xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision 75f25bd3)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18 
19 #define HPET_MASK			CLOCKSOURCE_MASK(32)
20 
21 /* FSEC = 10^-15
22    NSEC = 10^-9 */
23 #define FSEC_PER_NSEC			1000000L
24 
25 #define HPET_DEV_USED_BIT		2
26 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID			0x8
28 #define HPET_DEV_FSB_CAP		0x1000
29 #define HPET_DEV_PERI_CAP		0x2000
30 
31 #define HPET_MIN_CYCLES			128
32 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33 
34 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
35 
36 /*
37  * HPET address is set in acpi/boot.c, when an ACPI entry exists
38  */
39 unsigned long				hpet_address;
40 u8					hpet_blockid; /* OS timer block num */
41 u8					hpet_msi_disable;
42 
43 #ifdef CONFIG_PCI_MSI
44 static unsigned long			hpet_num_timers;
45 #endif
46 static void __iomem			*hpet_virt_address;
47 
48 struct hpet_dev {
49 	struct clock_event_device	evt;
50 	unsigned int			num;
51 	int				cpu;
52 	unsigned int			irq;
53 	unsigned int			flags;
54 	char				name[10];
55 };
56 
57 inline unsigned int hpet_readl(unsigned int a)
58 {
59 	return readl(hpet_virt_address + a);
60 }
61 
62 static inline void hpet_writel(unsigned int d, unsigned int a)
63 {
64 	writel(d, hpet_virt_address + a);
65 }
66 
67 #ifdef CONFIG_X86_64
68 #include <asm/pgtable.h>
69 #endif
70 
71 static inline void hpet_set_mapping(void)
72 {
73 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
74 #ifdef CONFIG_X86_64
75 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
76 #endif
77 }
78 
79 static inline void hpet_clear_mapping(void)
80 {
81 	iounmap(hpet_virt_address);
82 	hpet_virt_address = NULL;
83 }
84 
85 /*
86  * HPET command line enable / disable
87  */
88 static int boot_hpet_disable;
89 int hpet_force_user;
90 static int hpet_verbose;
91 
92 static int __init hpet_setup(char *str)
93 {
94 	if (str) {
95 		if (!strncmp("disable", str, 7))
96 			boot_hpet_disable = 1;
97 		if (!strncmp("force", str, 5))
98 			hpet_force_user = 1;
99 		if (!strncmp("verbose", str, 7))
100 			hpet_verbose = 1;
101 	}
102 	return 1;
103 }
104 __setup("hpet=", hpet_setup);
105 
106 static int __init disable_hpet(char *str)
107 {
108 	boot_hpet_disable = 1;
109 	return 1;
110 }
111 __setup("nohpet", disable_hpet);
112 
113 static inline int is_hpet_capable(void)
114 {
115 	return !boot_hpet_disable && hpet_address;
116 }
117 
118 /*
119  * HPET timer interrupt enable / disable
120  */
121 static int hpet_legacy_int_enabled;
122 
123 /**
124  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
125  */
126 int is_hpet_enabled(void)
127 {
128 	return is_hpet_capable() && hpet_legacy_int_enabled;
129 }
130 EXPORT_SYMBOL_GPL(is_hpet_enabled);
131 
132 static void _hpet_print_config(const char *function, int line)
133 {
134 	u32 i, timers, l, h;
135 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
136 	l = hpet_readl(HPET_ID);
137 	h = hpet_readl(HPET_PERIOD);
138 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
139 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
140 	l = hpet_readl(HPET_CFG);
141 	h = hpet_readl(HPET_STATUS);
142 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
143 	l = hpet_readl(HPET_COUNTER);
144 	h = hpet_readl(HPET_COUNTER+4);
145 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
146 
147 	for (i = 0; i < timers; i++) {
148 		l = hpet_readl(HPET_Tn_CFG(i));
149 		h = hpet_readl(HPET_Tn_CFG(i)+4);
150 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
151 		       i, l, h);
152 		l = hpet_readl(HPET_Tn_CMP(i));
153 		h = hpet_readl(HPET_Tn_CMP(i)+4);
154 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
155 		       i, l, h);
156 		l = hpet_readl(HPET_Tn_ROUTE(i));
157 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
158 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
159 		       i, l, h);
160 	}
161 }
162 
163 #define hpet_print_config()					\
164 do {								\
165 	if (hpet_verbose)					\
166 		_hpet_print_config(__FUNCTION__, __LINE__);	\
167 } while (0)
168 
169 /*
170  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
171  * timer 0 and timer 1 in case of RTC emulation.
172  */
173 #ifdef CONFIG_HPET
174 
175 static void hpet_reserve_msi_timers(struct hpet_data *hd);
176 
177 static void hpet_reserve_platform_timers(unsigned int id)
178 {
179 	struct hpet __iomem *hpet = hpet_virt_address;
180 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
181 	unsigned int nrtimers, i;
182 	struct hpet_data hd;
183 
184 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
185 
186 	memset(&hd, 0, sizeof(hd));
187 	hd.hd_phys_address	= hpet_address;
188 	hd.hd_address		= hpet;
189 	hd.hd_nirqs		= nrtimers;
190 	hpet_reserve_timer(&hd, 0);
191 
192 #ifdef CONFIG_HPET_EMULATE_RTC
193 	hpet_reserve_timer(&hd, 1);
194 #endif
195 
196 	/*
197 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
198 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
199 	 * don't bother configuring *any* comparator interrupts.
200 	 */
201 	hd.hd_irq[0] = HPET_LEGACY_8254;
202 	hd.hd_irq[1] = HPET_LEGACY_RTC;
203 
204 	for (i = 2; i < nrtimers; timer++, i++) {
205 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
206 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
207 	}
208 
209 	hpet_reserve_msi_timers(&hd);
210 
211 	hpet_alloc(&hd);
212 
213 }
214 #else
215 static void hpet_reserve_platform_timers(unsigned int id) { }
216 #endif
217 
218 /*
219  * Common hpet info
220  */
221 static unsigned long hpet_freq;
222 
223 static void hpet_legacy_set_mode(enum clock_event_mode mode,
224 			  struct clock_event_device *evt);
225 static int hpet_legacy_next_event(unsigned long delta,
226 			   struct clock_event_device *evt);
227 
228 /*
229  * The hpet clock event device
230  */
231 static struct clock_event_device hpet_clockevent = {
232 	.name		= "hpet",
233 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
234 	.set_mode	= hpet_legacy_set_mode,
235 	.set_next_event = hpet_legacy_next_event,
236 	.irq		= 0,
237 	.rating		= 50,
238 };
239 
240 static void hpet_stop_counter(void)
241 {
242 	unsigned long cfg = hpet_readl(HPET_CFG);
243 	cfg &= ~HPET_CFG_ENABLE;
244 	hpet_writel(cfg, HPET_CFG);
245 }
246 
247 static void hpet_reset_counter(void)
248 {
249 	hpet_writel(0, HPET_COUNTER);
250 	hpet_writel(0, HPET_COUNTER + 4);
251 }
252 
253 static void hpet_start_counter(void)
254 {
255 	unsigned int cfg = hpet_readl(HPET_CFG);
256 	cfg |= HPET_CFG_ENABLE;
257 	hpet_writel(cfg, HPET_CFG);
258 }
259 
260 static void hpet_restart_counter(void)
261 {
262 	hpet_stop_counter();
263 	hpet_reset_counter();
264 	hpet_start_counter();
265 }
266 
267 static void hpet_resume_device(void)
268 {
269 	force_hpet_resume();
270 }
271 
272 static void hpet_resume_counter(struct clocksource *cs)
273 {
274 	hpet_resume_device();
275 	hpet_restart_counter();
276 }
277 
278 static void hpet_enable_legacy_int(void)
279 {
280 	unsigned int cfg = hpet_readl(HPET_CFG);
281 
282 	cfg |= HPET_CFG_LEGACY;
283 	hpet_writel(cfg, HPET_CFG);
284 	hpet_legacy_int_enabled = 1;
285 }
286 
287 static void hpet_legacy_clockevent_register(void)
288 {
289 	/* Start HPET legacy interrupts */
290 	hpet_enable_legacy_int();
291 
292 	/*
293 	 * Start hpet with the boot cpu mask and make it
294 	 * global after the IO_APIC has been initialized.
295 	 */
296 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
297 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
298 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
299 	global_clock_event = &hpet_clockevent;
300 	printk(KERN_DEBUG "hpet clockevent registered\n");
301 }
302 
303 static int hpet_setup_msi_irq(unsigned int irq);
304 
305 static void hpet_set_mode(enum clock_event_mode mode,
306 			  struct clock_event_device *evt, int timer)
307 {
308 	unsigned int cfg, cmp, now;
309 	uint64_t delta;
310 
311 	switch (mode) {
312 	case CLOCK_EVT_MODE_PERIODIC:
313 		hpet_stop_counter();
314 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
315 		delta >>= evt->shift;
316 		now = hpet_readl(HPET_COUNTER);
317 		cmp = now + (unsigned int) delta;
318 		cfg = hpet_readl(HPET_Tn_CFG(timer));
319 		/* Make sure we use edge triggered interrupts */
320 		cfg &= ~HPET_TN_LEVEL;
321 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
322 		       HPET_TN_SETVAL | HPET_TN_32BIT;
323 		hpet_writel(cfg, HPET_Tn_CFG(timer));
324 		hpet_writel(cmp, HPET_Tn_CMP(timer));
325 		udelay(1);
326 		/*
327 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
328 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
329 		 * bit is automatically cleared after the first write.
330 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
331 		 * Publication # 24674)
332 		 */
333 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
334 		hpet_start_counter();
335 		hpet_print_config();
336 		break;
337 
338 	case CLOCK_EVT_MODE_ONESHOT:
339 		cfg = hpet_readl(HPET_Tn_CFG(timer));
340 		cfg &= ~HPET_TN_PERIODIC;
341 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
342 		hpet_writel(cfg, HPET_Tn_CFG(timer));
343 		break;
344 
345 	case CLOCK_EVT_MODE_UNUSED:
346 	case CLOCK_EVT_MODE_SHUTDOWN:
347 		cfg = hpet_readl(HPET_Tn_CFG(timer));
348 		cfg &= ~HPET_TN_ENABLE;
349 		hpet_writel(cfg, HPET_Tn_CFG(timer));
350 		break;
351 
352 	case CLOCK_EVT_MODE_RESUME:
353 		if (timer == 0) {
354 			hpet_enable_legacy_int();
355 		} else {
356 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
357 			hpet_setup_msi_irq(hdev->irq);
358 			disable_irq(hdev->irq);
359 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
360 			enable_irq(hdev->irq);
361 		}
362 		hpet_print_config();
363 		break;
364 	}
365 }
366 
367 static int hpet_next_event(unsigned long delta,
368 			   struct clock_event_device *evt, int timer)
369 {
370 	u32 cnt;
371 	s32 res;
372 
373 	cnt = hpet_readl(HPET_COUNTER);
374 	cnt += (u32) delta;
375 	hpet_writel(cnt, HPET_Tn_CMP(timer));
376 
377 	/*
378 	 * HPETs are a complete disaster. The compare register is
379 	 * based on a equal comparison and neither provides a less
380 	 * than or equal functionality (which would require to take
381 	 * the wraparound into account) nor a simple count down event
382 	 * mode. Further the write to the comparator register is
383 	 * delayed internally up to two HPET clock cycles in certain
384 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
385 	 * longer delays. We worked around that by reading back the
386 	 * compare register, but that required another workaround for
387 	 * ICH9,10 chips where the first readout after write can
388 	 * return the old stale value. We already had a minimum
389 	 * programming delta of 5us enforced, but a NMI or SMI hitting
390 	 * between the counter readout and the comparator write can
391 	 * move us behind that point easily. Now instead of reading
392 	 * the compare register back several times, we make the ETIME
393 	 * decision based on the following: Return ETIME if the
394 	 * counter value after the write is less than HPET_MIN_CYCLES
395 	 * away from the event or if the counter is already ahead of
396 	 * the event. The minimum programming delta for the generic
397 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
398 	 */
399 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
400 
401 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
402 }
403 
404 static void hpet_legacy_set_mode(enum clock_event_mode mode,
405 			struct clock_event_device *evt)
406 {
407 	hpet_set_mode(mode, evt, 0);
408 }
409 
410 static int hpet_legacy_next_event(unsigned long delta,
411 			struct clock_event_device *evt)
412 {
413 	return hpet_next_event(delta, evt, 0);
414 }
415 
416 /*
417  * HPET MSI Support
418  */
419 #ifdef CONFIG_PCI_MSI
420 
421 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
422 static struct hpet_dev	*hpet_devs;
423 
424 void hpet_msi_unmask(struct irq_data *data)
425 {
426 	struct hpet_dev *hdev = data->handler_data;
427 	unsigned int cfg;
428 
429 	/* unmask it */
430 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
431 	cfg |= HPET_TN_FSB;
432 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
433 }
434 
435 void hpet_msi_mask(struct irq_data *data)
436 {
437 	struct hpet_dev *hdev = data->handler_data;
438 	unsigned int cfg;
439 
440 	/* mask it */
441 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
442 	cfg &= ~HPET_TN_FSB;
443 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
444 }
445 
446 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
447 {
448 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
449 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
450 }
451 
452 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
453 {
454 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
455 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
456 	msg->address_hi = 0;
457 }
458 
459 static void hpet_msi_set_mode(enum clock_event_mode mode,
460 				struct clock_event_device *evt)
461 {
462 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
463 	hpet_set_mode(mode, evt, hdev->num);
464 }
465 
466 static int hpet_msi_next_event(unsigned long delta,
467 				struct clock_event_device *evt)
468 {
469 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
470 	return hpet_next_event(delta, evt, hdev->num);
471 }
472 
473 static int hpet_setup_msi_irq(unsigned int irq)
474 {
475 	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
476 		destroy_irq(irq);
477 		return -EINVAL;
478 	}
479 	return 0;
480 }
481 
482 static int hpet_assign_irq(struct hpet_dev *dev)
483 {
484 	unsigned int irq;
485 
486 	irq = create_irq_nr(0, -1);
487 	if (!irq)
488 		return -EINVAL;
489 
490 	irq_set_handler_data(irq, dev);
491 
492 	if (hpet_setup_msi_irq(irq))
493 		return -EINVAL;
494 
495 	dev->irq = irq;
496 	return 0;
497 }
498 
499 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
500 {
501 	struct hpet_dev *dev = (struct hpet_dev *)data;
502 	struct clock_event_device *hevt = &dev->evt;
503 
504 	if (!hevt->event_handler) {
505 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
506 				dev->num);
507 		return IRQ_HANDLED;
508 	}
509 
510 	hevt->event_handler(hevt);
511 	return IRQ_HANDLED;
512 }
513 
514 static int hpet_setup_irq(struct hpet_dev *dev)
515 {
516 
517 	if (request_irq(dev->irq, hpet_interrupt_handler,
518 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
519 			dev->name, dev))
520 		return -1;
521 
522 	disable_irq(dev->irq);
523 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
524 	enable_irq(dev->irq);
525 
526 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
527 			 dev->name, dev->irq);
528 
529 	return 0;
530 }
531 
532 /* This should be called in specific @cpu */
533 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
534 {
535 	struct clock_event_device *evt = &hdev->evt;
536 
537 	WARN_ON(cpu != smp_processor_id());
538 	if (!(hdev->flags & HPET_DEV_VALID))
539 		return;
540 
541 	if (hpet_setup_msi_irq(hdev->irq))
542 		return;
543 
544 	hdev->cpu = cpu;
545 	per_cpu(cpu_hpet_dev, cpu) = hdev;
546 	evt->name = hdev->name;
547 	hpet_setup_irq(hdev);
548 	evt->irq = hdev->irq;
549 
550 	evt->rating = 110;
551 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
552 	if (hdev->flags & HPET_DEV_PERI_CAP)
553 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
554 
555 	evt->set_mode = hpet_msi_set_mode;
556 	evt->set_next_event = hpet_msi_next_event;
557 	evt->cpumask = cpumask_of(hdev->cpu);
558 
559 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
560 					0x7FFFFFFF);
561 }
562 
563 #ifdef CONFIG_HPET
564 /* Reserve at least one timer for userspace (/dev/hpet) */
565 #define RESERVE_TIMERS 1
566 #else
567 #define RESERVE_TIMERS 0
568 #endif
569 
570 static void hpet_msi_capability_lookup(unsigned int start_timer)
571 {
572 	unsigned int id;
573 	unsigned int num_timers;
574 	unsigned int num_timers_used = 0;
575 	int i;
576 
577 	if (hpet_msi_disable)
578 		return;
579 
580 	if (boot_cpu_has(X86_FEATURE_ARAT))
581 		return;
582 	id = hpet_readl(HPET_ID);
583 
584 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
585 	num_timers++; /* Value read out starts from 0 */
586 	hpet_print_config();
587 
588 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
589 	if (!hpet_devs)
590 		return;
591 
592 	hpet_num_timers = num_timers;
593 
594 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
595 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
596 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
597 
598 		/* Only consider HPET timer with MSI support */
599 		if (!(cfg & HPET_TN_FSB_CAP))
600 			continue;
601 
602 		hdev->flags = 0;
603 		if (cfg & HPET_TN_PERIODIC_CAP)
604 			hdev->flags |= HPET_DEV_PERI_CAP;
605 		hdev->num = i;
606 
607 		sprintf(hdev->name, "hpet%d", i);
608 		if (hpet_assign_irq(hdev))
609 			continue;
610 
611 		hdev->flags |= HPET_DEV_FSB_CAP;
612 		hdev->flags |= HPET_DEV_VALID;
613 		num_timers_used++;
614 		if (num_timers_used == num_possible_cpus())
615 			break;
616 	}
617 
618 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
619 		num_timers, num_timers_used);
620 }
621 
622 #ifdef CONFIG_HPET
623 static void hpet_reserve_msi_timers(struct hpet_data *hd)
624 {
625 	int i;
626 
627 	if (!hpet_devs)
628 		return;
629 
630 	for (i = 0; i < hpet_num_timers; i++) {
631 		struct hpet_dev *hdev = &hpet_devs[i];
632 
633 		if (!(hdev->flags & HPET_DEV_VALID))
634 			continue;
635 
636 		hd->hd_irq[hdev->num] = hdev->irq;
637 		hpet_reserve_timer(hd, hdev->num);
638 	}
639 }
640 #endif
641 
642 static struct hpet_dev *hpet_get_unused_timer(void)
643 {
644 	int i;
645 
646 	if (!hpet_devs)
647 		return NULL;
648 
649 	for (i = 0; i < hpet_num_timers; i++) {
650 		struct hpet_dev *hdev = &hpet_devs[i];
651 
652 		if (!(hdev->flags & HPET_DEV_VALID))
653 			continue;
654 		if (test_and_set_bit(HPET_DEV_USED_BIT,
655 			(unsigned long *)&hdev->flags))
656 			continue;
657 		return hdev;
658 	}
659 	return NULL;
660 }
661 
662 struct hpet_work_struct {
663 	struct delayed_work work;
664 	struct completion complete;
665 };
666 
667 static void hpet_work(struct work_struct *w)
668 {
669 	struct hpet_dev *hdev;
670 	int cpu = smp_processor_id();
671 	struct hpet_work_struct *hpet_work;
672 
673 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
674 
675 	hdev = hpet_get_unused_timer();
676 	if (hdev)
677 		init_one_hpet_msi_clockevent(hdev, cpu);
678 
679 	complete(&hpet_work->complete);
680 }
681 
682 static int hpet_cpuhp_notify(struct notifier_block *n,
683 		unsigned long action, void *hcpu)
684 {
685 	unsigned long cpu = (unsigned long)hcpu;
686 	struct hpet_work_struct work;
687 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
688 
689 	switch (action & 0xf) {
690 	case CPU_ONLINE:
691 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
692 		init_completion(&work.complete);
693 		/* FIXME: add schedule_work_on() */
694 		schedule_delayed_work_on(cpu, &work.work, 0);
695 		wait_for_completion(&work.complete);
696 		destroy_timer_on_stack(&work.work.timer);
697 		break;
698 	case CPU_DEAD:
699 		if (hdev) {
700 			free_irq(hdev->irq, hdev);
701 			hdev->flags &= ~HPET_DEV_USED;
702 			per_cpu(cpu_hpet_dev, cpu) = NULL;
703 		}
704 		break;
705 	}
706 	return NOTIFY_OK;
707 }
708 #else
709 
710 static int hpet_setup_msi_irq(unsigned int irq)
711 {
712 	return 0;
713 }
714 static void hpet_msi_capability_lookup(unsigned int start_timer)
715 {
716 	return;
717 }
718 
719 #ifdef CONFIG_HPET
720 static void hpet_reserve_msi_timers(struct hpet_data *hd)
721 {
722 	return;
723 }
724 #endif
725 
726 static int hpet_cpuhp_notify(struct notifier_block *n,
727 		unsigned long action, void *hcpu)
728 {
729 	return NOTIFY_OK;
730 }
731 
732 #endif
733 
734 /*
735  * Clock source related code
736  */
737 static cycle_t read_hpet(struct clocksource *cs)
738 {
739 	return (cycle_t)hpet_readl(HPET_COUNTER);
740 }
741 
742 static struct clocksource clocksource_hpet = {
743 	.name		= "hpet",
744 	.rating		= 250,
745 	.read		= read_hpet,
746 	.mask		= HPET_MASK,
747 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
748 	.resume		= hpet_resume_counter,
749 #ifdef CONFIG_X86_64
750 	.archdata	= { .vclock_mode = VCLOCK_HPET },
751 #endif
752 };
753 
754 static int hpet_clocksource_register(void)
755 {
756 	u64 start, now;
757 	cycle_t t1;
758 
759 	/* Start the counter */
760 	hpet_restart_counter();
761 
762 	/* Verify whether hpet counter works */
763 	t1 = hpet_readl(HPET_COUNTER);
764 	rdtscll(start);
765 
766 	/*
767 	 * We don't know the TSC frequency yet, but waiting for
768 	 * 200000 TSC cycles is safe:
769 	 * 4 GHz == 50us
770 	 * 1 GHz == 200us
771 	 */
772 	do {
773 		rep_nop();
774 		rdtscll(now);
775 	} while ((now - start) < 200000UL);
776 
777 	if (t1 == hpet_readl(HPET_COUNTER)) {
778 		printk(KERN_WARNING
779 		       "HPET counter not counting. HPET disabled\n");
780 		return -ENODEV;
781 	}
782 
783 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
784 	return 0;
785 }
786 
787 /**
788  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
789  */
790 int __init hpet_enable(void)
791 {
792 	unsigned long hpet_period;
793 	unsigned int id;
794 	u64 freq;
795 	int i;
796 
797 	if (!is_hpet_capable())
798 		return 0;
799 
800 	hpet_set_mapping();
801 
802 	/*
803 	 * Read the period and check for a sane value:
804 	 */
805 	hpet_period = hpet_readl(HPET_PERIOD);
806 
807 	/*
808 	 * AMD SB700 based systems with spread spectrum enabled use a
809 	 * SMM based HPET emulation to provide proper frequency
810 	 * setting. The SMM code is initialized with the first HPET
811 	 * register access and takes some time to complete. During
812 	 * this time the config register reads 0xffffffff. We check
813 	 * for max. 1000 loops whether the config register reads a non
814 	 * 0xffffffff value to make sure that HPET is up and running
815 	 * before we go further. A counting loop is safe, as the HPET
816 	 * access takes thousands of CPU cycles. On non SB700 based
817 	 * machines this check is only done once and has no side
818 	 * effects.
819 	 */
820 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
821 		if (i == 1000) {
822 			printk(KERN_WARNING
823 			       "HPET config register value = 0xFFFFFFFF. "
824 			       "Disabling HPET\n");
825 			goto out_nohpet;
826 		}
827 	}
828 
829 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
830 		goto out_nohpet;
831 
832 	/*
833 	 * The period is a femto seconds value. Convert it to a
834 	 * frequency.
835 	 */
836 	freq = FSEC_PER_SEC;
837 	do_div(freq, hpet_period);
838 	hpet_freq = freq;
839 
840 	/*
841 	 * Read the HPET ID register to retrieve the IRQ routing
842 	 * information and the number of channels
843 	 */
844 	id = hpet_readl(HPET_ID);
845 	hpet_print_config();
846 
847 #ifdef CONFIG_HPET_EMULATE_RTC
848 	/*
849 	 * The legacy routing mode needs at least two channels, tick timer
850 	 * and the rtc emulation channel.
851 	 */
852 	if (!(id & HPET_ID_NUMBER))
853 		goto out_nohpet;
854 #endif
855 
856 	if (hpet_clocksource_register())
857 		goto out_nohpet;
858 
859 	if (id & HPET_ID_LEGSUP) {
860 		hpet_legacy_clockevent_register();
861 		return 1;
862 	}
863 	return 0;
864 
865 out_nohpet:
866 	hpet_clear_mapping();
867 	hpet_address = 0;
868 	return 0;
869 }
870 
871 /*
872  * Needs to be late, as the reserve_timer code calls kalloc !
873  *
874  * Not a problem on i386 as hpet_enable is called from late_time_init,
875  * but on x86_64 it is necessary !
876  */
877 static __init int hpet_late_init(void)
878 {
879 	int cpu;
880 
881 	if (boot_hpet_disable)
882 		return -ENODEV;
883 
884 	if (!hpet_address) {
885 		if (!force_hpet_address)
886 			return -ENODEV;
887 
888 		hpet_address = force_hpet_address;
889 		hpet_enable();
890 	}
891 
892 	if (!hpet_virt_address)
893 		return -ENODEV;
894 
895 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
896 		hpet_msi_capability_lookup(2);
897 	else
898 		hpet_msi_capability_lookup(0);
899 
900 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
901 	hpet_print_config();
902 
903 	if (hpet_msi_disable)
904 		return 0;
905 
906 	if (boot_cpu_has(X86_FEATURE_ARAT))
907 		return 0;
908 
909 	for_each_online_cpu(cpu) {
910 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
911 	}
912 
913 	/* This notifier should be called after workqueue is ready */
914 	hotcpu_notifier(hpet_cpuhp_notify, -20);
915 
916 	return 0;
917 }
918 fs_initcall(hpet_late_init);
919 
920 void hpet_disable(void)
921 {
922 	if (is_hpet_capable() && hpet_virt_address) {
923 		unsigned int cfg = hpet_readl(HPET_CFG);
924 
925 		if (hpet_legacy_int_enabled) {
926 			cfg &= ~HPET_CFG_LEGACY;
927 			hpet_legacy_int_enabled = 0;
928 		}
929 		cfg &= ~HPET_CFG_ENABLE;
930 		hpet_writel(cfg, HPET_CFG);
931 	}
932 }
933 
934 #ifdef CONFIG_HPET_EMULATE_RTC
935 
936 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
937  * is enabled, we support RTC interrupt functionality in software.
938  * RTC has 3 kinds of interrupts:
939  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
940  *    is updated
941  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
942  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
943  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
944  * (1) and (2) above are implemented using polling at a frequency of
945  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
946  * overhead. (DEFAULT_RTC_INT_FREQ)
947  * For (3), we use interrupts at 64Hz or user specified periodic
948  * frequency, whichever is higher.
949  */
950 #include <linux/mc146818rtc.h>
951 #include <linux/rtc.h>
952 #include <asm/rtc.h>
953 
954 #define DEFAULT_RTC_INT_FREQ	64
955 #define DEFAULT_RTC_SHIFT	6
956 #define RTC_NUM_INTS		1
957 
958 static unsigned long hpet_rtc_flags;
959 static int hpet_prev_update_sec;
960 static struct rtc_time hpet_alarm_time;
961 static unsigned long hpet_pie_count;
962 static u32 hpet_t1_cmp;
963 static u32 hpet_default_delta;
964 static u32 hpet_pie_delta;
965 static unsigned long hpet_pie_limit;
966 
967 static rtc_irq_handler irq_handler;
968 
969 /*
970  * Check that the hpet counter c1 is ahead of the c2
971  */
972 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
973 {
974 	return (s32)(c2 - c1) < 0;
975 }
976 
977 /*
978  * Registers a IRQ handler.
979  */
980 int hpet_register_irq_handler(rtc_irq_handler handler)
981 {
982 	if (!is_hpet_enabled())
983 		return -ENODEV;
984 	if (irq_handler)
985 		return -EBUSY;
986 
987 	irq_handler = handler;
988 
989 	return 0;
990 }
991 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
992 
993 /*
994  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
995  * and does cleanup.
996  */
997 void hpet_unregister_irq_handler(rtc_irq_handler handler)
998 {
999 	if (!is_hpet_enabled())
1000 		return;
1001 
1002 	irq_handler = NULL;
1003 	hpet_rtc_flags = 0;
1004 }
1005 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1006 
1007 /*
1008  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1009  * is not supported by all HPET implementations for timer 1.
1010  *
1011  * hpet_rtc_timer_init() is called when the rtc is initialized.
1012  */
1013 int hpet_rtc_timer_init(void)
1014 {
1015 	unsigned int cfg, cnt, delta;
1016 	unsigned long flags;
1017 
1018 	if (!is_hpet_enabled())
1019 		return 0;
1020 
1021 	if (!hpet_default_delta) {
1022 		uint64_t clc;
1023 
1024 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1025 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1026 		hpet_default_delta = clc;
1027 	}
1028 
1029 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1030 		delta = hpet_default_delta;
1031 	else
1032 		delta = hpet_pie_delta;
1033 
1034 	local_irq_save(flags);
1035 
1036 	cnt = delta + hpet_readl(HPET_COUNTER);
1037 	hpet_writel(cnt, HPET_T1_CMP);
1038 	hpet_t1_cmp = cnt;
1039 
1040 	cfg = hpet_readl(HPET_T1_CFG);
1041 	cfg &= ~HPET_TN_PERIODIC;
1042 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1043 	hpet_writel(cfg, HPET_T1_CFG);
1044 
1045 	local_irq_restore(flags);
1046 
1047 	return 1;
1048 }
1049 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1050 
1051 /*
1052  * The functions below are called from rtc driver.
1053  * Return 0 if HPET is not being used.
1054  * Otherwise do the necessary changes and return 1.
1055  */
1056 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1057 {
1058 	if (!is_hpet_enabled())
1059 		return 0;
1060 
1061 	hpet_rtc_flags &= ~bit_mask;
1062 	return 1;
1063 }
1064 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1065 
1066 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1067 {
1068 	unsigned long oldbits = hpet_rtc_flags;
1069 
1070 	if (!is_hpet_enabled())
1071 		return 0;
1072 
1073 	hpet_rtc_flags |= bit_mask;
1074 
1075 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1076 		hpet_prev_update_sec = -1;
1077 
1078 	if (!oldbits)
1079 		hpet_rtc_timer_init();
1080 
1081 	return 1;
1082 }
1083 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1084 
1085 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1086 			unsigned char sec)
1087 {
1088 	if (!is_hpet_enabled())
1089 		return 0;
1090 
1091 	hpet_alarm_time.tm_hour = hrs;
1092 	hpet_alarm_time.tm_min = min;
1093 	hpet_alarm_time.tm_sec = sec;
1094 
1095 	return 1;
1096 }
1097 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1098 
1099 int hpet_set_periodic_freq(unsigned long freq)
1100 {
1101 	uint64_t clc;
1102 
1103 	if (!is_hpet_enabled())
1104 		return 0;
1105 
1106 	if (freq <= DEFAULT_RTC_INT_FREQ)
1107 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1108 	else {
1109 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1110 		do_div(clc, freq);
1111 		clc >>= hpet_clockevent.shift;
1112 		hpet_pie_delta = clc;
1113 		hpet_pie_limit = 0;
1114 	}
1115 	return 1;
1116 }
1117 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1118 
1119 int hpet_rtc_dropped_irq(void)
1120 {
1121 	return is_hpet_enabled();
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1124 
1125 static void hpet_rtc_timer_reinit(void)
1126 {
1127 	unsigned int cfg, delta;
1128 	int lost_ints = -1;
1129 
1130 	if (unlikely(!hpet_rtc_flags)) {
1131 		cfg = hpet_readl(HPET_T1_CFG);
1132 		cfg &= ~HPET_TN_ENABLE;
1133 		hpet_writel(cfg, HPET_T1_CFG);
1134 		return;
1135 	}
1136 
1137 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1138 		delta = hpet_default_delta;
1139 	else
1140 		delta = hpet_pie_delta;
1141 
1142 	/*
1143 	 * Increment the comparator value until we are ahead of the
1144 	 * current count.
1145 	 */
1146 	do {
1147 		hpet_t1_cmp += delta;
1148 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1149 		lost_ints++;
1150 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1151 
1152 	if (lost_ints) {
1153 		if (hpet_rtc_flags & RTC_PIE)
1154 			hpet_pie_count += lost_ints;
1155 		if (printk_ratelimit())
1156 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1157 				lost_ints);
1158 	}
1159 }
1160 
1161 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1162 {
1163 	struct rtc_time curr_time;
1164 	unsigned long rtc_int_flag = 0;
1165 
1166 	hpet_rtc_timer_reinit();
1167 	memset(&curr_time, 0, sizeof(struct rtc_time));
1168 
1169 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1170 		get_rtc_time(&curr_time);
1171 
1172 	if (hpet_rtc_flags & RTC_UIE &&
1173 	    curr_time.tm_sec != hpet_prev_update_sec) {
1174 		if (hpet_prev_update_sec >= 0)
1175 			rtc_int_flag = RTC_UF;
1176 		hpet_prev_update_sec = curr_time.tm_sec;
1177 	}
1178 
1179 	if (hpet_rtc_flags & RTC_PIE &&
1180 	    ++hpet_pie_count >= hpet_pie_limit) {
1181 		rtc_int_flag |= RTC_PF;
1182 		hpet_pie_count = 0;
1183 	}
1184 
1185 	if (hpet_rtc_flags & RTC_AIE &&
1186 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1187 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1188 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1189 			rtc_int_flag |= RTC_AF;
1190 
1191 	if (rtc_int_flag) {
1192 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1193 		if (irq_handler)
1194 			irq_handler(rtc_int_flag, dev_id);
1195 	}
1196 	return IRQ_HANDLED;
1197 }
1198 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1199 #endif
1200