xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision 85250231)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20 
21 #define HPET_MASK			CLOCKSOURCE_MASK(32)
22 
23 /* FSEC = 10^-15
24    NSEC = 10^-9 */
25 #define FSEC_PER_NSEC			1000000L
26 
27 #define HPET_DEV_USED_BIT		2
28 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID			0x8
30 #define HPET_DEV_FSB_CAP		0x1000
31 #define HPET_DEV_PERI_CAP		0x2000
32 
33 #define HPET_MIN_CYCLES			128
34 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35 
36 /*
37  * HPET address is set in acpi/boot.c, when an ACPI entry exists
38  */
39 unsigned long				hpet_address;
40 u8					hpet_blockid; /* OS timer block num */
41 bool					hpet_msi_disable;
42 
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int			hpet_num_timers;
45 #endif
46 static void __iomem			*hpet_virt_address;
47 
48 struct hpet_dev {
49 	struct clock_event_device	evt;
50 	unsigned int			num;
51 	int				cpu;
52 	unsigned int			irq;
53 	unsigned int			flags;
54 	char				name[10];
55 };
56 
57 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 	return container_of(evtdev, struct hpet_dev, evt);
60 }
61 
62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 	return readl(hpet_virt_address + a);
65 }
66 
67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 	writel(d, hpet_virt_address + a);
70 }
71 
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75 
76 static inline void hpet_set_mapping(void)
77 {
78 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80 
81 static inline void hpet_clear_mapping(void)
82 {
83 	iounmap(hpet_virt_address);
84 	hpet_virt_address = NULL;
85 }
86 
87 /*
88  * HPET command line enable / disable
89  */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93 
94 static int __init hpet_setup(char *str)
95 {
96 	while (str) {
97 		char *next = strchr(str, ',');
98 
99 		if (next)
100 			*next++ = 0;
101 		if (!strncmp("disable", str, 7))
102 			boot_hpet_disable = true;
103 		if (!strncmp("force", str, 5))
104 			hpet_force_user = true;
105 		if (!strncmp("verbose", str, 7))
106 			hpet_verbose = true;
107 		str = next;
108 	}
109 	return 1;
110 }
111 __setup("hpet=", hpet_setup);
112 
113 static int __init disable_hpet(char *str)
114 {
115 	boot_hpet_disable = true;
116 	return 1;
117 }
118 __setup("nohpet", disable_hpet);
119 
120 static inline int is_hpet_capable(void)
121 {
122 	return !boot_hpet_disable && hpet_address;
123 }
124 
125 /*
126  * HPET timer interrupt enable / disable
127  */
128 static bool hpet_legacy_int_enabled;
129 
130 /**
131  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132  */
133 int is_hpet_enabled(void)
134 {
135 	return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138 
139 static void _hpet_print_config(const char *function, int line)
140 {
141 	u32 i, timers, l, h;
142 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 	l = hpet_readl(HPET_ID);
144 	h = hpet_readl(HPET_PERIOD);
145 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 	l = hpet_readl(HPET_CFG);
148 	h = hpet_readl(HPET_STATUS);
149 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 	l = hpet_readl(HPET_COUNTER);
151 	h = hpet_readl(HPET_COUNTER+4);
152 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153 
154 	for (i = 0; i < timers; i++) {
155 		l = hpet_readl(HPET_Tn_CFG(i));
156 		h = hpet_readl(HPET_Tn_CFG(i)+4);
157 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 		       i, l, h);
159 		l = hpet_readl(HPET_Tn_CMP(i));
160 		h = hpet_readl(HPET_Tn_CMP(i)+4);
161 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 		       i, l, h);
163 		l = hpet_readl(HPET_Tn_ROUTE(i));
164 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 		       i, l, h);
167 	}
168 }
169 
170 #define hpet_print_config()					\
171 do {								\
172 	if (hpet_verbose)					\
173 		_hpet_print_config(__func__, __LINE__);	\
174 } while (0)
175 
176 /*
177  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178  * timer 0 and timer 1 in case of RTC emulation.
179  */
180 #ifdef CONFIG_HPET
181 
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183 
184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 	struct hpet __iomem *hpet = hpet_virt_address;
187 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 	unsigned int nrtimers, i;
189 	struct hpet_data hd;
190 
191 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192 
193 	memset(&hd, 0, sizeof(hd));
194 	hd.hd_phys_address	= hpet_address;
195 	hd.hd_address		= hpet;
196 	hd.hd_nirqs		= nrtimers;
197 	hpet_reserve_timer(&hd, 0);
198 
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 	hpet_reserve_timer(&hd, 1);
201 #endif
202 
203 	/*
204 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
206 	 * don't bother configuring *any* comparator interrupts.
207 	 */
208 	hd.hd_irq[0] = HPET_LEGACY_8254;
209 	hd.hd_irq[1] = HPET_LEGACY_RTC;
210 
211 	for (i = 2; i < nrtimers; timer++, i++) {
212 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 	}
215 
216 	hpet_reserve_msi_timers(&hd);
217 
218 	hpet_alloc(&hd);
219 
220 }
221 #else
222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224 
225 /*
226  * Common hpet info
227  */
228 static unsigned long hpet_freq;
229 
230 static struct clock_event_device hpet_clockevent;
231 
232 static void hpet_stop_counter(void)
233 {
234 	u32 cfg = hpet_readl(HPET_CFG);
235 	cfg &= ~HPET_CFG_ENABLE;
236 	hpet_writel(cfg, HPET_CFG);
237 }
238 
239 static void hpet_reset_counter(void)
240 {
241 	hpet_writel(0, HPET_COUNTER);
242 	hpet_writel(0, HPET_COUNTER + 4);
243 }
244 
245 static void hpet_start_counter(void)
246 {
247 	unsigned int cfg = hpet_readl(HPET_CFG);
248 	cfg |= HPET_CFG_ENABLE;
249 	hpet_writel(cfg, HPET_CFG);
250 }
251 
252 static void hpet_restart_counter(void)
253 {
254 	hpet_stop_counter();
255 	hpet_reset_counter();
256 	hpet_start_counter();
257 }
258 
259 static void hpet_resume_device(void)
260 {
261 	force_hpet_resume();
262 }
263 
264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 	hpet_resume_device();
267 	hpet_restart_counter();
268 }
269 
270 static void hpet_enable_legacy_int(void)
271 {
272 	unsigned int cfg = hpet_readl(HPET_CFG);
273 
274 	cfg |= HPET_CFG_LEGACY;
275 	hpet_writel(cfg, HPET_CFG);
276 	hpet_legacy_int_enabled = true;
277 }
278 
279 static void hpet_legacy_clockevent_register(void)
280 {
281 	/* Start HPET legacy interrupts */
282 	hpet_enable_legacy_int();
283 
284 	/*
285 	 * Start hpet with the boot cpu mask and make it
286 	 * global after the IO_APIC has been initialized.
287 	 */
288 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 	global_clock_event = &hpet_clockevent;
292 	printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294 
295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 	unsigned int cfg, cmp, now;
298 	uint64_t delta;
299 
300 	hpet_stop_counter();
301 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 	delta >>= evt->shift;
303 	now = hpet_readl(HPET_COUNTER);
304 	cmp = now + (unsigned int)delta;
305 	cfg = hpet_readl(HPET_Tn_CFG(timer));
306 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 	       HPET_TN_32BIT;
308 	hpet_writel(cfg, HPET_Tn_CFG(timer));
309 	hpet_writel(cmp, HPET_Tn_CMP(timer));
310 	udelay(1);
311 	/*
312 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 	 * bit is automatically cleared after the first write.
315 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 	 * Publication # 24674)
317 	 */
318 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 	hpet_start_counter();
320 	hpet_print_config();
321 
322 	return 0;
323 }
324 
325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 	unsigned int cfg;
328 
329 	cfg = hpet_readl(HPET_Tn_CFG(timer));
330 	cfg &= ~HPET_TN_PERIODIC;
331 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 	hpet_writel(cfg, HPET_Tn_CFG(timer));
333 
334 	return 0;
335 }
336 
337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 	unsigned int cfg;
340 
341 	cfg = hpet_readl(HPET_Tn_CFG(timer));
342 	cfg &= ~HPET_TN_ENABLE;
343 	hpet_writel(cfg, HPET_Tn_CFG(timer));
344 
345 	return 0;
346 }
347 
348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350 	if (!timer) {
351 		hpet_enable_legacy_int();
352 	} else {
353 		struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354 
355 		irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
356 		irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
357 		disable_irq(hdev->irq);
358 		irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 		enable_irq(hdev->irq);
360 	}
361 	hpet_print_config();
362 
363 	return 0;
364 }
365 
366 static int hpet_next_event(unsigned long delta,
367 			   struct clock_event_device *evt, int timer)
368 {
369 	u32 cnt;
370 	s32 res;
371 
372 	cnt = hpet_readl(HPET_COUNTER);
373 	cnt += (u32) delta;
374 	hpet_writel(cnt, HPET_Tn_CMP(timer));
375 
376 	/*
377 	 * HPETs are a complete disaster. The compare register is
378 	 * based on a equal comparison and neither provides a less
379 	 * than or equal functionality (which would require to take
380 	 * the wraparound into account) nor a simple count down event
381 	 * mode. Further the write to the comparator register is
382 	 * delayed internally up to two HPET clock cycles in certain
383 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 	 * longer delays. We worked around that by reading back the
385 	 * compare register, but that required another workaround for
386 	 * ICH9,10 chips where the first readout after write can
387 	 * return the old stale value. We already had a minimum
388 	 * programming delta of 5us enforced, but a NMI or SMI hitting
389 	 * between the counter readout and the comparator write can
390 	 * move us behind that point easily. Now instead of reading
391 	 * the compare register back several times, we make the ETIME
392 	 * decision based on the following: Return ETIME if the
393 	 * counter value after the write is less than HPET_MIN_CYCLES
394 	 * away from the event or if the counter is already ahead of
395 	 * the event. The minimum programming delta for the generic
396 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 	 */
398 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399 
400 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402 
403 static int hpet_legacy_shutdown(struct clock_event_device *evt)
404 {
405 	return hpet_shutdown(evt, 0);
406 }
407 
408 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
409 {
410 	return hpet_set_oneshot(evt, 0);
411 }
412 
413 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
414 {
415 	return hpet_set_periodic(evt, 0);
416 }
417 
418 static int hpet_legacy_resume(struct clock_event_device *evt)
419 {
420 	return hpet_resume(evt, 0);
421 }
422 
423 static int hpet_legacy_next_event(unsigned long delta,
424 			struct clock_event_device *evt)
425 {
426 	return hpet_next_event(delta, evt, 0);
427 }
428 
429 /*
430  * The hpet clock event device
431  */
432 static struct clock_event_device hpet_clockevent = {
433 	.name			= "hpet",
434 	.features		= CLOCK_EVT_FEAT_PERIODIC |
435 				  CLOCK_EVT_FEAT_ONESHOT,
436 	.set_state_periodic	= hpet_legacy_set_periodic,
437 	.set_state_oneshot	= hpet_legacy_set_oneshot,
438 	.set_state_shutdown	= hpet_legacy_shutdown,
439 	.tick_resume		= hpet_legacy_resume,
440 	.set_next_event		= hpet_legacy_next_event,
441 	.irq			= 0,
442 	.rating			= 50,
443 };
444 
445 /*
446  * HPET MSI Support
447  */
448 #ifdef CONFIG_PCI_MSI
449 
450 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
451 static struct hpet_dev	*hpet_devs;
452 static struct irq_domain *hpet_domain;
453 
454 void hpet_msi_unmask(struct irq_data *data)
455 {
456 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457 	unsigned int cfg;
458 
459 	/* unmask it */
460 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
462 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464 
465 void hpet_msi_mask(struct irq_data *data)
466 {
467 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
468 	unsigned int cfg;
469 
470 	/* mask it */
471 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
472 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
473 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
474 }
475 
476 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
477 {
478 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
479 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
480 }
481 
482 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
483 {
484 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
485 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
486 	msg->address_hi = 0;
487 }
488 
489 static int hpet_msi_shutdown(struct clock_event_device *evt)
490 {
491 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492 
493 	return hpet_shutdown(evt, hdev->num);
494 }
495 
496 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
497 {
498 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499 
500 	return hpet_set_oneshot(evt, hdev->num);
501 }
502 
503 static int hpet_msi_set_periodic(struct clock_event_device *evt)
504 {
505 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
506 
507 	return hpet_set_periodic(evt, hdev->num);
508 }
509 
510 static int hpet_msi_resume(struct clock_event_device *evt)
511 {
512 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513 
514 	return hpet_resume(evt, hdev->num);
515 }
516 
517 static int hpet_msi_next_event(unsigned long delta,
518 				struct clock_event_device *evt)
519 {
520 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
521 	return hpet_next_event(delta, evt, hdev->num);
522 }
523 
524 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
525 {
526 	struct hpet_dev *dev = (struct hpet_dev *)data;
527 	struct clock_event_device *hevt = &dev->evt;
528 
529 	if (!hevt->event_handler) {
530 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
531 				dev->num);
532 		return IRQ_HANDLED;
533 	}
534 
535 	hevt->event_handler(hevt);
536 	return IRQ_HANDLED;
537 }
538 
539 static int hpet_setup_irq(struct hpet_dev *dev)
540 {
541 
542 	if (request_irq(dev->irq, hpet_interrupt_handler,
543 			IRQF_TIMER | IRQF_NOBALANCING,
544 			dev->name, dev))
545 		return -1;
546 
547 	disable_irq(dev->irq);
548 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
549 	enable_irq(dev->irq);
550 
551 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
552 			 dev->name, dev->irq);
553 
554 	return 0;
555 }
556 
557 /* This should be called in specific @cpu */
558 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
559 {
560 	struct clock_event_device *evt = &hdev->evt;
561 
562 	WARN_ON(cpu != smp_processor_id());
563 	if (!(hdev->flags & HPET_DEV_VALID))
564 		return;
565 
566 	hdev->cpu = cpu;
567 	per_cpu(cpu_hpet_dev, cpu) = hdev;
568 	evt->name = hdev->name;
569 	hpet_setup_irq(hdev);
570 	evt->irq = hdev->irq;
571 
572 	evt->rating = 110;
573 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
574 	if (hdev->flags & HPET_DEV_PERI_CAP) {
575 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
576 		evt->set_state_periodic = hpet_msi_set_periodic;
577 	}
578 
579 	evt->set_state_shutdown = hpet_msi_shutdown;
580 	evt->set_state_oneshot = hpet_msi_set_oneshot;
581 	evt->tick_resume = hpet_msi_resume;
582 	evt->set_next_event = hpet_msi_next_event;
583 	evt->cpumask = cpumask_of(hdev->cpu);
584 
585 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
586 					0x7FFFFFFF);
587 }
588 
589 #ifdef CONFIG_HPET
590 /* Reserve at least one timer for userspace (/dev/hpet) */
591 #define RESERVE_TIMERS 1
592 #else
593 #define RESERVE_TIMERS 0
594 #endif
595 
596 static void hpet_msi_capability_lookup(unsigned int start_timer)
597 {
598 	unsigned int id;
599 	unsigned int num_timers;
600 	unsigned int num_timers_used = 0;
601 	int i, irq;
602 
603 	if (hpet_msi_disable)
604 		return;
605 
606 	if (boot_cpu_has(X86_FEATURE_ARAT))
607 		return;
608 	id = hpet_readl(HPET_ID);
609 
610 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
611 	num_timers++; /* Value read out starts from 0 */
612 	hpet_print_config();
613 
614 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
615 	if (!hpet_domain)
616 		return;
617 
618 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619 	if (!hpet_devs)
620 		return;
621 
622 	hpet_num_timers = num_timers;
623 
624 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627 
628 		/* Only consider HPET timer with MSI support */
629 		if (!(cfg & HPET_TN_FSB_CAP))
630 			continue;
631 
632 		hdev->flags = 0;
633 		if (cfg & HPET_TN_PERIODIC_CAP)
634 			hdev->flags |= HPET_DEV_PERI_CAP;
635 		sprintf(hdev->name, "hpet%d", i);
636 		hdev->num = i;
637 
638 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
639 		if (irq <= 0)
640 			continue;
641 
642 		hdev->irq = irq;
643 		hdev->flags |= HPET_DEV_FSB_CAP;
644 		hdev->flags |= HPET_DEV_VALID;
645 		num_timers_used++;
646 		if (num_timers_used == num_possible_cpus())
647 			break;
648 	}
649 
650 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
651 		num_timers, num_timers_used);
652 }
653 
654 #ifdef CONFIG_HPET
655 static void hpet_reserve_msi_timers(struct hpet_data *hd)
656 {
657 	int i;
658 
659 	if (!hpet_devs)
660 		return;
661 
662 	for (i = 0; i < hpet_num_timers; i++) {
663 		struct hpet_dev *hdev = &hpet_devs[i];
664 
665 		if (!(hdev->flags & HPET_DEV_VALID))
666 			continue;
667 
668 		hd->hd_irq[hdev->num] = hdev->irq;
669 		hpet_reserve_timer(hd, hdev->num);
670 	}
671 }
672 #endif
673 
674 static struct hpet_dev *hpet_get_unused_timer(void)
675 {
676 	int i;
677 
678 	if (!hpet_devs)
679 		return NULL;
680 
681 	for (i = 0; i < hpet_num_timers; i++) {
682 		struct hpet_dev *hdev = &hpet_devs[i];
683 
684 		if (!(hdev->flags & HPET_DEV_VALID))
685 			continue;
686 		if (test_and_set_bit(HPET_DEV_USED_BIT,
687 			(unsigned long *)&hdev->flags))
688 			continue;
689 		return hdev;
690 	}
691 	return NULL;
692 }
693 
694 struct hpet_work_struct {
695 	struct delayed_work work;
696 	struct completion complete;
697 };
698 
699 static void hpet_work(struct work_struct *w)
700 {
701 	struct hpet_dev *hdev;
702 	int cpu = smp_processor_id();
703 	struct hpet_work_struct *hpet_work;
704 
705 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
706 
707 	hdev = hpet_get_unused_timer();
708 	if (hdev)
709 		init_one_hpet_msi_clockevent(hdev, cpu);
710 
711 	complete(&hpet_work->complete);
712 }
713 
714 static int hpet_cpuhp_online(unsigned int cpu)
715 {
716 	struct hpet_work_struct work;
717 
718 	INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
719 	init_completion(&work.complete);
720 	/* FIXME: add schedule_work_on() */
721 	schedule_delayed_work_on(cpu, &work.work, 0);
722 	wait_for_completion(&work.complete);
723 	destroy_delayed_work_on_stack(&work.work);
724 	return 0;
725 }
726 
727 static int hpet_cpuhp_dead(unsigned int cpu)
728 {
729 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
730 
731 	if (!hdev)
732 		return 0;
733 	free_irq(hdev->irq, hdev);
734 	hdev->flags &= ~HPET_DEV_USED;
735 	per_cpu(cpu_hpet_dev, cpu) = NULL;
736 	return 0;
737 }
738 #else
739 
740 static void hpet_msi_capability_lookup(unsigned int start_timer)
741 {
742 	return;
743 }
744 
745 #ifdef CONFIG_HPET
746 static void hpet_reserve_msi_timers(struct hpet_data *hd)
747 {
748 	return;
749 }
750 #endif
751 
752 #define hpet_cpuhp_online	NULL
753 #define hpet_cpuhp_dead		NULL
754 
755 #endif
756 
757 /*
758  * Clock source related code
759  */
760 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761 /*
762  * Reading the HPET counter is a very slow operation. If a large number of
763  * CPUs are trying to access the HPET counter simultaneously, it can cause
764  * massive delay and slow down system performance dramatically. This may
765  * happen when HPET is the default clock source instead of TSC. For a
766  * really large system with hundreds of CPUs, the slowdown may be so
767  * severe that it may actually crash the system because of a NMI watchdog
768  * soft lockup, for example.
769  *
770  * If multiple CPUs are trying to access the HPET counter at the same time,
771  * we don't actually need to read the counter multiple times. Instead, the
772  * other CPUs can use the counter value read by the first CPU in the group.
773  *
774  * This special feature is only enabled on x86-64 systems. It is unlikely
775  * that 32-bit x86 systems will have enough CPUs to require this feature
776  * with its associated locking overhead. And we also need 64-bit atomic
777  * read.
778  *
779  * The lock and the hpet value are stored together and can be read in a
780  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
781  * is 32 bits in size.
782  */
783 union hpet_lock {
784 	struct {
785 		arch_spinlock_t lock;
786 		u32 value;
787 	};
788 	u64 lockval;
789 };
790 
791 static union hpet_lock hpet __cacheline_aligned = {
792 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
793 };
794 
795 static u64 read_hpet(struct clocksource *cs)
796 {
797 	unsigned long flags;
798 	union hpet_lock old, new;
799 
800 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
801 
802 	/*
803 	 * Read HPET directly if in NMI.
804 	 */
805 	if (in_nmi())
806 		return (u64)hpet_readl(HPET_COUNTER);
807 
808 	/*
809 	 * Read the current state of the lock and HPET value atomically.
810 	 */
811 	old.lockval = READ_ONCE(hpet.lockval);
812 
813 	if (arch_spin_is_locked(&old.lock))
814 		goto contended;
815 
816 	local_irq_save(flags);
817 	if (arch_spin_trylock(&hpet.lock)) {
818 		new.value = hpet_readl(HPET_COUNTER);
819 		/*
820 		 * Use WRITE_ONCE() to prevent store tearing.
821 		 */
822 		WRITE_ONCE(hpet.value, new.value);
823 		arch_spin_unlock(&hpet.lock);
824 		local_irq_restore(flags);
825 		return (u64)new.value;
826 	}
827 	local_irq_restore(flags);
828 
829 contended:
830 	/*
831 	 * Contended case
832 	 * --------------
833 	 * Wait until the HPET value change or the lock is free to indicate
834 	 * its value is up-to-date.
835 	 *
836 	 * It is possible that old.value has already contained the latest
837 	 * HPET value while the lock holder was in the process of releasing
838 	 * the lock. Checking for lock state change will enable us to return
839 	 * the value immediately instead of waiting for the next HPET reader
840 	 * to come along.
841 	 */
842 	do {
843 		cpu_relax();
844 		new.lockval = READ_ONCE(hpet.lockval);
845 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
846 
847 	return (u64)new.value;
848 }
849 #else
850 /*
851  * For UP or 32-bit.
852  */
853 static u64 read_hpet(struct clocksource *cs)
854 {
855 	return (u64)hpet_readl(HPET_COUNTER);
856 }
857 #endif
858 
859 static struct clocksource clocksource_hpet = {
860 	.name		= "hpet",
861 	.rating		= 250,
862 	.read		= read_hpet,
863 	.mask		= HPET_MASK,
864 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
865 	.resume		= hpet_resume_counter,
866 };
867 
868 static int hpet_clocksource_register(void)
869 {
870 	u64 start, now;
871 	u64 t1;
872 
873 	/* Start the counter */
874 	hpet_restart_counter();
875 
876 	/* Verify whether hpet counter works */
877 	t1 = hpet_readl(HPET_COUNTER);
878 	start = rdtsc();
879 
880 	/*
881 	 * We don't know the TSC frequency yet, but waiting for
882 	 * 200000 TSC cycles is safe:
883 	 * 4 GHz == 50us
884 	 * 1 GHz == 200us
885 	 */
886 	do {
887 		rep_nop();
888 		now = rdtsc();
889 	} while ((now - start) < 200000UL);
890 
891 	if (t1 == hpet_readl(HPET_COUNTER)) {
892 		printk(KERN_WARNING
893 		       "HPET counter not counting. HPET disabled\n");
894 		return -ENODEV;
895 	}
896 
897 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
898 	return 0;
899 }
900 
901 static u32 *hpet_boot_cfg;
902 
903 /**
904  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
905  */
906 int __init hpet_enable(void)
907 {
908 	u32 hpet_period, cfg, id;
909 	u64 freq;
910 	unsigned int i, last;
911 
912 	if (!is_hpet_capable())
913 		return 0;
914 
915 	hpet_set_mapping();
916 
917 	/*
918 	 * Read the period and check for a sane value:
919 	 */
920 	hpet_period = hpet_readl(HPET_PERIOD);
921 
922 	/*
923 	 * AMD SB700 based systems with spread spectrum enabled use a
924 	 * SMM based HPET emulation to provide proper frequency
925 	 * setting. The SMM code is initialized with the first HPET
926 	 * register access and takes some time to complete. During
927 	 * this time the config register reads 0xffffffff. We check
928 	 * for max. 1000 loops whether the config register reads a non
929 	 * 0xffffffff value to make sure that HPET is up and running
930 	 * before we go further. A counting loop is safe, as the HPET
931 	 * access takes thousands of CPU cycles. On non SB700 based
932 	 * machines this check is only done once and has no side
933 	 * effects.
934 	 */
935 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
936 		if (i == 1000) {
937 			printk(KERN_WARNING
938 			       "HPET config register value = 0xFFFFFFFF. "
939 			       "Disabling HPET\n");
940 			goto out_nohpet;
941 		}
942 	}
943 
944 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
945 		goto out_nohpet;
946 
947 	/*
948 	 * The period is a femto seconds value. Convert it to a
949 	 * frequency.
950 	 */
951 	freq = FSEC_PER_SEC;
952 	do_div(freq, hpet_period);
953 	hpet_freq = freq;
954 
955 	/*
956 	 * Read the HPET ID register to retrieve the IRQ routing
957 	 * information and the number of channels
958 	 */
959 	id = hpet_readl(HPET_ID);
960 	hpet_print_config();
961 
962 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
963 
964 #ifdef CONFIG_HPET_EMULATE_RTC
965 	/*
966 	 * The legacy routing mode needs at least two channels, tick timer
967 	 * and the rtc emulation channel.
968 	 */
969 	if (!last)
970 		goto out_nohpet;
971 #endif
972 
973 	cfg = hpet_readl(HPET_CFG);
974 	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
975 				GFP_KERNEL);
976 	if (hpet_boot_cfg)
977 		*hpet_boot_cfg = cfg;
978 	else
979 		pr_warn("HPET initial state will not be saved\n");
980 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
981 	hpet_writel(cfg, HPET_CFG);
982 	if (cfg)
983 		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
984 			cfg);
985 
986 	for (i = 0; i <= last; ++i) {
987 		cfg = hpet_readl(HPET_Tn_CFG(i));
988 		if (hpet_boot_cfg)
989 			hpet_boot_cfg[i + 1] = cfg;
990 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
991 		hpet_writel(cfg, HPET_Tn_CFG(i));
992 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
993 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
994 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
995 		if (cfg)
996 			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
997 				cfg, i);
998 	}
999 	hpet_print_config();
1000 
1001 	if (hpet_clocksource_register())
1002 		goto out_nohpet;
1003 
1004 	if (id & HPET_ID_LEGSUP) {
1005 		hpet_legacy_clockevent_register();
1006 		return 1;
1007 	}
1008 	return 0;
1009 
1010 out_nohpet:
1011 	hpet_clear_mapping();
1012 	hpet_address = 0;
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Needs to be late, as the reserve_timer code calls kalloc !
1018  *
1019  * Not a problem on i386 as hpet_enable is called from late_time_init,
1020  * but on x86_64 it is necessary !
1021  */
1022 static __init int hpet_late_init(void)
1023 {
1024 	int ret;
1025 
1026 	if (boot_hpet_disable)
1027 		return -ENODEV;
1028 
1029 	if (!hpet_address) {
1030 		if (!force_hpet_address)
1031 			return -ENODEV;
1032 
1033 		hpet_address = force_hpet_address;
1034 		hpet_enable();
1035 	}
1036 
1037 	if (!hpet_virt_address)
1038 		return -ENODEV;
1039 
1040 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1041 		hpet_msi_capability_lookup(2);
1042 	else
1043 		hpet_msi_capability_lookup(0);
1044 
1045 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1046 	hpet_print_config();
1047 
1048 	if (hpet_msi_disable)
1049 		return 0;
1050 
1051 	if (boot_cpu_has(X86_FEATURE_ARAT))
1052 		return 0;
1053 
1054 	/* This notifier should be called after workqueue is ready */
1055 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1056 				hpet_cpuhp_online, NULL);
1057 	if (ret)
1058 		return ret;
1059 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1060 				hpet_cpuhp_dead);
1061 	if (ret)
1062 		goto err_cpuhp;
1063 	return 0;
1064 
1065 err_cpuhp:
1066 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1067 	return ret;
1068 }
1069 fs_initcall(hpet_late_init);
1070 
1071 void hpet_disable(void)
1072 {
1073 	if (is_hpet_capable() && hpet_virt_address) {
1074 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1075 
1076 		if (hpet_boot_cfg)
1077 			cfg = *hpet_boot_cfg;
1078 		else if (hpet_legacy_int_enabled) {
1079 			cfg &= ~HPET_CFG_LEGACY;
1080 			hpet_legacy_int_enabled = false;
1081 		}
1082 		cfg &= ~HPET_CFG_ENABLE;
1083 		hpet_writel(cfg, HPET_CFG);
1084 
1085 		if (!hpet_boot_cfg)
1086 			return;
1087 
1088 		id = hpet_readl(HPET_ID);
1089 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1090 
1091 		for (id = 0; id <= last; ++id)
1092 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1093 
1094 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1095 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1096 	}
1097 }
1098 
1099 #ifdef CONFIG_HPET_EMULATE_RTC
1100 
1101 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1102  * is enabled, we support RTC interrupt functionality in software.
1103  * RTC has 3 kinds of interrupts:
1104  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1105  *    is updated
1106  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1107  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1108  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1109  * (1) and (2) above are implemented using polling at a frequency of
1110  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1111  * overhead. (DEFAULT_RTC_INT_FREQ)
1112  * For (3), we use interrupts at 64Hz or user specified periodic
1113  * frequency, whichever is higher.
1114  */
1115 #include <linux/mc146818rtc.h>
1116 #include <linux/rtc.h>
1117 
1118 #define DEFAULT_RTC_INT_FREQ	64
1119 #define DEFAULT_RTC_SHIFT	6
1120 #define RTC_NUM_INTS		1
1121 
1122 static unsigned long hpet_rtc_flags;
1123 static int hpet_prev_update_sec;
1124 static struct rtc_time hpet_alarm_time;
1125 static unsigned long hpet_pie_count;
1126 static u32 hpet_t1_cmp;
1127 static u32 hpet_default_delta;
1128 static u32 hpet_pie_delta;
1129 static unsigned long hpet_pie_limit;
1130 
1131 static rtc_irq_handler irq_handler;
1132 
1133 /*
1134  * Check that the hpet counter c1 is ahead of the c2
1135  */
1136 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1137 {
1138 	return (s32)(c2 - c1) < 0;
1139 }
1140 
1141 /*
1142  * Registers a IRQ handler.
1143  */
1144 int hpet_register_irq_handler(rtc_irq_handler handler)
1145 {
1146 	if (!is_hpet_enabled())
1147 		return -ENODEV;
1148 	if (irq_handler)
1149 		return -EBUSY;
1150 
1151 	irq_handler = handler;
1152 
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1156 
1157 /*
1158  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1159  * and does cleanup.
1160  */
1161 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1162 {
1163 	if (!is_hpet_enabled())
1164 		return;
1165 
1166 	irq_handler = NULL;
1167 	hpet_rtc_flags = 0;
1168 }
1169 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1170 
1171 /*
1172  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1173  * is not supported by all HPET implementations for timer 1.
1174  *
1175  * hpet_rtc_timer_init() is called when the rtc is initialized.
1176  */
1177 int hpet_rtc_timer_init(void)
1178 {
1179 	unsigned int cfg, cnt, delta;
1180 	unsigned long flags;
1181 
1182 	if (!is_hpet_enabled())
1183 		return 0;
1184 
1185 	if (!hpet_default_delta) {
1186 		uint64_t clc;
1187 
1188 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1189 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1190 		hpet_default_delta = clc;
1191 	}
1192 
1193 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1194 		delta = hpet_default_delta;
1195 	else
1196 		delta = hpet_pie_delta;
1197 
1198 	local_irq_save(flags);
1199 
1200 	cnt = delta + hpet_readl(HPET_COUNTER);
1201 	hpet_writel(cnt, HPET_T1_CMP);
1202 	hpet_t1_cmp = cnt;
1203 
1204 	cfg = hpet_readl(HPET_T1_CFG);
1205 	cfg &= ~HPET_TN_PERIODIC;
1206 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1207 	hpet_writel(cfg, HPET_T1_CFG);
1208 
1209 	local_irq_restore(flags);
1210 
1211 	return 1;
1212 }
1213 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1214 
1215 static void hpet_disable_rtc_channel(void)
1216 {
1217 	u32 cfg = hpet_readl(HPET_T1_CFG);
1218 	cfg &= ~HPET_TN_ENABLE;
1219 	hpet_writel(cfg, HPET_T1_CFG);
1220 }
1221 
1222 /*
1223  * The functions below are called from rtc driver.
1224  * Return 0 if HPET is not being used.
1225  * Otherwise do the necessary changes and return 1.
1226  */
1227 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1228 {
1229 	if (!is_hpet_enabled())
1230 		return 0;
1231 
1232 	hpet_rtc_flags &= ~bit_mask;
1233 	if (unlikely(!hpet_rtc_flags))
1234 		hpet_disable_rtc_channel();
1235 
1236 	return 1;
1237 }
1238 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1239 
1240 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1241 {
1242 	unsigned long oldbits = hpet_rtc_flags;
1243 
1244 	if (!is_hpet_enabled())
1245 		return 0;
1246 
1247 	hpet_rtc_flags |= bit_mask;
1248 
1249 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1250 		hpet_prev_update_sec = -1;
1251 
1252 	if (!oldbits)
1253 		hpet_rtc_timer_init();
1254 
1255 	return 1;
1256 }
1257 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1258 
1259 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1260 			unsigned char sec)
1261 {
1262 	if (!is_hpet_enabled())
1263 		return 0;
1264 
1265 	hpet_alarm_time.tm_hour = hrs;
1266 	hpet_alarm_time.tm_min = min;
1267 	hpet_alarm_time.tm_sec = sec;
1268 
1269 	return 1;
1270 }
1271 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1272 
1273 int hpet_set_periodic_freq(unsigned long freq)
1274 {
1275 	uint64_t clc;
1276 
1277 	if (!is_hpet_enabled())
1278 		return 0;
1279 
1280 	if (freq <= DEFAULT_RTC_INT_FREQ)
1281 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1282 	else {
1283 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1284 		do_div(clc, freq);
1285 		clc >>= hpet_clockevent.shift;
1286 		hpet_pie_delta = clc;
1287 		hpet_pie_limit = 0;
1288 	}
1289 	return 1;
1290 }
1291 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1292 
1293 int hpet_rtc_dropped_irq(void)
1294 {
1295 	return is_hpet_enabled();
1296 }
1297 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1298 
1299 static void hpet_rtc_timer_reinit(void)
1300 {
1301 	unsigned int delta;
1302 	int lost_ints = -1;
1303 
1304 	if (unlikely(!hpet_rtc_flags))
1305 		hpet_disable_rtc_channel();
1306 
1307 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1308 		delta = hpet_default_delta;
1309 	else
1310 		delta = hpet_pie_delta;
1311 
1312 	/*
1313 	 * Increment the comparator value until we are ahead of the
1314 	 * current count.
1315 	 */
1316 	do {
1317 		hpet_t1_cmp += delta;
1318 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1319 		lost_ints++;
1320 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1321 
1322 	if (lost_ints) {
1323 		if (hpet_rtc_flags & RTC_PIE)
1324 			hpet_pie_count += lost_ints;
1325 		if (printk_ratelimit())
1326 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1327 				lost_ints);
1328 	}
1329 }
1330 
1331 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1332 {
1333 	struct rtc_time curr_time;
1334 	unsigned long rtc_int_flag = 0;
1335 
1336 	hpet_rtc_timer_reinit();
1337 	memset(&curr_time, 0, sizeof(struct rtc_time));
1338 
1339 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1340 		mc146818_get_time(&curr_time);
1341 
1342 	if (hpet_rtc_flags & RTC_UIE &&
1343 	    curr_time.tm_sec != hpet_prev_update_sec) {
1344 		if (hpet_prev_update_sec >= 0)
1345 			rtc_int_flag = RTC_UF;
1346 		hpet_prev_update_sec = curr_time.tm_sec;
1347 	}
1348 
1349 	if (hpet_rtc_flags & RTC_PIE &&
1350 	    ++hpet_pie_count >= hpet_pie_limit) {
1351 		rtc_int_flag |= RTC_PF;
1352 		hpet_pie_count = 0;
1353 	}
1354 
1355 	if (hpet_rtc_flags & RTC_AIE &&
1356 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1357 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1358 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1359 			rtc_int_flag |= RTC_AF;
1360 
1361 	if (rtc_int_flag) {
1362 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1363 		if (irq_handler)
1364 			irq_handler(rtc_int_flag, dev_id);
1365 	}
1366 	return IRQ_HANDLED;
1367 }
1368 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1369 #endif
1370