xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision b04b4f78)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12 
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16 
17 #define HPET_MASK			CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT			22
19 
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC			1000000L
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31 
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long				hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long			hpet_num_timers;
38 #endif
39 static void __iomem			*hpet_virt_address;
40 
41 struct hpet_dev {
42 	struct clock_event_device	evt;
43 	unsigned int			num;
44 	int				cpu;
45 	unsigned int			irq;
46 	unsigned int			flags;
47 	char				name[10];
48 };
49 
50 unsigned long hpet_readl(unsigned long a)
51 {
52 	return readl(hpet_virt_address + a);
53 }
54 
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57 	writel(d, hpet_virt_address + a);
58 }
59 
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63 
64 static inline void hpet_set_mapping(void)
65 {
66 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71 
72 static inline void hpet_clear_mapping(void)
73 {
74 	iounmap(hpet_virt_address);
75 	hpet_virt_address = NULL;
76 }
77 
78 /*
79  * HPET command line enable / disable
80  */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83 static int hpet_verbose;
84 
85 static int __init hpet_setup(char *str)
86 {
87 	if (str) {
88 		if (!strncmp("disable", str, 7))
89 			boot_hpet_disable = 1;
90 		if (!strncmp("force", str, 5))
91 			hpet_force_user = 1;
92 		if (!strncmp("verbose", str, 7))
93 			hpet_verbose = 1;
94 	}
95 	return 1;
96 }
97 __setup("hpet=", hpet_setup);
98 
99 static int __init disable_hpet(char *str)
100 {
101 	boot_hpet_disable = 1;
102 	return 1;
103 }
104 __setup("nohpet", disable_hpet);
105 
106 static inline int is_hpet_capable(void)
107 {
108 	return !boot_hpet_disable && hpet_address;
109 }
110 
111 /*
112  * HPET timer interrupt enable / disable
113  */
114 static int hpet_legacy_int_enabled;
115 
116 /**
117  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118  */
119 int is_hpet_enabled(void)
120 {
121 	return is_hpet_capable() && hpet_legacy_int_enabled;
122 }
123 EXPORT_SYMBOL_GPL(is_hpet_enabled);
124 
125 static void _hpet_print_config(const char *function, int line)
126 {
127 	u32 i, timers, l, h;
128 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129 	l = hpet_readl(HPET_ID);
130 	h = hpet_readl(HPET_PERIOD);
131 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133 	l = hpet_readl(HPET_CFG);
134 	h = hpet_readl(HPET_STATUS);
135 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136 	l = hpet_readl(HPET_COUNTER);
137 	h = hpet_readl(HPET_COUNTER+4);
138 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139 
140 	for (i = 0; i < timers; i++) {
141 		l = hpet_readl(HPET_Tn_CFG(i));
142 		h = hpet_readl(HPET_Tn_CFG(i)+4);
143 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144 		       i, l, h);
145 		l = hpet_readl(HPET_Tn_CMP(i));
146 		h = hpet_readl(HPET_Tn_CMP(i)+4);
147 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148 		       i, l, h);
149 		l = hpet_readl(HPET_Tn_ROUTE(i));
150 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152 		       i, l, h);
153 	}
154 }
155 
156 #define hpet_print_config()					\
157 do {								\
158 	if (hpet_verbose)					\
159 		_hpet_print_config(__FUNCTION__, __LINE__);	\
160 } while (0)
161 
162 /*
163  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164  * timer 0 and timer 1 in case of RTC emulation.
165  */
166 #ifdef CONFIG_HPET
167 
168 static void hpet_reserve_msi_timers(struct hpet_data *hd);
169 
170 static void hpet_reserve_platform_timers(unsigned long id)
171 {
172 	struct hpet __iomem *hpet = hpet_virt_address;
173 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174 	unsigned int nrtimers, i;
175 	struct hpet_data hd;
176 
177 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178 
179 	memset(&hd, 0, sizeof(hd));
180 	hd.hd_phys_address	= hpet_address;
181 	hd.hd_address		= hpet;
182 	hd.hd_nirqs		= nrtimers;
183 	hpet_reserve_timer(&hd, 0);
184 
185 #ifdef CONFIG_HPET_EMULATE_RTC
186 	hpet_reserve_timer(&hd, 1);
187 #endif
188 
189 	/*
190 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
192 	 * don't bother configuring *any* comparator interrupts.
193 	 */
194 	hd.hd_irq[0] = HPET_LEGACY_8254;
195 	hd.hd_irq[1] = HPET_LEGACY_RTC;
196 
197 	for (i = 2; i < nrtimers; timer++, i++) {
198 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
199 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
200 	}
201 
202 	hpet_reserve_msi_timers(&hd);
203 
204 	hpet_alloc(&hd);
205 
206 }
207 #else
208 static void hpet_reserve_platform_timers(unsigned long id) { }
209 #endif
210 
211 /*
212  * Common hpet info
213  */
214 static unsigned long hpet_period;
215 
216 static void hpet_legacy_set_mode(enum clock_event_mode mode,
217 			  struct clock_event_device *evt);
218 static int hpet_legacy_next_event(unsigned long delta,
219 			   struct clock_event_device *evt);
220 
221 /*
222  * The hpet clock event device
223  */
224 static struct clock_event_device hpet_clockevent = {
225 	.name		= "hpet",
226 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
227 	.set_mode	= hpet_legacy_set_mode,
228 	.set_next_event = hpet_legacy_next_event,
229 	.shift		= 32,
230 	.irq		= 0,
231 	.rating		= 50,
232 };
233 
234 static void hpet_stop_counter(void)
235 {
236 	unsigned long cfg = hpet_readl(HPET_CFG);
237 	cfg &= ~HPET_CFG_ENABLE;
238 	hpet_writel(cfg, HPET_CFG);
239 }
240 
241 static void hpet_reset_counter(void)
242 {
243 	hpet_writel(0, HPET_COUNTER);
244 	hpet_writel(0, HPET_COUNTER + 4);
245 }
246 
247 static void hpet_start_counter(void)
248 {
249 	unsigned long cfg = hpet_readl(HPET_CFG);
250 	cfg |= HPET_CFG_ENABLE;
251 	hpet_writel(cfg, HPET_CFG);
252 }
253 
254 static void hpet_restart_counter(void)
255 {
256 	hpet_stop_counter();
257 	hpet_reset_counter();
258 	hpet_start_counter();
259 }
260 
261 static void hpet_resume_device(void)
262 {
263 	force_hpet_resume();
264 }
265 
266 static void hpet_resume_counter(void)
267 {
268 	hpet_resume_device();
269 	hpet_restart_counter();
270 }
271 
272 static void hpet_enable_legacy_int(void)
273 {
274 	unsigned long cfg = hpet_readl(HPET_CFG);
275 
276 	cfg |= HPET_CFG_LEGACY;
277 	hpet_writel(cfg, HPET_CFG);
278 	hpet_legacy_int_enabled = 1;
279 }
280 
281 static void hpet_legacy_clockevent_register(void)
282 {
283 	/* Start HPET legacy interrupts */
284 	hpet_enable_legacy_int();
285 
286 	/*
287 	 * The mult factor is defined as (include/linux/clockchips.h)
288 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
289 	 * hpet_period is in units of femtoseconds (per cycle), so
290 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
291 	 *  mult = (10^6 * 2^shift)/hpet_period
292 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
293 	 */
294 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
295 				      hpet_period, hpet_clockevent.shift);
296 	/* Calculate the min / max delta */
297 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
298 							   &hpet_clockevent);
299 	/* 5 usec minimum reprogramming delta. */
300 	hpet_clockevent.min_delta_ns = 5000;
301 
302 	/*
303 	 * Start hpet with the boot cpu mask and make it
304 	 * global after the IO_APIC has been initialized.
305 	 */
306 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
307 	clockevents_register_device(&hpet_clockevent);
308 	global_clock_event = &hpet_clockevent;
309 	printk(KERN_DEBUG "hpet clockevent registered\n");
310 }
311 
312 static int hpet_setup_msi_irq(unsigned int irq);
313 
314 static void hpet_set_mode(enum clock_event_mode mode,
315 			  struct clock_event_device *evt, int timer)
316 {
317 	unsigned long cfg, cmp, now;
318 	uint64_t delta;
319 
320 	switch (mode) {
321 	case CLOCK_EVT_MODE_PERIODIC:
322 		hpet_stop_counter();
323 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
324 		delta >>= evt->shift;
325 		now = hpet_readl(HPET_COUNTER);
326 		cmp = now + (unsigned long) delta;
327 		cfg = hpet_readl(HPET_Tn_CFG(timer));
328 		/* Make sure we use edge triggered interrupts */
329 		cfg &= ~HPET_TN_LEVEL;
330 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
331 		       HPET_TN_SETVAL | HPET_TN_32BIT;
332 		hpet_writel(cfg, HPET_Tn_CFG(timer));
333 		hpet_writel(cmp, HPET_Tn_CMP(timer));
334 		udelay(1);
335 		/*
336 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
337 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
338 		 * bit is automatically cleared after the first write.
339 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
340 		 * Publication # 24674)
341 		 */
342 		hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
343 		hpet_start_counter();
344 		hpet_print_config();
345 		break;
346 
347 	case CLOCK_EVT_MODE_ONESHOT:
348 		cfg = hpet_readl(HPET_Tn_CFG(timer));
349 		cfg &= ~HPET_TN_PERIODIC;
350 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
351 		hpet_writel(cfg, HPET_Tn_CFG(timer));
352 		break;
353 
354 	case CLOCK_EVT_MODE_UNUSED:
355 	case CLOCK_EVT_MODE_SHUTDOWN:
356 		cfg = hpet_readl(HPET_Tn_CFG(timer));
357 		cfg &= ~HPET_TN_ENABLE;
358 		hpet_writel(cfg, HPET_Tn_CFG(timer));
359 		break;
360 
361 	case CLOCK_EVT_MODE_RESUME:
362 		if (timer == 0) {
363 			hpet_enable_legacy_int();
364 		} else {
365 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
366 			hpet_setup_msi_irq(hdev->irq);
367 			disable_irq(hdev->irq);
368 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
369 			enable_irq(hdev->irq);
370 		}
371 		hpet_print_config();
372 		break;
373 	}
374 }
375 
376 static int hpet_next_event(unsigned long delta,
377 			   struct clock_event_device *evt, int timer)
378 {
379 	u32 cnt;
380 
381 	cnt = hpet_readl(HPET_COUNTER);
382 	cnt += (u32) delta;
383 	hpet_writel(cnt, HPET_Tn_CMP(timer));
384 
385 	/*
386 	 * We need to read back the CMP register to make sure that
387 	 * what we wrote hit the chip before we compare it to the
388 	 * counter.
389 	 */
390 	WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
391 
392 	return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
393 }
394 
395 static void hpet_legacy_set_mode(enum clock_event_mode mode,
396 			struct clock_event_device *evt)
397 {
398 	hpet_set_mode(mode, evt, 0);
399 }
400 
401 static int hpet_legacy_next_event(unsigned long delta,
402 			struct clock_event_device *evt)
403 {
404 	return hpet_next_event(delta, evt, 0);
405 }
406 
407 /*
408  * HPET MSI Support
409  */
410 #ifdef CONFIG_PCI_MSI
411 
412 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
413 static struct hpet_dev	*hpet_devs;
414 
415 void hpet_msi_unmask(unsigned int irq)
416 {
417 	struct hpet_dev *hdev = get_irq_data(irq);
418 	unsigned long cfg;
419 
420 	/* unmask it */
421 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
422 	cfg |= HPET_TN_FSB;
423 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
424 }
425 
426 void hpet_msi_mask(unsigned int irq)
427 {
428 	unsigned long cfg;
429 	struct hpet_dev *hdev = get_irq_data(irq);
430 
431 	/* mask it */
432 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
433 	cfg &= ~HPET_TN_FSB;
434 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
435 }
436 
437 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
438 {
439 	struct hpet_dev *hdev = get_irq_data(irq);
440 
441 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
442 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
443 }
444 
445 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
446 {
447 	struct hpet_dev *hdev = get_irq_data(irq);
448 
449 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
450 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
451 	msg->address_hi = 0;
452 }
453 
454 static void hpet_msi_set_mode(enum clock_event_mode mode,
455 				struct clock_event_device *evt)
456 {
457 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
458 	hpet_set_mode(mode, evt, hdev->num);
459 }
460 
461 static int hpet_msi_next_event(unsigned long delta,
462 				struct clock_event_device *evt)
463 {
464 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
465 	return hpet_next_event(delta, evt, hdev->num);
466 }
467 
468 static int hpet_setup_msi_irq(unsigned int irq)
469 {
470 	if (arch_setup_hpet_msi(irq)) {
471 		destroy_irq(irq);
472 		return -EINVAL;
473 	}
474 	return 0;
475 }
476 
477 static int hpet_assign_irq(struct hpet_dev *dev)
478 {
479 	unsigned int irq;
480 
481 	irq = create_irq();
482 	if (!irq)
483 		return -EINVAL;
484 
485 	set_irq_data(irq, dev);
486 
487 	if (hpet_setup_msi_irq(irq))
488 		return -EINVAL;
489 
490 	dev->irq = irq;
491 	return 0;
492 }
493 
494 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
495 {
496 	struct hpet_dev *dev = (struct hpet_dev *)data;
497 	struct clock_event_device *hevt = &dev->evt;
498 
499 	if (!hevt->event_handler) {
500 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
501 				dev->num);
502 		return IRQ_HANDLED;
503 	}
504 
505 	hevt->event_handler(hevt);
506 	return IRQ_HANDLED;
507 }
508 
509 static int hpet_setup_irq(struct hpet_dev *dev)
510 {
511 
512 	if (request_irq(dev->irq, hpet_interrupt_handler,
513 			IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
514 		return -1;
515 
516 	disable_irq(dev->irq);
517 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
518 	enable_irq(dev->irq);
519 
520 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
521 			 dev->name, dev->irq);
522 
523 	return 0;
524 }
525 
526 /* This should be called in specific @cpu */
527 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
528 {
529 	struct clock_event_device *evt = &hdev->evt;
530 	uint64_t hpet_freq;
531 
532 	WARN_ON(cpu != smp_processor_id());
533 	if (!(hdev->flags & HPET_DEV_VALID))
534 		return;
535 
536 	if (hpet_setup_msi_irq(hdev->irq))
537 		return;
538 
539 	hdev->cpu = cpu;
540 	per_cpu(cpu_hpet_dev, cpu) = hdev;
541 	evt->name = hdev->name;
542 	hpet_setup_irq(hdev);
543 	evt->irq = hdev->irq;
544 
545 	evt->rating = 110;
546 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
547 	if (hdev->flags & HPET_DEV_PERI_CAP)
548 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
549 
550 	evt->set_mode = hpet_msi_set_mode;
551 	evt->set_next_event = hpet_msi_next_event;
552 	evt->shift = 32;
553 
554 	/*
555 	 * The period is a femto seconds value. We need to calculate the
556 	 * scaled math multiplication factor for nanosecond to hpet tick
557 	 * conversion.
558 	 */
559 	hpet_freq = 1000000000000000ULL;
560 	do_div(hpet_freq, hpet_period);
561 	evt->mult = div_sc((unsigned long) hpet_freq,
562 				      NSEC_PER_SEC, evt->shift);
563 	/* Calculate the max delta */
564 	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
565 	/* 5 usec minimum reprogramming delta. */
566 	evt->min_delta_ns = 5000;
567 
568 	evt->cpumask = cpumask_of(hdev->cpu);
569 	clockevents_register_device(evt);
570 }
571 
572 #ifdef CONFIG_HPET
573 /* Reserve at least one timer for userspace (/dev/hpet) */
574 #define RESERVE_TIMERS 1
575 #else
576 #define RESERVE_TIMERS 0
577 #endif
578 
579 static void hpet_msi_capability_lookup(unsigned int start_timer)
580 {
581 	unsigned int id;
582 	unsigned int num_timers;
583 	unsigned int num_timers_used = 0;
584 	int i;
585 
586 	id = hpet_readl(HPET_ID);
587 
588 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
589 	num_timers++; /* Value read out starts from 0 */
590 	hpet_print_config();
591 
592 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
593 	if (!hpet_devs)
594 		return;
595 
596 	hpet_num_timers = num_timers;
597 
598 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
599 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
600 		unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
601 
602 		/* Only consider HPET timer with MSI support */
603 		if (!(cfg & HPET_TN_FSB_CAP))
604 			continue;
605 
606 		hdev->flags = 0;
607 		if (cfg & HPET_TN_PERIODIC_CAP)
608 			hdev->flags |= HPET_DEV_PERI_CAP;
609 		hdev->num = i;
610 
611 		sprintf(hdev->name, "hpet%d", i);
612 		if (hpet_assign_irq(hdev))
613 			continue;
614 
615 		hdev->flags |= HPET_DEV_FSB_CAP;
616 		hdev->flags |= HPET_DEV_VALID;
617 		num_timers_used++;
618 		if (num_timers_used == num_possible_cpus())
619 			break;
620 	}
621 
622 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
623 		num_timers, num_timers_used);
624 }
625 
626 #ifdef CONFIG_HPET
627 static void hpet_reserve_msi_timers(struct hpet_data *hd)
628 {
629 	int i;
630 
631 	if (!hpet_devs)
632 		return;
633 
634 	for (i = 0; i < hpet_num_timers; i++) {
635 		struct hpet_dev *hdev = &hpet_devs[i];
636 
637 		if (!(hdev->flags & HPET_DEV_VALID))
638 			continue;
639 
640 		hd->hd_irq[hdev->num] = hdev->irq;
641 		hpet_reserve_timer(hd, hdev->num);
642 	}
643 }
644 #endif
645 
646 static struct hpet_dev *hpet_get_unused_timer(void)
647 {
648 	int i;
649 
650 	if (!hpet_devs)
651 		return NULL;
652 
653 	for (i = 0; i < hpet_num_timers; i++) {
654 		struct hpet_dev *hdev = &hpet_devs[i];
655 
656 		if (!(hdev->flags & HPET_DEV_VALID))
657 			continue;
658 		if (test_and_set_bit(HPET_DEV_USED_BIT,
659 			(unsigned long *)&hdev->flags))
660 			continue;
661 		return hdev;
662 	}
663 	return NULL;
664 }
665 
666 struct hpet_work_struct {
667 	struct delayed_work work;
668 	struct completion complete;
669 };
670 
671 static void hpet_work(struct work_struct *w)
672 {
673 	struct hpet_dev *hdev;
674 	int cpu = smp_processor_id();
675 	struct hpet_work_struct *hpet_work;
676 
677 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
678 
679 	hdev = hpet_get_unused_timer();
680 	if (hdev)
681 		init_one_hpet_msi_clockevent(hdev, cpu);
682 
683 	complete(&hpet_work->complete);
684 }
685 
686 static int hpet_cpuhp_notify(struct notifier_block *n,
687 		unsigned long action, void *hcpu)
688 {
689 	unsigned long cpu = (unsigned long)hcpu;
690 	struct hpet_work_struct work;
691 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
692 
693 	switch (action & 0xf) {
694 	case CPU_ONLINE:
695 		INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
696 		init_completion(&work.complete);
697 		/* FIXME: add schedule_work_on() */
698 		schedule_delayed_work_on(cpu, &work.work, 0);
699 		wait_for_completion(&work.complete);
700 		destroy_timer_on_stack(&work.work.timer);
701 		break;
702 	case CPU_DEAD:
703 		if (hdev) {
704 			free_irq(hdev->irq, hdev);
705 			hdev->flags &= ~HPET_DEV_USED;
706 			per_cpu(cpu_hpet_dev, cpu) = NULL;
707 		}
708 		break;
709 	}
710 	return NOTIFY_OK;
711 }
712 #else
713 
714 static int hpet_setup_msi_irq(unsigned int irq)
715 {
716 	return 0;
717 }
718 static void hpet_msi_capability_lookup(unsigned int start_timer)
719 {
720 	return;
721 }
722 
723 #ifdef CONFIG_HPET
724 static void hpet_reserve_msi_timers(struct hpet_data *hd)
725 {
726 	return;
727 }
728 #endif
729 
730 static int hpet_cpuhp_notify(struct notifier_block *n,
731 		unsigned long action, void *hcpu)
732 {
733 	return NOTIFY_OK;
734 }
735 
736 #endif
737 
738 /*
739  * Clock source related code
740  */
741 static cycle_t read_hpet(struct clocksource *cs)
742 {
743 	return (cycle_t)hpet_readl(HPET_COUNTER);
744 }
745 
746 #ifdef CONFIG_X86_64
747 static cycle_t __vsyscall_fn vread_hpet(void)
748 {
749 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
750 }
751 #endif
752 
753 static struct clocksource clocksource_hpet = {
754 	.name		= "hpet",
755 	.rating		= 250,
756 	.read		= read_hpet,
757 	.mask		= HPET_MASK,
758 	.shift		= HPET_SHIFT,
759 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
760 	.resume		= hpet_resume_counter,
761 #ifdef CONFIG_X86_64
762 	.vread		= vread_hpet,
763 #endif
764 };
765 
766 static int hpet_clocksource_register(void)
767 {
768 	u64 start, now;
769 	cycle_t t1;
770 
771 	/* Start the counter */
772 	hpet_restart_counter();
773 
774 	/* Verify whether hpet counter works */
775 	t1 = hpet_readl(HPET_COUNTER);
776 	rdtscll(start);
777 
778 	/*
779 	 * We don't know the TSC frequency yet, but waiting for
780 	 * 200000 TSC cycles is safe:
781 	 * 4 GHz == 50us
782 	 * 1 GHz == 200us
783 	 */
784 	do {
785 		rep_nop();
786 		rdtscll(now);
787 	} while ((now - start) < 200000UL);
788 
789 	if (t1 == hpet_readl(HPET_COUNTER)) {
790 		printk(KERN_WARNING
791 		       "HPET counter not counting. HPET disabled\n");
792 		return -ENODEV;
793 	}
794 
795 	/*
796 	 * The definition of mult is (include/linux/clocksource.h)
797 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
798 	 * so we first need to convert hpet_period to ns/cyc units:
799 	 *  mult/2^shift = ns/cyc = hpet_period/10^6
800 	 *  mult = (hpet_period * 2^shift)/10^6
801 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
802 	 */
803 	clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
804 
805 	clocksource_register(&clocksource_hpet);
806 
807 	return 0;
808 }
809 
810 /**
811  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
812  */
813 int __init hpet_enable(void)
814 {
815 	unsigned long id;
816 	int i;
817 
818 	if (!is_hpet_capable())
819 		return 0;
820 
821 	hpet_set_mapping();
822 
823 	/*
824 	 * Read the period and check for a sane value:
825 	 */
826 	hpet_period = hpet_readl(HPET_PERIOD);
827 
828 	/*
829 	 * AMD SB700 based systems with spread spectrum enabled use a
830 	 * SMM based HPET emulation to provide proper frequency
831 	 * setting. The SMM code is initialized with the first HPET
832 	 * register access and takes some time to complete. During
833 	 * this time the config register reads 0xffffffff. We check
834 	 * for max. 1000 loops whether the config register reads a non
835 	 * 0xffffffff value to make sure that HPET is up and running
836 	 * before we go further. A counting loop is safe, as the HPET
837 	 * access takes thousands of CPU cycles. On non SB700 based
838 	 * machines this check is only done once and has no side
839 	 * effects.
840 	 */
841 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
842 		if (i == 1000) {
843 			printk(KERN_WARNING
844 			       "HPET config register value = 0xFFFFFFFF. "
845 			       "Disabling HPET\n");
846 			goto out_nohpet;
847 		}
848 	}
849 
850 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
851 		goto out_nohpet;
852 
853 	/*
854 	 * Read the HPET ID register to retrieve the IRQ routing
855 	 * information and the number of channels
856 	 */
857 	id = hpet_readl(HPET_ID);
858 	hpet_print_config();
859 
860 #ifdef CONFIG_HPET_EMULATE_RTC
861 	/*
862 	 * The legacy routing mode needs at least two channels, tick timer
863 	 * and the rtc emulation channel.
864 	 */
865 	if (!(id & HPET_ID_NUMBER))
866 		goto out_nohpet;
867 #endif
868 
869 	if (hpet_clocksource_register())
870 		goto out_nohpet;
871 
872 	if (id & HPET_ID_LEGSUP) {
873 		hpet_legacy_clockevent_register();
874 		hpet_msi_capability_lookup(2);
875 		return 1;
876 	}
877 	hpet_msi_capability_lookup(0);
878 	return 0;
879 
880 out_nohpet:
881 	hpet_clear_mapping();
882 	hpet_address = 0;
883 	return 0;
884 }
885 
886 /*
887  * Needs to be late, as the reserve_timer code calls kalloc !
888  *
889  * Not a problem on i386 as hpet_enable is called from late_time_init,
890  * but on x86_64 it is necessary !
891  */
892 static __init int hpet_late_init(void)
893 {
894 	int cpu;
895 
896 	if (boot_hpet_disable)
897 		return -ENODEV;
898 
899 	if (!hpet_address) {
900 		if (!force_hpet_address)
901 			return -ENODEV;
902 
903 		hpet_address = force_hpet_address;
904 		hpet_enable();
905 	}
906 
907 	if (!hpet_virt_address)
908 		return -ENODEV;
909 
910 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
911 	hpet_print_config();
912 
913 	for_each_online_cpu(cpu) {
914 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
915 	}
916 
917 	/* This notifier should be called after workqueue is ready */
918 	hotcpu_notifier(hpet_cpuhp_notify, -20);
919 
920 	return 0;
921 }
922 fs_initcall(hpet_late_init);
923 
924 void hpet_disable(void)
925 {
926 	if (is_hpet_capable()) {
927 		unsigned long cfg = hpet_readl(HPET_CFG);
928 
929 		if (hpet_legacy_int_enabled) {
930 			cfg &= ~HPET_CFG_LEGACY;
931 			hpet_legacy_int_enabled = 0;
932 		}
933 		cfg &= ~HPET_CFG_ENABLE;
934 		hpet_writel(cfg, HPET_CFG);
935 	}
936 }
937 
938 #ifdef CONFIG_HPET_EMULATE_RTC
939 
940 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
941  * is enabled, we support RTC interrupt functionality in software.
942  * RTC has 3 kinds of interrupts:
943  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
944  *    is updated
945  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
946  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
947  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
948  * (1) and (2) above are implemented using polling at a frequency of
949  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
950  * overhead. (DEFAULT_RTC_INT_FREQ)
951  * For (3), we use interrupts at 64Hz or user specified periodic
952  * frequency, whichever is higher.
953  */
954 #include <linux/mc146818rtc.h>
955 #include <linux/rtc.h>
956 #include <asm/rtc.h>
957 
958 #define DEFAULT_RTC_INT_FREQ	64
959 #define DEFAULT_RTC_SHIFT	6
960 #define RTC_NUM_INTS		1
961 
962 static unsigned long hpet_rtc_flags;
963 static int hpet_prev_update_sec;
964 static struct rtc_time hpet_alarm_time;
965 static unsigned long hpet_pie_count;
966 static u32 hpet_t1_cmp;
967 static unsigned long hpet_default_delta;
968 static unsigned long hpet_pie_delta;
969 static unsigned long hpet_pie_limit;
970 
971 static rtc_irq_handler irq_handler;
972 
973 /*
974  * Check that the hpet counter c1 is ahead of the c2
975  */
976 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
977 {
978 	return (s32)(c2 - c1) < 0;
979 }
980 
981 /*
982  * Registers a IRQ handler.
983  */
984 int hpet_register_irq_handler(rtc_irq_handler handler)
985 {
986 	if (!is_hpet_enabled())
987 		return -ENODEV;
988 	if (irq_handler)
989 		return -EBUSY;
990 
991 	irq_handler = handler;
992 
993 	return 0;
994 }
995 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
996 
997 /*
998  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
999  * and does cleanup.
1000  */
1001 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1002 {
1003 	if (!is_hpet_enabled())
1004 		return;
1005 
1006 	irq_handler = NULL;
1007 	hpet_rtc_flags = 0;
1008 }
1009 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1010 
1011 /*
1012  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1013  * is not supported by all HPET implementations for timer 1.
1014  *
1015  * hpet_rtc_timer_init() is called when the rtc is initialized.
1016  */
1017 int hpet_rtc_timer_init(void)
1018 {
1019 	unsigned long cfg, cnt, delta, flags;
1020 
1021 	if (!is_hpet_enabled())
1022 		return 0;
1023 
1024 	if (!hpet_default_delta) {
1025 		uint64_t clc;
1026 
1027 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1028 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1029 		hpet_default_delta = (unsigned long) clc;
1030 	}
1031 
1032 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1033 		delta = hpet_default_delta;
1034 	else
1035 		delta = hpet_pie_delta;
1036 
1037 	local_irq_save(flags);
1038 
1039 	cnt = delta + hpet_readl(HPET_COUNTER);
1040 	hpet_writel(cnt, HPET_T1_CMP);
1041 	hpet_t1_cmp = cnt;
1042 
1043 	cfg = hpet_readl(HPET_T1_CFG);
1044 	cfg &= ~HPET_TN_PERIODIC;
1045 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1046 	hpet_writel(cfg, HPET_T1_CFG);
1047 
1048 	local_irq_restore(flags);
1049 
1050 	return 1;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1053 
1054 /*
1055  * The functions below are called from rtc driver.
1056  * Return 0 if HPET is not being used.
1057  * Otherwise do the necessary changes and return 1.
1058  */
1059 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1060 {
1061 	if (!is_hpet_enabled())
1062 		return 0;
1063 
1064 	hpet_rtc_flags &= ~bit_mask;
1065 	return 1;
1066 }
1067 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1068 
1069 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1070 {
1071 	unsigned long oldbits = hpet_rtc_flags;
1072 
1073 	if (!is_hpet_enabled())
1074 		return 0;
1075 
1076 	hpet_rtc_flags |= bit_mask;
1077 
1078 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1079 		hpet_prev_update_sec = -1;
1080 
1081 	if (!oldbits)
1082 		hpet_rtc_timer_init();
1083 
1084 	return 1;
1085 }
1086 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1087 
1088 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1089 			unsigned char sec)
1090 {
1091 	if (!is_hpet_enabled())
1092 		return 0;
1093 
1094 	hpet_alarm_time.tm_hour = hrs;
1095 	hpet_alarm_time.tm_min = min;
1096 	hpet_alarm_time.tm_sec = sec;
1097 
1098 	return 1;
1099 }
1100 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1101 
1102 int hpet_set_periodic_freq(unsigned long freq)
1103 {
1104 	uint64_t clc;
1105 
1106 	if (!is_hpet_enabled())
1107 		return 0;
1108 
1109 	if (freq <= DEFAULT_RTC_INT_FREQ)
1110 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1111 	else {
1112 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1113 		do_div(clc, freq);
1114 		clc >>= hpet_clockevent.shift;
1115 		hpet_pie_delta = (unsigned long) clc;
1116 	}
1117 	return 1;
1118 }
1119 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1120 
1121 int hpet_rtc_dropped_irq(void)
1122 {
1123 	return is_hpet_enabled();
1124 }
1125 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1126 
1127 static void hpet_rtc_timer_reinit(void)
1128 {
1129 	unsigned long cfg, delta;
1130 	int lost_ints = -1;
1131 
1132 	if (unlikely(!hpet_rtc_flags)) {
1133 		cfg = hpet_readl(HPET_T1_CFG);
1134 		cfg &= ~HPET_TN_ENABLE;
1135 		hpet_writel(cfg, HPET_T1_CFG);
1136 		return;
1137 	}
1138 
1139 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1140 		delta = hpet_default_delta;
1141 	else
1142 		delta = hpet_pie_delta;
1143 
1144 	/*
1145 	 * Increment the comparator value until we are ahead of the
1146 	 * current count.
1147 	 */
1148 	do {
1149 		hpet_t1_cmp += delta;
1150 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1151 		lost_ints++;
1152 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1153 
1154 	if (lost_ints) {
1155 		if (hpet_rtc_flags & RTC_PIE)
1156 			hpet_pie_count += lost_ints;
1157 		if (printk_ratelimit())
1158 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1159 				lost_ints);
1160 	}
1161 }
1162 
1163 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1164 {
1165 	struct rtc_time curr_time;
1166 	unsigned long rtc_int_flag = 0;
1167 
1168 	hpet_rtc_timer_reinit();
1169 	memset(&curr_time, 0, sizeof(struct rtc_time));
1170 
1171 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1172 		get_rtc_time(&curr_time);
1173 
1174 	if (hpet_rtc_flags & RTC_UIE &&
1175 	    curr_time.tm_sec != hpet_prev_update_sec) {
1176 		if (hpet_prev_update_sec >= 0)
1177 			rtc_int_flag = RTC_UF;
1178 		hpet_prev_update_sec = curr_time.tm_sec;
1179 	}
1180 
1181 	if (hpet_rtc_flags & RTC_PIE &&
1182 	    ++hpet_pie_count >= hpet_pie_limit) {
1183 		rtc_int_flag |= RTC_PF;
1184 		hpet_pie_count = 0;
1185 	}
1186 
1187 	if (hpet_rtc_flags & RTC_AIE &&
1188 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1189 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1190 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1191 			rtc_int_flag |= RTC_AF;
1192 
1193 	if (rtc_int_flag) {
1194 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1195 		if (irq_handler)
1196 			irq_handler(rtc_int_flag, dev_id);
1197 	}
1198 	return IRQ_HANDLED;
1199 }
1200 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1201 #endif
1202