xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision a2818ee4)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/export.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
15 
16 #include <asm/cpufeature.h>
17 #include <asm/irqdomain.h>
18 #include <asm/fixmap.h>
19 #include <asm/hpet.h>
20 #include <asm/time.h>
21 
22 #define HPET_MASK			CLOCKSOURCE_MASK(32)
23 
24 /* FSEC = 10^-15
25    NSEC = 10^-9 */
26 #define FSEC_PER_NSEC			1000000L
27 
28 #define HPET_DEV_USED_BIT		2
29 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
30 #define HPET_DEV_VALID			0x8
31 #define HPET_DEV_FSB_CAP		0x1000
32 #define HPET_DEV_PERI_CAP		0x2000
33 
34 #define HPET_MIN_CYCLES			128
35 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
36 
37 /*
38  * HPET address is set in acpi/boot.c, when an ACPI entry exists
39  */
40 unsigned long				hpet_address;
41 u8					hpet_blockid; /* OS timer block num */
42 bool					hpet_msi_disable;
43 
44 #ifdef CONFIG_PCI_MSI
45 static unsigned int			hpet_num_timers;
46 #endif
47 static void __iomem			*hpet_virt_address;
48 
49 struct hpet_dev {
50 	struct clock_event_device	evt;
51 	unsigned int			num;
52 	int				cpu;
53 	unsigned int			irq;
54 	unsigned int			flags;
55 	char				name[10];
56 };
57 
58 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
59 {
60 	return container_of(evtdev, struct hpet_dev, evt);
61 }
62 
63 inline unsigned int hpet_readl(unsigned int a)
64 {
65 	return readl(hpet_virt_address + a);
66 }
67 
68 static inline void hpet_writel(unsigned int d, unsigned int a)
69 {
70 	writel(d, hpet_virt_address + a);
71 }
72 
73 #ifdef CONFIG_X86_64
74 #include <asm/pgtable.h>
75 #endif
76 
77 static inline void hpet_set_mapping(void)
78 {
79 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
80 }
81 
82 static inline void hpet_clear_mapping(void)
83 {
84 	iounmap(hpet_virt_address);
85 	hpet_virt_address = NULL;
86 }
87 
88 /*
89  * HPET command line enable / disable
90  */
91 bool boot_hpet_disable;
92 bool hpet_force_user;
93 static bool hpet_verbose;
94 
95 static int __init hpet_setup(char *str)
96 {
97 	while (str) {
98 		char *next = strchr(str, ',');
99 
100 		if (next)
101 			*next++ = 0;
102 		if (!strncmp("disable", str, 7))
103 			boot_hpet_disable = true;
104 		if (!strncmp("force", str, 5))
105 			hpet_force_user = true;
106 		if (!strncmp("verbose", str, 7))
107 			hpet_verbose = true;
108 		str = next;
109 	}
110 	return 1;
111 }
112 __setup("hpet=", hpet_setup);
113 
114 static int __init disable_hpet(char *str)
115 {
116 	boot_hpet_disable = true;
117 	return 1;
118 }
119 __setup("nohpet", disable_hpet);
120 
121 static inline int is_hpet_capable(void)
122 {
123 	return !boot_hpet_disable && hpet_address;
124 }
125 
126 /*
127  * HPET timer interrupt enable / disable
128  */
129 static bool hpet_legacy_int_enabled;
130 
131 /**
132  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
133  */
134 int is_hpet_enabled(void)
135 {
136 	return is_hpet_capable() && hpet_legacy_int_enabled;
137 }
138 EXPORT_SYMBOL_GPL(is_hpet_enabled);
139 
140 static void _hpet_print_config(const char *function, int line)
141 {
142 	u32 i, timers, l, h;
143 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
144 	l = hpet_readl(HPET_ID);
145 	h = hpet_readl(HPET_PERIOD);
146 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
147 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
148 	l = hpet_readl(HPET_CFG);
149 	h = hpet_readl(HPET_STATUS);
150 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
151 	l = hpet_readl(HPET_COUNTER);
152 	h = hpet_readl(HPET_COUNTER+4);
153 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
154 
155 	for (i = 0; i < timers; i++) {
156 		l = hpet_readl(HPET_Tn_CFG(i));
157 		h = hpet_readl(HPET_Tn_CFG(i)+4);
158 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
159 		       i, l, h);
160 		l = hpet_readl(HPET_Tn_CMP(i));
161 		h = hpet_readl(HPET_Tn_CMP(i)+4);
162 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
163 		       i, l, h);
164 		l = hpet_readl(HPET_Tn_ROUTE(i));
165 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
166 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
167 		       i, l, h);
168 	}
169 }
170 
171 #define hpet_print_config()					\
172 do {								\
173 	if (hpet_verbose)					\
174 		_hpet_print_config(__func__, __LINE__);	\
175 } while (0)
176 
177 /*
178  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179  * timer 0 and timer 1 in case of RTC emulation.
180  */
181 #ifdef CONFIG_HPET
182 
183 static void hpet_reserve_msi_timers(struct hpet_data *hd);
184 
185 static void hpet_reserve_platform_timers(unsigned int id)
186 {
187 	struct hpet __iomem *hpet = hpet_virt_address;
188 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
189 	unsigned int nrtimers, i;
190 	struct hpet_data hd;
191 
192 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
193 
194 	memset(&hd, 0, sizeof(hd));
195 	hd.hd_phys_address	= hpet_address;
196 	hd.hd_address		= hpet;
197 	hd.hd_nirqs		= nrtimers;
198 	hpet_reserve_timer(&hd, 0);
199 
200 #ifdef CONFIG_HPET_EMULATE_RTC
201 	hpet_reserve_timer(&hd, 1);
202 #endif
203 
204 	/*
205 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
207 	 * don't bother configuring *any* comparator interrupts.
208 	 */
209 	hd.hd_irq[0] = HPET_LEGACY_8254;
210 	hd.hd_irq[1] = HPET_LEGACY_RTC;
211 
212 	for (i = 2; i < nrtimers; timer++, i++) {
213 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
214 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
215 	}
216 
217 	hpet_reserve_msi_timers(&hd);
218 
219 	hpet_alloc(&hd);
220 
221 }
222 #else
223 static void hpet_reserve_platform_timers(unsigned int id) { }
224 #endif
225 
226 /*
227  * Common hpet info
228  */
229 static unsigned long hpet_freq;
230 
231 static struct clock_event_device hpet_clockevent;
232 
233 static void hpet_stop_counter(void)
234 {
235 	u32 cfg = hpet_readl(HPET_CFG);
236 	cfg &= ~HPET_CFG_ENABLE;
237 	hpet_writel(cfg, HPET_CFG);
238 }
239 
240 static void hpet_reset_counter(void)
241 {
242 	hpet_writel(0, HPET_COUNTER);
243 	hpet_writel(0, HPET_COUNTER + 4);
244 }
245 
246 static void hpet_start_counter(void)
247 {
248 	unsigned int cfg = hpet_readl(HPET_CFG);
249 	cfg |= HPET_CFG_ENABLE;
250 	hpet_writel(cfg, HPET_CFG);
251 }
252 
253 static void hpet_restart_counter(void)
254 {
255 	hpet_stop_counter();
256 	hpet_reset_counter();
257 	hpet_start_counter();
258 }
259 
260 static void hpet_resume_device(void)
261 {
262 	force_hpet_resume();
263 }
264 
265 static void hpet_resume_counter(struct clocksource *cs)
266 {
267 	hpet_resume_device();
268 	hpet_restart_counter();
269 }
270 
271 static void hpet_enable_legacy_int(void)
272 {
273 	unsigned int cfg = hpet_readl(HPET_CFG);
274 
275 	cfg |= HPET_CFG_LEGACY;
276 	hpet_writel(cfg, HPET_CFG);
277 	hpet_legacy_int_enabled = true;
278 }
279 
280 static void hpet_legacy_clockevent_register(void)
281 {
282 	/* Start HPET legacy interrupts */
283 	hpet_enable_legacy_int();
284 
285 	/*
286 	 * Start hpet with the boot cpu mask and make it
287 	 * global after the IO_APIC has been initialized.
288 	 */
289 	hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
290 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
291 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
292 	global_clock_event = &hpet_clockevent;
293 	printk(KERN_DEBUG "hpet clockevent registered\n");
294 }
295 
296 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
297 {
298 	unsigned int cfg, cmp, now;
299 	uint64_t delta;
300 
301 	hpet_stop_counter();
302 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
303 	delta >>= evt->shift;
304 	now = hpet_readl(HPET_COUNTER);
305 	cmp = now + (unsigned int)delta;
306 	cfg = hpet_readl(HPET_Tn_CFG(timer));
307 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
308 	       HPET_TN_32BIT;
309 	hpet_writel(cfg, HPET_Tn_CFG(timer));
310 	hpet_writel(cmp, HPET_Tn_CMP(timer));
311 	udelay(1);
312 	/*
313 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 	 * bit is automatically cleared after the first write.
316 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 	 * Publication # 24674)
318 	 */
319 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
320 	hpet_start_counter();
321 	hpet_print_config();
322 
323 	return 0;
324 }
325 
326 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
327 {
328 	unsigned int cfg;
329 
330 	cfg = hpet_readl(HPET_Tn_CFG(timer));
331 	cfg &= ~HPET_TN_PERIODIC;
332 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
333 	hpet_writel(cfg, HPET_Tn_CFG(timer));
334 
335 	return 0;
336 }
337 
338 static int hpet_shutdown(struct clock_event_device *evt, int timer)
339 {
340 	unsigned int cfg;
341 
342 	cfg = hpet_readl(HPET_Tn_CFG(timer));
343 	cfg &= ~HPET_TN_ENABLE;
344 	hpet_writel(cfg, HPET_Tn_CFG(timer));
345 
346 	return 0;
347 }
348 
349 static int hpet_resume(struct clock_event_device *evt)
350 {
351 	hpet_enable_legacy_int();
352 	hpet_print_config();
353 	return 0;
354 }
355 
356 static int hpet_next_event(unsigned long delta,
357 			   struct clock_event_device *evt, int timer)
358 {
359 	u32 cnt;
360 	s32 res;
361 
362 	cnt = hpet_readl(HPET_COUNTER);
363 	cnt += (u32) delta;
364 	hpet_writel(cnt, HPET_Tn_CMP(timer));
365 
366 	/*
367 	 * HPETs are a complete disaster. The compare register is
368 	 * based on a equal comparison and neither provides a less
369 	 * than or equal functionality (which would require to take
370 	 * the wraparound into account) nor a simple count down event
371 	 * mode. Further the write to the comparator register is
372 	 * delayed internally up to two HPET clock cycles in certain
373 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
374 	 * longer delays. We worked around that by reading back the
375 	 * compare register, but that required another workaround for
376 	 * ICH9,10 chips where the first readout after write can
377 	 * return the old stale value. We already had a minimum
378 	 * programming delta of 5us enforced, but a NMI or SMI hitting
379 	 * between the counter readout and the comparator write can
380 	 * move us behind that point easily. Now instead of reading
381 	 * the compare register back several times, we make the ETIME
382 	 * decision based on the following: Return ETIME if the
383 	 * counter value after the write is less than HPET_MIN_CYCLES
384 	 * away from the event or if the counter is already ahead of
385 	 * the event. The minimum programming delta for the generic
386 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
387 	 */
388 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
389 
390 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
391 }
392 
393 static int hpet_legacy_shutdown(struct clock_event_device *evt)
394 {
395 	return hpet_shutdown(evt, 0);
396 }
397 
398 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
399 {
400 	return hpet_set_oneshot(evt, 0);
401 }
402 
403 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
404 {
405 	return hpet_set_periodic(evt, 0);
406 }
407 
408 static int hpet_legacy_resume(struct clock_event_device *evt)
409 {
410 	return hpet_resume(evt);
411 }
412 
413 static int hpet_legacy_next_event(unsigned long delta,
414 			struct clock_event_device *evt)
415 {
416 	return hpet_next_event(delta, evt, 0);
417 }
418 
419 /*
420  * The hpet clock event device
421  */
422 static struct clock_event_device hpet_clockevent = {
423 	.name			= "hpet",
424 	.features		= CLOCK_EVT_FEAT_PERIODIC |
425 				  CLOCK_EVT_FEAT_ONESHOT,
426 	.set_state_periodic	= hpet_legacy_set_periodic,
427 	.set_state_oneshot	= hpet_legacy_set_oneshot,
428 	.set_state_shutdown	= hpet_legacy_shutdown,
429 	.tick_resume		= hpet_legacy_resume,
430 	.set_next_event		= hpet_legacy_next_event,
431 	.irq			= 0,
432 	.rating			= 50,
433 };
434 
435 /*
436  * HPET MSI Support
437  */
438 #ifdef CONFIG_PCI_MSI
439 
440 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
441 static struct hpet_dev	*hpet_devs;
442 static struct irq_domain *hpet_domain;
443 
444 void hpet_msi_unmask(struct irq_data *data)
445 {
446 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
447 	unsigned int cfg;
448 
449 	/* unmask it */
450 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
451 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
452 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
453 }
454 
455 void hpet_msi_mask(struct irq_data *data)
456 {
457 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
458 	unsigned int cfg;
459 
460 	/* mask it */
461 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
462 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
463 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
464 }
465 
466 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
467 {
468 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
469 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
470 }
471 
472 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
473 {
474 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
475 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
476 	msg->address_hi = 0;
477 }
478 
479 static int hpet_msi_shutdown(struct clock_event_device *evt)
480 {
481 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
482 
483 	return hpet_shutdown(evt, hdev->num);
484 }
485 
486 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
487 {
488 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
489 
490 	return hpet_set_oneshot(evt, hdev->num);
491 }
492 
493 static int hpet_msi_set_periodic(struct clock_event_device *evt)
494 {
495 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
496 
497 	return hpet_set_periodic(evt, hdev->num);
498 }
499 
500 static int hpet_msi_resume(struct clock_event_device *evt)
501 {
502 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
503 	struct irq_data *data = irq_get_irq_data(hdev->irq);
504 	struct msi_msg msg;
505 
506 	/* Restore the MSI msg and unmask the interrupt */
507 	irq_chip_compose_msi_msg(data, &msg);
508 	hpet_msi_write(hdev, &msg);
509 	hpet_msi_unmask(data);
510 	return 0;
511 }
512 
513 static int hpet_msi_next_event(unsigned long delta,
514 				struct clock_event_device *evt)
515 {
516 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
517 	return hpet_next_event(delta, evt, hdev->num);
518 }
519 
520 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
521 {
522 	struct hpet_dev *dev = (struct hpet_dev *)data;
523 	struct clock_event_device *hevt = &dev->evt;
524 
525 	if (!hevt->event_handler) {
526 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
527 				dev->num);
528 		return IRQ_HANDLED;
529 	}
530 
531 	hevt->event_handler(hevt);
532 	return IRQ_HANDLED;
533 }
534 
535 static int hpet_setup_irq(struct hpet_dev *dev)
536 {
537 
538 	if (request_irq(dev->irq, hpet_interrupt_handler,
539 			IRQF_TIMER | IRQF_NOBALANCING,
540 			dev->name, dev))
541 		return -1;
542 
543 	disable_irq(dev->irq);
544 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
545 	enable_irq(dev->irq);
546 
547 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
548 			 dev->name, dev->irq);
549 
550 	return 0;
551 }
552 
553 /* This should be called in specific @cpu */
554 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
555 {
556 	struct clock_event_device *evt = &hdev->evt;
557 
558 	WARN_ON(cpu != smp_processor_id());
559 	if (!(hdev->flags & HPET_DEV_VALID))
560 		return;
561 
562 	hdev->cpu = cpu;
563 	per_cpu(cpu_hpet_dev, cpu) = hdev;
564 	evt->name = hdev->name;
565 	hpet_setup_irq(hdev);
566 	evt->irq = hdev->irq;
567 
568 	evt->rating = 110;
569 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
570 	if (hdev->flags & HPET_DEV_PERI_CAP) {
571 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
572 		evt->set_state_periodic = hpet_msi_set_periodic;
573 	}
574 
575 	evt->set_state_shutdown = hpet_msi_shutdown;
576 	evt->set_state_oneshot = hpet_msi_set_oneshot;
577 	evt->tick_resume = hpet_msi_resume;
578 	evt->set_next_event = hpet_msi_next_event;
579 	evt->cpumask = cpumask_of(hdev->cpu);
580 
581 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
582 					0x7FFFFFFF);
583 }
584 
585 #ifdef CONFIG_HPET
586 /* Reserve at least one timer for userspace (/dev/hpet) */
587 #define RESERVE_TIMERS 1
588 #else
589 #define RESERVE_TIMERS 0
590 #endif
591 
592 static void hpet_msi_capability_lookup(unsigned int start_timer)
593 {
594 	unsigned int id;
595 	unsigned int num_timers;
596 	unsigned int num_timers_used = 0;
597 	int i, irq;
598 
599 	if (hpet_msi_disable)
600 		return;
601 
602 	if (boot_cpu_has(X86_FEATURE_ARAT))
603 		return;
604 	id = hpet_readl(HPET_ID);
605 
606 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
607 	num_timers++; /* Value read out starts from 0 */
608 	hpet_print_config();
609 
610 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
611 	if (!hpet_domain)
612 		return;
613 
614 	hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL);
615 	if (!hpet_devs)
616 		return;
617 
618 	hpet_num_timers = num_timers;
619 
620 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
621 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
622 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
623 
624 		/* Only consider HPET timer with MSI support */
625 		if (!(cfg & HPET_TN_FSB_CAP))
626 			continue;
627 
628 		hdev->flags = 0;
629 		if (cfg & HPET_TN_PERIODIC_CAP)
630 			hdev->flags |= HPET_DEV_PERI_CAP;
631 		sprintf(hdev->name, "hpet%d", i);
632 		hdev->num = i;
633 
634 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
635 		if (irq <= 0)
636 			continue;
637 
638 		hdev->irq = irq;
639 		hdev->flags |= HPET_DEV_FSB_CAP;
640 		hdev->flags |= HPET_DEV_VALID;
641 		num_timers_used++;
642 		if (num_timers_used == num_possible_cpus())
643 			break;
644 	}
645 
646 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
647 		num_timers, num_timers_used);
648 }
649 
650 #ifdef CONFIG_HPET
651 static void hpet_reserve_msi_timers(struct hpet_data *hd)
652 {
653 	int i;
654 
655 	if (!hpet_devs)
656 		return;
657 
658 	for (i = 0; i < hpet_num_timers; i++) {
659 		struct hpet_dev *hdev = &hpet_devs[i];
660 
661 		if (!(hdev->flags & HPET_DEV_VALID))
662 			continue;
663 
664 		hd->hd_irq[hdev->num] = hdev->irq;
665 		hpet_reserve_timer(hd, hdev->num);
666 	}
667 }
668 #endif
669 
670 static struct hpet_dev *hpet_get_unused_timer(void)
671 {
672 	int i;
673 
674 	if (!hpet_devs)
675 		return NULL;
676 
677 	for (i = 0; i < hpet_num_timers; i++) {
678 		struct hpet_dev *hdev = &hpet_devs[i];
679 
680 		if (!(hdev->flags & HPET_DEV_VALID))
681 			continue;
682 		if (test_and_set_bit(HPET_DEV_USED_BIT,
683 			(unsigned long *)&hdev->flags))
684 			continue;
685 		return hdev;
686 	}
687 	return NULL;
688 }
689 
690 struct hpet_work_struct {
691 	struct delayed_work work;
692 	struct completion complete;
693 };
694 
695 static void hpet_work(struct work_struct *w)
696 {
697 	struct hpet_dev *hdev;
698 	int cpu = smp_processor_id();
699 	struct hpet_work_struct *hpet_work;
700 
701 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
702 
703 	hdev = hpet_get_unused_timer();
704 	if (hdev)
705 		init_one_hpet_msi_clockevent(hdev, cpu);
706 
707 	complete(&hpet_work->complete);
708 }
709 
710 static int hpet_cpuhp_online(unsigned int cpu)
711 {
712 	struct hpet_work_struct work;
713 
714 	INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
715 	init_completion(&work.complete);
716 	/* FIXME: add schedule_work_on() */
717 	schedule_delayed_work_on(cpu, &work.work, 0);
718 	wait_for_completion(&work.complete);
719 	destroy_delayed_work_on_stack(&work.work);
720 	return 0;
721 }
722 
723 static int hpet_cpuhp_dead(unsigned int cpu)
724 {
725 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
726 
727 	if (!hdev)
728 		return 0;
729 	free_irq(hdev->irq, hdev);
730 	hdev->flags &= ~HPET_DEV_USED;
731 	per_cpu(cpu_hpet_dev, cpu) = NULL;
732 	return 0;
733 }
734 #else
735 
736 static void hpet_msi_capability_lookup(unsigned int start_timer)
737 {
738 	return;
739 }
740 
741 #ifdef CONFIG_HPET
742 static void hpet_reserve_msi_timers(struct hpet_data *hd)
743 {
744 	return;
745 }
746 #endif
747 
748 #define hpet_cpuhp_online	NULL
749 #define hpet_cpuhp_dead		NULL
750 
751 #endif
752 
753 /*
754  * Clock source related code
755  */
756 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
757 /*
758  * Reading the HPET counter is a very slow operation. If a large number of
759  * CPUs are trying to access the HPET counter simultaneously, it can cause
760  * massive delay and slow down system performance dramatically. This may
761  * happen when HPET is the default clock source instead of TSC. For a
762  * really large system with hundreds of CPUs, the slowdown may be so
763  * severe that it may actually crash the system because of a NMI watchdog
764  * soft lockup, for example.
765  *
766  * If multiple CPUs are trying to access the HPET counter at the same time,
767  * we don't actually need to read the counter multiple times. Instead, the
768  * other CPUs can use the counter value read by the first CPU in the group.
769  *
770  * This special feature is only enabled on x86-64 systems. It is unlikely
771  * that 32-bit x86 systems will have enough CPUs to require this feature
772  * with its associated locking overhead. And we also need 64-bit atomic
773  * read.
774  *
775  * The lock and the hpet value are stored together and can be read in a
776  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
777  * is 32 bits in size.
778  */
779 union hpet_lock {
780 	struct {
781 		arch_spinlock_t lock;
782 		u32 value;
783 	};
784 	u64 lockval;
785 };
786 
787 static union hpet_lock hpet __cacheline_aligned = {
788 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
789 };
790 
791 static u64 read_hpet(struct clocksource *cs)
792 {
793 	unsigned long flags;
794 	union hpet_lock old, new;
795 
796 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
797 
798 	/*
799 	 * Read HPET directly if in NMI.
800 	 */
801 	if (in_nmi())
802 		return (u64)hpet_readl(HPET_COUNTER);
803 
804 	/*
805 	 * Read the current state of the lock and HPET value atomically.
806 	 */
807 	old.lockval = READ_ONCE(hpet.lockval);
808 
809 	if (arch_spin_is_locked(&old.lock))
810 		goto contended;
811 
812 	local_irq_save(flags);
813 	if (arch_spin_trylock(&hpet.lock)) {
814 		new.value = hpet_readl(HPET_COUNTER);
815 		/*
816 		 * Use WRITE_ONCE() to prevent store tearing.
817 		 */
818 		WRITE_ONCE(hpet.value, new.value);
819 		arch_spin_unlock(&hpet.lock);
820 		local_irq_restore(flags);
821 		return (u64)new.value;
822 	}
823 	local_irq_restore(flags);
824 
825 contended:
826 	/*
827 	 * Contended case
828 	 * --------------
829 	 * Wait until the HPET value change or the lock is free to indicate
830 	 * its value is up-to-date.
831 	 *
832 	 * It is possible that old.value has already contained the latest
833 	 * HPET value while the lock holder was in the process of releasing
834 	 * the lock. Checking for lock state change will enable us to return
835 	 * the value immediately instead of waiting for the next HPET reader
836 	 * to come along.
837 	 */
838 	do {
839 		cpu_relax();
840 		new.lockval = READ_ONCE(hpet.lockval);
841 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
842 
843 	return (u64)new.value;
844 }
845 #else
846 /*
847  * For UP or 32-bit.
848  */
849 static u64 read_hpet(struct clocksource *cs)
850 {
851 	return (u64)hpet_readl(HPET_COUNTER);
852 }
853 #endif
854 
855 static struct clocksource clocksource_hpet = {
856 	.name		= "hpet",
857 	.rating		= 250,
858 	.read		= read_hpet,
859 	.mask		= HPET_MASK,
860 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
861 	.resume		= hpet_resume_counter,
862 };
863 
864 static int hpet_clocksource_register(void)
865 {
866 	u64 start, now;
867 	u64 t1;
868 
869 	/* Start the counter */
870 	hpet_restart_counter();
871 
872 	/* Verify whether hpet counter works */
873 	t1 = hpet_readl(HPET_COUNTER);
874 	start = rdtsc();
875 
876 	/*
877 	 * We don't know the TSC frequency yet, but waiting for
878 	 * 200000 TSC cycles is safe:
879 	 * 4 GHz == 50us
880 	 * 1 GHz == 200us
881 	 */
882 	do {
883 		rep_nop();
884 		now = rdtsc();
885 	} while ((now - start) < 200000UL);
886 
887 	if (t1 == hpet_readl(HPET_COUNTER)) {
888 		printk(KERN_WARNING
889 		       "HPET counter not counting. HPET disabled\n");
890 		return -ENODEV;
891 	}
892 
893 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
894 	return 0;
895 }
896 
897 static u32 *hpet_boot_cfg;
898 
899 /**
900  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
901  */
902 int __init hpet_enable(void)
903 {
904 	u32 hpet_period, cfg, id;
905 	u64 freq;
906 	unsigned int i, last;
907 
908 	if (!is_hpet_capable())
909 		return 0;
910 
911 	hpet_set_mapping();
912 
913 	/*
914 	 * Read the period and check for a sane value:
915 	 */
916 	hpet_period = hpet_readl(HPET_PERIOD);
917 
918 	/*
919 	 * AMD SB700 based systems with spread spectrum enabled use a
920 	 * SMM based HPET emulation to provide proper frequency
921 	 * setting. The SMM code is initialized with the first HPET
922 	 * register access and takes some time to complete. During
923 	 * this time the config register reads 0xffffffff. We check
924 	 * for max. 1000 loops whether the config register reads a non
925 	 * 0xffffffff value to make sure that HPET is up and running
926 	 * before we go further. A counting loop is safe, as the HPET
927 	 * access takes thousands of CPU cycles. On non SB700 based
928 	 * machines this check is only done once and has no side
929 	 * effects.
930 	 */
931 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
932 		if (i == 1000) {
933 			printk(KERN_WARNING
934 			       "HPET config register value = 0xFFFFFFFF. "
935 			       "Disabling HPET\n");
936 			goto out_nohpet;
937 		}
938 	}
939 
940 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
941 		goto out_nohpet;
942 
943 	/*
944 	 * The period is a femto seconds value. Convert it to a
945 	 * frequency.
946 	 */
947 	freq = FSEC_PER_SEC;
948 	do_div(freq, hpet_period);
949 	hpet_freq = freq;
950 
951 	/*
952 	 * Read the HPET ID register to retrieve the IRQ routing
953 	 * information and the number of channels
954 	 */
955 	id = hpet_readl(HPET_ID);
956 	hpet_print_config();
957 
958 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
959 
960 #ifdef CONFIG_HPET_EMULATE_RTC
961 	/*
962 	 * The legacy routing mode needs at least two channels, tick timer
963 	 * and the rtc emulation channel.
964 	 */
965 	if (!last)
966 		goto out_nohpet;
967 #endif
968 
969 	cfg = hpet_readl(HPET_CFG);
970 	hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg),
971 				      GFP_KERNEL);
972 	if (hpet_boot_cfg)
973 		*hpet_boot_cfg = cfg;
974 	else
975 		pr_warn("HPET initial state will not be saved\n");
976 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
977 	hpet_writel(cfg, HPET_CFG);
978 	if (cfg)
979 		pr_warn("Unrecognized bits %#x set in global cfg\n", cfg);
980 
981 	for (i = 0; i <= last; ++i) {
982 		cfg = hpet_readl(HPET_Tn_CFG(i));
983 		if (hpet_boot_cfg)
984 			hpet_boot_cfg[i + 1] = cfg;
985 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
986 		hpet_writel(cfg, HPET_Tn_CFG(i));
987 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
988 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
989 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
990 		if (cfg)
991 			pr_warn("Unrecognized bits %#x set in cfg#%u\n",
992 				cfg, i);
993 	}
994 	hpet_print_config();
995 
996 	if (hpet_clocksource_register())
997 		goto out_nohpet;
998 
999 	if (id & HPET_ID_LEGSUP) {
1000 		hpet_legacy_clockevent_register();
1001 		return 1;
1002 	}
1003 	return 0;
1004 
1005 out_nohpet:
1006 	hpet_clear_mapping();
1007 	hpet_address = 0;
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Needs to be late, as the reserve_timer code calls kalloc !
1013  *
1014  * Not a problem on i386 as hpet_enable is called from late_time_init,
1015  * but on x86_64 it is necessary !
1016  */
1017 static __init int hpet_late_init(void)
1018 {
1019 	int ret;
1020 
1021 	if (boot_hpet_disable)
1022 		return -ENODEV;
1023 
1024 	if (!hpet_address) {
1025 		if (!force_hpet_address)
1026 			return -ENODEV;
1027 
1028 		hpet_address = force_hpet_address;
1029 		hpet_enable();
1030 	}
1031 
1032 	if (!hpet_virt_address)
1033 		return -ENODEV;
1034 
1035 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1036 		hpet_msi_capability_lookup(2);
1037 	else
1038 		hpet_msi_capability_lookup(0);
1039 
1040 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1041 	hpet_print_config();
1042 
1043 	if (hpet_msi_disable)
1044 		return 0;
1045 
1046 	if (boot_cpu_has(X86_FEATURE_ARAT))
1047 		return 0;
1048 
1049 	/* This notifier should be called after workqueue is ready */
1050 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1051 				hpet_cpuhp_online, NULL);
1052 	if (ret)
1053 		return ret;
1054 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1055 				hpet_cpuhp_dead);
1056 	if (ret)
1057 		goto err_cpuhp;
1058 	return 0;
1059 
1060 err_cpuhp:
1061 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1062 	return ret;
1063 }
1064 fs_initcall(hpet_late_init);
1065 
1066 void hpet_disable(void)
1067 {
1068 	if (is_hpet_capable() && hpet_virt_address) {
1069 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1070 
1071 		if (hpet_boot_cfg)
1072 			cfg = *hpet_boot_cfg;
1073 		else if (hpet_legacy_int_enabled) {
1074 			cfg &= ~HPET_CFG_LEGACY;
1075 			hpet_legacy_int_enabled = false;
1076 		}
1077 		cfg &= ~HPET_CFG_ENABLE;
1078 		hpet_writel(cfg, HPET_CFG);
1079 
1080 		if (!hpet_boot_cfg)
1081 			return;
1082 
1083 		id = hpet_readl(HPET_ID);
1084 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1085 
1086 		for (id = 0; id <= last; ++id)
1087 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1088 
1089 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1090 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1091 	}
1092 }
1093 
1094 #ifdef CONFIG_HPET_EMULATE_RTC
1095 
1096 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1097  * is enabled, we support RTC interrupt functionality in software.
1098  * RTC has 3 kinds of interrupts:
1099  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1100  *    is updated
1101  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1102  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1103  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1104  * (1) and (2) above are implemented using polling at a frequency of
1105  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1106  * overhead. (DEFAULT_RTC_INT_FREQ)
1107  * For (3), we use interrupts at 64Hz or user specified periodic
1108  * frequency, whichever is higher.
1109  */
1110 #include <linux/mc146818rtc.h>
1111 #include <linux/rtc.h>
1112 
1113 #define DEFAULT_RTC_INT_FREQ	64
1114 #define DEFAULT_RTC_SHIFT	6
1115 #define RTC_NUM_INTS		1
1116 
1117 static unsigned long hpet_rtc_flags;
1118 static int hpet_prev_update_sec;
1119 static struct rtc_time hpet_alarm_time;
1120 static unsigned long hpet_pie_count;
1121 static u32 hpet_t1_cmp;
1122 static u32 hpet_default_delta;
1123 static u32 hpet_pie_delta;
1124 static unsigned long hpet_pie_limit;
1125 
1126 static rtc_irq_handler irq_handler;
1127 
1128 /*
1129  * Check that the hpet counter c1 is ahead of the c2
1130  */
1131 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1132 {
1133 	return (s32)(c2 - c1) < 0;
1134 }
1135 
1136 /*
1137  * Registers a IRQ handler.
1138  */
1139 int hpet_register_irq_handler(rtc_irq_handler handler)
1140 {
1141 	if (!is_hpet_enabled())
1142 		return -ENODEV;
1143 	if (irq_handler)
1144 		return -EBUSY;
1145 
1146 	irq_handler = handler;
1147 
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1151 
1152 /*
1153  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1154  * and does cleanup.
1155  */
1156 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1157 {
1158 	if (!is_hpet_enabled())
1159 		return;
1160 
1161 	irq_handler = NULL;
1162 	hpet_rtc_flags = 0;
1163 }
1164 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1165 
1166 /*
1167  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1168  * is not supported by all HPET implementations for timer 1.
1169  *
1170  * hpet_rtc_timer_init() is called when the rtc is initialized.
1171  */
1172 int hpet_rtc_timer_init(void)
1173 {
1174 	unsigned int cfg, cnt, delta;
1175 	unsigned long flags;
1176 
1177 	if (!is_hpet_enabled())
1178 		return 0;
1179 
1180 	if (!hpet_default_delta) {
1181 		uint64_t clc;
1182 
1183 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1184 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1185 		hpet_default_delta = clc;
1186 	}
1187 
1188 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1189 		delta = hpet_default_delta;
1190 	else
1191 		delta = hpet_pie_delta;
1192 
1193 	local_irq_save(flags);
1194 
1195 	cnt = delta + hpet_readl(HPET_COUNTER);
1196 	hpet_writel(cnt, HPET_T1_CMP);
1197 	hpet_t1_cmp = cnt;
1198 
1199 	cfg = hpet_readl(HPET_T1_CFG);
1200 	cfg &= ~HPET_TN_PERIODIC;
1201 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1202 	hpet_writel(cfg, HPET_T1_CFG);
1203 
1204 	local_irq_restore(flags);
1205 
1206 	return 1;
1207 }
1208 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1209 
1210 static void hpet_disable_rtc_channel(void)
1211 {
1212 	u32 cfg = hpet_readl(HPET_T1_CFG);
1213 	cfg &= ~HPET_TN_ENABLE;
1214 	hpet_writel(cfg, HPET_T1_CFG);
1215 }
1216 
1217 /*
1218  * The functions below are called from rtc driver.
1219  * Return 0 if HPET is not being used.
1220  * Otherwise do the necessary changes and return 1.
1221  */
1222 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1223 {
1224 	if (!is_hpet_enabled())
1225 		return 0;
1226 
1227 	hpet_rtc_flags &= ~bit_mask;
1228 	if (unlikely(!hpet_rtc_flags))
1229 		hpet_disable_rtc_channel();
1230 
1231 	return 1;
1232 }
1233 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1234 
1235 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1236 {
1237 	unsigned long oldbits = hpet_rtc_flags;
1238 
1239 	if (!is_hpet_enabled())
1240 		return 0;
1241 
1242 	hpet_rtc_flags |= bit_mask;
1243 
1244 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1245 		hpet_prev_update_sec = -1;
1246 
1247 	if (!oldbits)
1248 		hpet_rtc_timer_init();
1249 
1250 	return 1;
1251 }
1252 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1253 
1254 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1255 			unsigned char sec)
1256 {
1257 	if (!is_hpet_enabled())
1258 		return 0;
1259 
1260 	hpet_alarm_time.tm_hour = hrs;
1261 	hpet_alarm_time.tm_min = min;
1262 	hpet_alarm_time.tm_sec = sec;
1263 
1264 	return 1;
1265 }
1266 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1267 
1268 int hpet_set_periodic_freq(unsigned long freq)
1269 {
1270 	uint64_t clc;
1271 
1272 	if (!is_hpet_enabled())
1273 		return 0;
1274 
1275 	if (freq <= DEFAULT_RTC_INT_FREQ)
1276 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1277 	else {
1278 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1279 		do_div(clc, freq);
1280 		clc >>= hpet_clockevent.shift;
1281 		hpet_pie_delta = clc;
1282 		hpet_pie_limit = 0;
1283 	}
1284 	return 1;
1285 }
1286 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1287 
1288 int hpet_rtc_dropped_irq(void)
1289 {
1290 	return is_hpet_enabled();
1291 }
1292 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1293 
1294 static void hpet_rtc_timer_reinit(void)
1295 {
1296 	unsigned int delta;
1297 	int lost_ints = -1;
1298 
1299 	if (unlikely(!hpet_rtc_flags))
1300 		hpet_disable_rtc_channel();
1301 
1302 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1303 		delta = hpet_default_delta;
1304 	else
1305 		delta = hpet_pie_delta;
1306 
1307 	/*
1308 	 * Increment the comparator value until we are ahead of the
1309 	 * current count.
1310 	 */
1311 	do {
1312 		hpet_t1_cmp += delta;
1313 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1314 		lost_ints++;
1315 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1316 
1317 	if (lost_ints) {
1318 		if (hpet_rtc_flags & RTC_PIE)
1319 			hpet_pie_count += lost_ints;
1320 		if (printk_ratelimit())
1321 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1322 				lost_ints);
1323 	}
1324 }
1325 
1326 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1327 {
1328 	struct rtc_time curr_time;
1329 	unsigned long rtc_int_flag = 0;
1330 
1331 	hpet_rtc_timer_reinit();
1332 	memset(&curr_time, 0, sizeof(struct rtc_time));
1333 
1334 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1335 		mc146818_get_time(&curr_time);
1336 
1337 	if (hpet_rtc_flags & RTC_UIE &&
1338 	    curr_time.tm_sec != hpet_prev_update_sec) {
1339 		if (hpet_prev_update_sec >= 0)
1340 			rtc_int_flag = RTC_UF;
1341 		hpet_prev_update_sec = curr_time.tm_sec;
1342 	}
1343 
1344 	if (hpet_rtc_flags & RTC_PIE &&
1345 	    ++hpet_pie_count >= hpet_pie_limit) {
1346 		rtc_int_flag |= RTC_PF;
1347 		hpet_pie_count = 0;
1348 	}
1349 
1350 	if (hpet_rtc_flags & RTC_AIE &&
1351 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1352 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1353 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1354 			rtc_int_flag |= RTC_AF;
1355 
1356 	if (rtc_int_flag) {
1357 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1358 		if (irq_handler)
1359 			irq_handler(rtc_int_flag, dev_id);
1360 	}
1361 	return IRQ_HANDLED;
1362 }
1363 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1364 #endif
1365