xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision a1e58bbd)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
14 
15 #define HPET_MASK	CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT	22
17 
18 /* FSEC = 10^-15
19    NSEC = 10^-9 */
20 #define FSEC_PER_NSEC	1000000
21 
22 /*
23  * HPET address is set in acpi/boot.c, when an ACPI entry exists
24  */
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
27 
28 unsigned long hpet_readl(unsigned long a)
29 {
30 	return readl(hpet_virt_address + a);
31 }
32 
33 static inline void hpet_writel(unsigned long d, unsigned long a)
34 {
35 	writel(d, hpet_virt_address + a);
36 }
37 
38 #ifdef CONFIG_X86_64
39 
40 #include <asm/pgtable.h>
41 
42 static inline void hpet_set_mapping(void)
43 {
44 	set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 	hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
47 }
48 
49 static inline void hpet_clear_mapping(void)
50 {
51 	hpet_virt_address = NULL;
52 }
53 
54 #else
55 
56 static inline void hpet_set_mapping(void)
57 {
58 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
59 }
60 
61 static inline void hpet_clear_mapping(void)
62 {
63 	iounmap(hpet_virt_address);
64 	hpet_virt_address = NULL;
65 }
66 #endif
67 
68 /*
69  * HPET command line enable / disable
70  */
71 static int boot_hpet_disable;
72 int hpet_force_user;
73 
74 static int __init hpet_setup(char* str)
75 {
76 	if (str) {
77 		if (!strncmp("disable", str, 7))
78 			boot_hpet_disable = 1;
79 		if (!strncmp("force", str, 5))
80 			hpet_force_user = 1;
81 	}
82 	return 1;
83 }
84 __setup("hpet=", hpet_setup);
85 
86 static int __init disable_hpet(char *str)
87 {
88 	boot_hpet_disable = 1;
89 	return 1;
90 }
91 __setup("nohpet", disable_hpet);
92 
93 static inline int is_hpet_capable(void)
94 {
95 	return (!boot_hpet_disable && hpet_address);
96 }
97 
98 /*
99  * HPET timer interrupt enable / disable
100  */
101 static int hpet_legacy_int_enabled;
102 
103 /**
104  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
105  */
106 int is_hpet_enabled(void)
107 {
108 	return is_hpet_capable() && hpet_legacy_int_enabled;
109 }
110 EXPORT_SYMBOL_GPL(is_hpet_enabled);
111 
112 /*
113  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
114  * timer 0 and timer 1 in case of RTC emulation.
115  */
116 #ifdef CONFIG_HPET
117 static void hpet_reserve_platform_timers(unsigned long id)
118 {
119 	struct hpet __iomem *hpet = hpet_virt_address;
120 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
121 	unsigned int nrtimers, i;
122 	struct hpet_data hd;
123 
124 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
125 
126 	memset(&hd, 0, sizeof (hd));
127 	hd.hd_phys_address = hpet_address;
128 	hd.hd_address = hpet;
129 	hd.hd_nirqs = nrtimers;
130 	hd.hd_flags = HPET_DATA_PLATFORM;
131 	hpet_reserve_timer(&hd, 0);
132 
133 #ifdef CONFIG_HPET_EMULATE_RTC
134 	hpet_reserve_timer(&hd, 1);
135 #endif
136 
137 	hd.hd_irq[0] = HPET_LEGACY_8254;
138 	hd.hd_irq[1] = HPET_LEGACY_RTC;
139 
140 	for (i = 2; i < nrtimers; timer++, i++)
141 		hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
142 			Tn_INT_ROUTE_CNF_SHIFT;
143 
144 	hpet_alloc(&hd);
145 
146 }
147 #else
148 static void hpet_reserve_platform_timers(unsigned long id) { }
149 #endif
150 
151 /*
152  * Common hpet info
153  */
154 static unsigned long hpet_period;
155 
156 static void hpet_legacy_set_mode(enum clock_event_mode mode,
157 			  struct clock_event_device *evt);
158 static int hpet_legacy_next_event(unsigned long delta,
159 			   struct clock_event_device *evt);
160 
161 /*
162  * The hpet clock event device
163  */
164 static struct clock_event_device hpet_clockevent = {
165 	.name		= "hpet",
166 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
167 	.set_mode	= hpet_legacy_set_mode,
168 	.set_next_event = hpet_legacy_next_event,
169 	.shift		= 32,
170 	.irq		= 0,
171 	.rating		= 50,
172 };
173 
174 static void hpet_start_counter(void)
175 {
176 	unsigned long cfg = hpet_readl(HPET_CFG);
177 
178 	cfg &= ~HPET_CFG_ENABLE;
179 	hpet_writel(cfg, HPET_CFG);
180 	hpet_writel(0, HPET_COUNTER);
181 	hpet_writel(0, HPET_COUNTER + 4);
182 	cfg |= HPET_CFG_ENABLE;
183 	hpet_writel(cfg, HPET_CFG);
184 }
185 
186 static void hpet_resume_device(void)
187 {
188 	force_hpet_resume();
189 }
190 
191 static void hpet_restart_counter(void)
192 {
193 	hpet_resume_device();
194 	hpet_start_counter();
195 }
196 
197 static void hpet_enable_legacy_int(void)
198 {
199 	unsigned long cfg = hpet_readl(HPET_CFG);
200 
201 	cfg |= HPET_CFG_LEGACY;
202 	hpet_writel(cfg, HPET_CFG);
203 	hpet_legacy_int_enabled = 1;
204 }
205 
206 static void hpet_legacy_clockevent_register(void)
207 {
208 	uint64_t hpet_freq;
209 
210 	/* Start HPET legacy interrupts */
211 	hpet_enable_legacy_int();
212 
213 	/*
214 	 * The period is a femto seconds value. We need to calculate the
215 	 * scaled math multiplication factor for nanosecond to hpet tick
216 	 * conversion.
217 	 */
218 	hpet_freq = 1000000000000000ULL;
219 	do_div(hpet_freq, hpet_period);
220 	hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
221 				      NSEC_PER_SEC, 32);
222 	/* Calculate the min / max delta */
223 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
224 							   &hpet_clockevent);
225 	hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
226 							   &hpet_clockevent);
227 
228 	/*
229 	 * Start hpet with the boot cpu mask and make it
230 	 * global after the IO_APIC has been initialized.
231 	 */
232 	hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
233 	clockevents_register_device(&hpet_clockevent);
234 	global_clock_event = &hpet_clockevent;
235 	printk(KERN_DEBUG "hpet clockevent registered\n");
236 }
237 
238 static void hpet_legacy_set_mode(enum clock_event_mode mode,
239 			  struct clock_event_device *evt)
240 {
241 	unsigned long cfg, cmp, now;
242 	uint64_t delta;
243 
244 	switch(mode) {
245 	case CLOCK_EVT_MODE_PERIODIC:
246 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
247 		delta >>= hpet_clockevent.shift;
248 		now = hpet_readl(HPET_COUNTER);
249 		cmp = now + (unsigned long) delta;
250 		cfg = hpet_readl(HPET_T0_CFG);
251 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
252 		       HPET_TN_SETVAL | HPET_TN_32BIT;
253 		hpet_writel(cfg, HPET_T0_CFG);
254 		/*
255 		 * The first write after writing TN_SETVAL to the
256 		 * config register sets the counter value, the second
257 		 * write sets the period.
258 		 */
259 		hpet_writel(cmp, HPET_T0_CMP);
260 		udelay(1);
261 		hpet_writel((unsigned long) delta, HPET_T0_CMP);
262 		break;
263 
264 	case CLOCK_EVT_MODE_ONESHOT:
265 		cfg = hpet_readl(HPET_T0_CFG);
266 		cfg &= ~HPET_TN_PERIODIC;
267 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
268 		hpet_writel(cfg, HPET_T0_CFG);
269 		break;
270 
271 	case CLOCK_EVT_MODE_UNUSED:
272 	case CLOCK_EVT_MODE_SHUTDOWN:
273 		cfg = hpet_readl(HPET_T0_CFG);
274 		cfg &= ~HPET_TN_ENABLE;
275 		hpet_writel(cfg, HPET_T0_CFG);
276 		break;
277 
278 	case CLOCK_EVT_MODE_RESUME:
279 		hpet_enable_legacy_int();
280 		break;
281 	}
282 }
283 
284 static int hpet_legacy_next_event(unsigned long delta,
285 			   struct clock_event_device *evt)
286 {
287 	unsigned long cnt;
288 
289 	cnt = hpet_readl(HPET_COUNTER);
290 	cnt += delta;
291 	hpet_writel(cnt, HPET_T0_CMP);
292 
293 	return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
294 }
295 
296 /*
297  * Clock source related code
298  */
299 static cycle_t read_hpet(void)
300 {
301 	return (cycle_t)hpet_readl(HPET_COUNTER);
302 }
303 
304 #ifdef CONFIG_X86_64
305 static cycle_t __vsyscall_fn vread_hpet(void)
306 {
307 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
308 }
309 #endif
310 
311 static struct clocksource clocksource_hpet = {
312 	.name		= "hpet",
313 	.rating		= 250,
314 	.read		= read_hpet,
315 	.mask		= HPET_MASK,
316 	.shift		= HPET_SHIFT,
317 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
318 	.resume		= hpet_restart_counter,
319 #ifdef CONFIG_X86_64
320 	.vread		= vread_hpet,
321 #endif
322 };
323 
324 static int hpet_clocksource_register(void)
325 {
326 	u64 tmp, start, now;
327 	cycle_t t1;
328 
329 	/* Start the counter */
330 	hpet_start_counter();
331 
332 	/* Verify whether hpet counter works */
333 	t1 = read_hpet();
334 	rdtscll(start);
335 
336 	/*
337 	 * We don't know the TSC frequency yet, but waiting for
338 	 * 200000 TSC cycles is safe:
339 	 * 4 GHz == 50us
340 	 * 1 GHz == 200us
341 	 */
342 	do {
343 		rep_nop();
344 		rdtscll(now);
345 	} while ((now - start) < 200000UL);
346 
347 	if (t1 == read_hpet()) {
348 		printk(KERN_WARNING
349 		       "HPET counter not counting. HPET disabled\n");
350 		return -ENODEV;
351 	}
352 
353 	/* Initialize and register HPET clocksource
354 	 *
355 	 * hpet period is in femto seconds per cycle
356 	 * so we need to convert this to ns/cyc units
357 	 * approximated by mult/2^shift
358 	 *
359 	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
360 	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
361 	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
362 	 *  (fsec/cyc << shift)/1000000 = mult
363 	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
364 	 */
365 	tmp = (u64)hpet_period << HPET_SHIFT;
366 	do_div(tmp, FSEC_PER_NSEC);
367 	clocksource_hpet.mult = (u32)tmp;
368 
369 	clocksource_register(&clocksource_hpet);
370 
371 	return 0;
372 }
373 
374 /**
375  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
376  */
377 int __init hpet_enable(void)
378 {
379 	unsigned long id;
380 
381 	if (!is_hpet_capable())
382 		return 0;
383 
384 	hpet_set_mapping();
385 
386 	/*
387 	 * Read the period and check for a sane value:
388 	 */
389 	hpet_period = hpet_readl(HPET_PERIOD);
390 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
391 		goto out_nohpet;
392 
393 	/*
394 	 * Read the HPET ID register to retrieve the IRQ routing
395 	 * information and the number of channels
396 	 */
397 	id = hpet_readl(HPET_ID);
398 
399 #ifdef CONFIG_HPET_EMULATE_RTC
400 	/*
401 	 * The legacy routing mode needs at least two channels, tick timer
402 	 * and the rtc emulation channel.
403 	 */
404 	if (!(id & HPET_ID_NUMBER))
405 		goto out_nohpet;
406 #endif
407 
408 	if (hpet_clocksource_register())
409 		goto out_nohpet;
410 
411 	if (id & HPET_ID_LEGSUP) {
412 		hpet_legacy_clockevent_register();
413 		return 1;
414 	}
415 	return 0;
416 
417 out_nohpet:
418 	hpet_clear_mapping();
419 	boot_hpet_disable = 1;
420 	return 0;
421 }
422 
423 /*
424  * Needs to be late, as the reserve_timer code calls kalloc !
425  *
426  * Not a problem on i386 as hpet_enable is called from late_time_init,
427  * but on x86_64 it is necessary !
428  */
429 static __init int hpet_late_init(void)
430 {
431 	if (boot_hpet_disable)
432 		return -ENODEV;
433 
434 	if (!hpet_address) {
435 		if (!force_hpet_address)
436 			return -ENODEV;
437 
438 		hpet_address = force_hpet_address;
439 		hpet_enable();
440 		if (!hpet_virt_address)
441 			return -ENODEV;
442 	}
443 
444 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
445 
446 	return 0;
447 }
448 fs_initcall(hpet_late_init);
449 
450 void hpet_disable(void)
451 {
452 	if (is_hpet_capable()) {
453 		unsigned long cfg = hpet_readl(HPET_CFG);
454 
455 		if (hpet_legacy_int_enabled) {
456 			cfg &= ~HPET_CFG_LEGACY;
457 			hpet_legacy_int_enabled = 0;
458 		}
459 		cfg &= ~HPET_CFG_ENABLE;
460 		hpet_writel(cfg, HPET_CFG);
461 	}
462 }
463 
464 #ifdef CONFIG_HPET_EMULATE_RTC
465 
466 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
467  * is enabled, we support RTC interrupt functionality in software.
468  * RTC has 3 kinds of interrupts:
469  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
470  *    is updated
471  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
472  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
473  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
474  * (1) and (2) above are implemented using polling at a frequency of
475  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
476  * overhead. (DEFAULT_RTC_INT_FREQ)
477  * For (3), we use interrupts at 64Hz or user specified periodic
478  * frequency, whichever is higher.
479  */
480 #include <linux/mc146818rtc.h>
481 #include <linux/rtc.h>
482 #include <asm/rtc.h>
483 
484 #define DEFAULT_RTC_INT_FREQ	64
485 #define DEFAULT_RTC_SHIFT	6
486 #define RTC_NUM_INTS		1
487 
488 static unsigned long hpet_rtc_flags;
489 static unsigned long hpet_prev_update_sec;
490 static struct rtc_time hpet_alarm_time;
491 static unsigned long hpet_pie_count;
492 static unsigned long hpet_t1_cmp;
493 static unsigned long hpet_default_delta;
494 static unsigned long hpet_pie_delta;
495 static unsigned long hpet_pie_limit;
496 
497 static rtc_irq_handler irq_handler;
498 
499 /*
500  * Registers a IRQ handler.
501  */
502 int hpet_register_irq_handler(rtc_irq_handler handler)
503 {
504 	if (!is_hpet_enabled())
505 		return -ENODEV;
506 	if (irq_handler)
507 		return -EBUSY;
508 
509 	irq_handler = handler;
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
514 
515 /*
516  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
517  * and does cleanup.
518  */
519 void hpet_unregister_irq_handler(rtc_irq_handler handler)
520 {
521 	if (!is_hpet_enabled())
522 		return;
523 
524 	irq_handler = NULL;
525 	hpet_rtc_flags = 0;
526 }
527 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
528 
529 /*
530  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
531  * is not supported by all HPET implementations for timer 1.
532  *
533  * hpet_rtc_timer_init() is called when the rtc is initialized.
534  */
535 int hpet_rtc_timer_init(void)
536 {
537 	unsigned long cfg, cnt, delta, flags;
538 
539 	if (!is_hpet_enabled())
540 		return 0;
541 
542 	if (!hpet_default_delta) {
543 		uint64_t clc;
544 
545 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
546 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
547 		hpet_default_delta = (unsigned long) clc;
548 	}
549 
550 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
551 		delta = hpet_default_delta;
552 	else
553 		delta = hpet_pie_delta;
554 
555 	local_irq_save(flags);
556 
557 	cnt = delta + hpet_readl(HPET_COUNTER);
558 	hpet_writel(cnt, HPET_T1_CMP);
559 	hpet_t1_cmp = cnt;
560 
561 	cfg = hpet_readl(HPET_T1_CFG);
562 	cfg &= ~HPET_TN_PERIODIC;
563 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
564 	hpet_writel(cfg, HPET_T1_CFG);
565 
566 	local_irq_restore(flags);
567 
568 	return 1;
569 }
570 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
571 
572 /*
573  * The functions below are called from rtc driver.
574  * Return 0 if HPET is not being used.
575  * Otherwise do the necessary changes and return 1.
576  */
577 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
578 {
579 	if (!is_hpet_enabled())
580 		return 0;
581 
582 	hpet_rtc_flags &= ~bit_mask;
583 	return 1;
584 }
585 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
586 
587 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
588 {
589 	unsigned long oldbits = hpet_rtc_flags;
590 
591 	if (!is_hpet_enabled())
592 		return 0;
593 
594 	hpet_rtc_flags |= bit_mask;
595 
596 	if (!oldbits)
597 		hpet_rtc_timer_init();
598 
599 	return 1;
600 }
601 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
602 
603 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
604 			unsigned char sec)
605 {
606 	if (!is_hpet_enabled())
607 		return 0;
608 
609 	hpet_alarm_time.tm_hour = hrs;
610 	hpet_alarm_time.tm_min = min;
611 	hpet_alarm_time.tm_sec = sec;
612 
613 	return 1;
614 }
615 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
616 
617 int hpet_set_periodic_freq(unsigned long freq)
618 {
619 	uint64_t clc;
620 
621 	if (!is_hpet_enabled())
622 		return 0;
623 
624 	if (freq <= DEFAULT_RTC_INT_FREQ)
625 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
626 	else {
627 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
628 		do_div(clc, freq);
629 		clc >>= hpet_clockevent.shift;
630 		hpet_pie_delta = (unsigned long) clc;
631 	}
632 	return 1;
633 }
634 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
635 
636 int hpet_rtc_dropped_irq(void)
637 {
638 	return is_hpet_enabled();
639 }
640 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
641 
642 static void hpet_rtc_timer_reinit(void)
643 {
644 	unsigned long cfg, delta;
645 	int lost_ints = -1;
646 
647 	if (unlikely(!hpet_rtc_flags)) {
648 		cfg = hpet_readl(HPET_T1_CFG);
649 		cfg &= ~HPET_TN_ENABLE;
650 		hpet_writel(cfg, HPET_T1_CFG);
651 		return;
652 	}
653 
654 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
655 		delta = hpet_default_delta;
656 	else
657 		delta = hpet_pie_delta;
658 
659 	/*
660 	 * Increment the comparator value until we are ahead of the
661 	 * current count.
662 	 */
663 	do {
664 		hpet_t1_cmp += delta;
665 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
666 		lost_ints++;
667 	} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
668 
669 	if (lost_ints) {
670 		if (hpet_rtc_flags & RTC_PIE)
671 			hpet_pie_count += lost_ints;
672 		if (printk_ratelimit())
673 			printk(KERN_WARNING "rtc: lost %d interrupts\n",
674 				lost_ints);
675 	}
676 }
677 
678 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
679 {
680 	struct rtc_time curr_time;
681 	unsigned long rtc_int_flag = 0;
682 
683 	hpet_rtc_timer_reinit();
684 	memset(&curr_time, 0, sizeof(struct rtc_time));
685 
686 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
687 		get_rtc_time(&curr_time);
688 
689 	if (hpet_rtc_flags & RTC_UIE &&
690 	    curr_time.tm_sec != hpet_prev_update_sec) {
691 		rtc_int_flag = RTC_UF;
692 		hpet_prev_update_sec = curr_time.tm_sec;
693 	}
694 
695 	if (hpet_rtc_flags & RTC_PIE &&
696 	    ++hpet_pie_count >= hpet_pie_limit) {
697 		rtc_int_flag |= RTC_PF;
698 		hpet_pie_count = 0;
699 	}
700 
701 	if (hpet_rtc_flags & RTC_AIE &&
702 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
703 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
704 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
705 			rtc_int_flag |= RTC_AF;
706 
707 	if (rtc_int_flag) {
708 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
709 		if (irq_handler)
710 			irq_handler(rtc_int_flag, dev_id);
711 	}
712 	return IRQ_HANDLED;
713 }
714 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
715 #endif
716