 
924 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
925  * is enabled, we support RTC interrupt functionality in software.
926  * RTC has 3 kinds of interrupts:
927  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
928  *    is updated
929  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
930  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
931  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
932  * (1) and (2) above are implemented using polling at a frequency of
933  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
934  * overhead. (DEFAULT_RTC_INT_FREQ)
935  * For (3), we use interrupts at 64Hz or user specified periodic
936  * frequency, whichever is higher.
937  */
938 #include <linux/mc146818rtc.h>
939 #include <linux/rtc.h>
940 #include <asm/rtc.h>
941 
942 #define DEFAULT_RTC_INT_FREQ	64
943 #define DEFAULT_RTC_SHIFT	6
944 #define RTC_NUM_INTS		1
945 
946 static unsigned long hpet_rtc_flags;
947 static int hpet_prev_update_sec;
948 static struct rtc_time hpet_alarm_time;
949 static unsigned long hpet_pie_count;
950 static u32 hpet_t1_cmp;
951 static unsigned long hpet_default_delta;
952 static unsigned long hpet_pie_delta;
953 static unsigned long hpet_pie_limit;
954 
955 static rtc_irq_handler irq_handler;
956 
957 /*
958  * Check that the hpet counter c1 is ahead of the c2
959  */
960 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
961 {
962 	return (s32)(c2 - c1) < 0;
963 }
964 
965 /*
966  * Registers a IRQ handler.
967  */
968 int hpet_register_irq_handler(rtc_irq_handler handler)
969 {
970 	if (!is_hpet_enabled())
971 		return -ENODEV;
972 	if (irq_handler)
973 		return -EBUSY;
974 
975 	irq_handler = handler;
976 
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
980 
981 /*
982  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
983  * and does cleanup.
984  */
985 void hpet_unregister_irq_handler(rtc_irq_handler handler)
986 {
987 	if (!is_hpet_enabled())
988 		return;
989 
990 	irq_handler = NULL;
991 	hpet_rtc_flags = 0;
992 }
993 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
994 
995 /*
996  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
997  * is not supported by all HPET implementations for timer 1.
998  *
999  * hpet_rtc_timer_init() is called when the rtc is initialized.
1000  */
1001 int hpet_rtc_timer_init(void)
1002 {
1003 	unsigned long cfg, cnt, delta, flags;
1004 
1005 	if (!is_hpet_enabled())
1006 		return 0;
1007 
1008 	if (!hpet_default_delta) {
1009 		uint64_t clc;
1010 
1011 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1012 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1013 		hpet_default_delta = (unsigned long) clc;
1014 	}
1015 
1016 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1017 		delta = hpet_default_delta;
1018 	else
1019 		delta = hpet_pie_delta;
1020 
1021 	local_irq_save(flags);
1022 
1023 	cnt = delta + hpet_readl(HPET_COUNTER);
1024 	hpet_writel(cnt, HPET_T1_CMP);
1025 	hpet_t1_cmp = cnt;
1026 
1027 	cfg = hpet_readl(HPET_T1_CFG);
1028 	cfg &= ~HPET_TN_PERIODIC;
1029 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1030 	hpet_writel(cfg, HPET_T1_CFG);
1031 
1032 	local_irq_restore(flags);
1033 
1034 	return 1;
1035 }
1036 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1037 
1038 /*
1039  * The functions below are called from rtc driver.
1040  * Return 0 if HPET is not being used.
1041  * Otherwise do the necessary changes and return 1.
1042  */
1043 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1044 {
1045 	if (!is_hpet_enabled())
1046 		return 0;
1047 
1048 	hpet_rtc_flags &= ~bit_mask;
1049 	return 1;
1050 }
1051 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1052 
1053 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1054 {
1055 	unsigned long oldbits = hpet_rtc_flags;
1056 
1057 	if (!is_hpet_enabled())
1058 		return 0;
1059 
1060 	hpet_rtc_flags |= bit_mask;
1061 
1062 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1063 		hpet_prev_update_sec = -1;
1064 
1065 	if (!oldbits)
1066 		hpet_rtc_timer_init();
1067 
1068 	return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1071 
1072 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1073 			unsigned char sec)
1074 {
1075 	if (!is_hpet_enabled())
1076 		return 0;
1077 
1078 	hpet_alarm_time.tm_hour = hrs;
1079 	hpet_alarm_time.tm_min = min;
1080 	hpet_alarm_time.tm_sec = sec;
1081 
1082 	return 1;
1083 }
1084 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1085 
1086 int hpet_set_periodic_freq(unsigned long freq)
1087 {
1088 	uint64_t clc;
1089 
1090 	if (!is_hpet_enabled())
1091 		return 0;
1092 
1093 	if (freq <= DEFAULT_RTC_INT_FREQ)
1094 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1095 	else {
1096 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1097 		do_div(clc, freq);
1098 		clc >>= hpet_clockevent.shift;
1099 		hpet_pie_delta = (unsigned long) clc;
1100 	}
1101 	return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1104 
1105 int hpet_rtc_dropped_irq(void)
1106 {
1107 	return is_hpet_enabled();
1108 }
1109 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1110 
1111 static void hpet_rtc_timer_reinit(void)
1112 {
1113 	unsigned long cfg, delta;
1114 	int lost_ints = -1;
1115 
1116 	if (unlikely(!hpet_rtc_flags)) {
1117 		cfg = hpet_readl(HPET_T1_CFG);
1118 		cfg &= ~HPET_TN_ENABLE;
1119 		hpet_writel(cfg, HPET_T1_CFG);
1120 		return;
1121 	}
1122 
1123 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1124 		delta = hpet_default_delta;
1125 	else
1126 		delta = hpet_pie_delta;
1127 
1128 	/*
1129 	 * Increment the comparator value until we are ahead of the
1130 	 * current count.
1131 	 */
1132 	do {
1133 		hpet_t1_cmp += delta;
1134 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1135 		lost_ints++;
1136 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1137 
1138 	if (lost_ints) {
1139 		if (hpet_rtc_flags & RTC_PIE)
1140 			hpet_pie_count += lost_ints;
1141 		if (printk_ratelimit())
1142 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1143 				lost_ints);
1144 	}
1145 }
1146 
1147 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1148 {
1149 	struct rtc_time curr_time;
1150 	unsigned long rtc_int_flag = 0;
1151 
1152 	hpet_rtc_timer_reinit();
1153 	memset(&curr_time, 0, sizeof(struct rtc_time));
1154 
1155 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1156 		get_rtc_time(&curr_time);
1157 
1158 	if (hpet_rtc_flags & RTC_UIE &&
1159 	    curr_time.tm_sec != hpet_prev_update_sec) {
1160 		if (hpet_prev_update_sec >= 0)
1161 			rtc_int_flag = RTC_UF;
1162 		hpet_prev_update_sec = curr_time.tm_sec;
1163 	}
1164 
1165 	if (hpet_rtc_flags & RTC_PIE &&
1166 	    ++hpet_pie_count >= hpet_pie_limit) {
1167 		rtc_int_flag |= RTC_PF;
1168 		hpet_pie_count = 0;
1169 	}
1170 
1171 	if (hpet_rtc_flags & RTC_AIE &&
1172 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1173 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1174 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1175 			rtc_int_flag |= RTC_AF;
1176 
1177 	if (rtc_int_flag) {
1178 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1179 		if (irq_handler)
1180 			irq_handler(rtc_int_flag, dev_id);
1181 	}
1182 	return IRQ_HANDLED;
1183 }
1184 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1185 #endif
1186