xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision 60772e48)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20 
21 #define HPET_MASK			CLOCKSOURCE_MASK(32)
22 
23 /* FSEC = 10^-15
24    NSEC = 10^-9 */
25 #define FSEC_PER_NSEC			1000000L
26 
27 #define HPET_DEV_USED_BIT		2
28 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID			0x8
30 #define HPET_DEV_FSB_CAP		0x1000
31 #define HPET_DEV_PERI_CAP		0x2000
32 
33 #define HPET_MIN_CYCLES			128
34 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35 
36 /*
37  * HPET address is set in acpi/boot.c, when an ACPI entry exists
38  */
39 unsigned long				hpet_address;
40 u8					hpet_blockid; /* OS timer block num */
41 bool					hpet_msi_disable;
42 
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int			hpet_num_timers;
45 #endif
46 static void __iomem			*hpet_virt_address;
47 
48 struct hpet_dev {
49 	struct clock_event_device	evt;
50 	unsigned int			num;
51 	int				cpu;
52 	unsigned int			irq;
53 	unsigned int			flags;
54 	char				name[10];
55 };
56 
57 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 	return container_of(evtdev, struct hpet_dev, evt);
60 }
61 
62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 	return readl(hpet_virt_address + a);
65 }
66 
67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 	writel(d, hpet_virt_address + a);
70 }
71 
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75 
76 static inline void hpet_set_mapping(void)
77 {
78 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80 
81 static inline void hpet_clear_mapping(void)
82 {
83 	iounmap(hpet_virt_address);
84 	hpet_virt_address = NULL;
85 }
86 
87 /*
88  * HPET command line enable / disable
89  */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93 
94 static int __init hpet_setup(char *str)
95 {
96 	while (str) {
97 		char *next = strchr(str, ',');
98 
99 		if (next)
100 			*next++ = 0;
101 		if (!strncmp("disable", str, 7))
102 			boot_hpet_disable = true;
103 		if (!strncmp("force", str, 5))
104 			hpet_force_user = true;
105 		if (!strncmp("verbose", str, 7))
106 			hpet_verbose = true;
107 		str = next;
108 	}
109 	return 1;
110 }
111 __setup("hpet=", hpet_setup);
112 
113 static int __init disable_hpet(char *str)
114 {
115 	boot_hpet_disable = true;
116 	return 1;
117 }
118 __setup("nohpet", disable_hpet);
119 
120 static inline int is_hpet_capable(void)
121 {
122 	return !boot_hpet_disable && hpet_address;
123 }
124 
125 /*
126  * HPET timer interrupt enable / disable
127  */
128 static bool hpet_legacy_int_enabled;
129 
130 /**
131  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132  */
133 int is_hpet_enabled(void)
134 {
135 	return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138 
139 static void _hpet_print_config(const char *function, int line)
140 {
141 	u32 i, timers, l, h;
142 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 	l = hpet_readl(HPET_ID);
144 	h = hpet_readl(HPET_PERIOD);
145 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 	l = hpet_readl(HPET_CFG);
148 	h = hpet_readl(HPET_STATUS);
149 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 	l = hpet_readl(HPET_COUNTER);
151 	h = hpet_readl(HPET_COUNTER+4);
152 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153 
154 	for (i = 0; i < timers; i++) {
155 		l = hpet_readl(HPET_Tn_CFG(i));
156 		h = hpet_readl(HPET_Tn_CFG(i)+4);
157 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 		       i, l, h);
159 		l = hpet_readl(HPET_Tn_CMP(i));
160 		h = hpet_readl(HPET_Tn_CMP(i)+4);
161 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 		       i, l, h);
163 		l = hpet_readl(HPET_Tn_ROUTE(i));
164 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 		       i, l, h);
167 	}
168 }
169 
170 #define hpet_print_config()					\
171 do {								\
172 	if (hpet_verbose)					\
173 		_hpet_print_config(__func__, __LINE__);	\
174 } while (0)
175 
176 /*
177  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178  * timer 0 and timer 1 in case of RTC emulation.
179  */
180 #ifdef CONFIG_HPET
181 
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183 
184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 	struct hpet __iomem *hpet = hpet_virt_address;
187 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 	unsigned int nrtimers, i;
189 	struct hpet_data hd;
190 
191 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192 
193 	memset(&hd, 0, sizeof(hd));
194 	hd.hd_phys_address	= hpet_address;
195 	hd.hd_address		= hpet;
196 	hd.hd_nirqs		= nrtimers;
197 	hpet_reserve_timer(&hd, 0);
198 
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 	hpet_reserve_timer(&hd, 1);
201 #endif
202 
203 	/*
204 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
206 	 * don't bother configuring *any* comparator interrupts.
207 	 */
208 	hd.hd_irq[0] = HPET_LEGACY_8254;
209 	hd.hd_irq[1] = HPET_LEGACY_RTC;
210 
211 	for (i = 2; i < nrtimers; timer++, i++) {
212 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 	}
215 
216 	hpet_reserve_msi_timers(&hd);
217 
218 	hpet_alloc(&hd);
219 
220 }
221 #else
222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224 
225 /*
226  * Common hpet info
227  */
228 static unsigned long hpet_freq;
229 
230 static struct clock_event_device hpet_clockevent;
231 
232 static void hpet_stop_counter(void)
233 {
234 	u32 cfg = hpet_readl(HPET_CFG);
235 	cfg &= ~HPET_CFG_ENABLE;
236 	hpet_writel(cfg, HPET_CFG);
237 }
238 
239 static void hpet_reset_counter(void)
240 {
241 	hpet_writel(0, HPET_COUNTER);
242 	hpet_writel(0, HPET_COUNTER + 4);
243 }
244 
245 static void hpet_start_counter(void)
246 {
247 	unsigned int cfg = hpet_readl(HPET_CFG);
248 	cfg |= HPET_CFG_ENABLE;
249 	hpet_writel(cfg, HPET_CFG);
250 }
251 
252 static void hpet_restart_counter(void)
253 {
254 	hpet_stop_counter();
255 	hpet_reset_counter();
256 	hpet_start_counter();
257 }
258 
259 static void hpet_resume_device(void)
260 {
261 	force_hpet_resume();
262 }
263 
264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 	hpet_resume_device();
267 	hpet_restart_counter();
268 }
269 
270 static void hpet_enable_legacy_int(void)
271 {
272 	unsigned int cfg = hpet_readl(HPET_CFG);
273 
274 	cfg |= HPET_CFG_LEGACY;
275 	hpet_writel(cfg, HPET_CFG);
276 	hpet_legacy_int_enabled = true;
277 }
278 
279 static void hpet_legacy_clockevent_register(void)
280 {
281 	/* Start HPET legacy interrupts */
282 	hpet_enable_legacy_int();
283 
284 	/*
285 	 * Start hpet with the boot cpu mask and make it
286 	 * global after the IO_APIC has been initialized.
287 	 */
288 	hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
289 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 	global_clock_event = &hpet_clockevent;
292 	printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294 
295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 	unsigned int cfg, cmp, now;
298 	uint64_t delta;
299 
300 	hpet_stop_counter();
301 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 	delta >>= evt->shift;
303 	now = hpet_readl(HPET_COUNTER);
304 	cmp = now + (unsigned int)delta;
305 	cfg = hpet_readl(HPET_Tn_CFG(timer));
306 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 	       HPET_TN_32BIT;
308 	hpet_writel(cfg, HPET_Tn_CFG(timer));
309 	hpet_writel(cmp, HPET_Tn_CMP(timer));
310 	udelay(1);
311 	/*
312 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 	 * bit is automatically cleared after the first write.
315 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 	 * Publication # 24674)
317 	 */
318 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 	hpet_start_counter();
320 	hpet_print_config();
321 
322 	return 0;
323 }
324 
325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 	unsigned int cfg;
328 
329 	cfg = hpet_readl(HPET_Tn_CFG(timer));
330 	cfg &= ~HPET_TN_PERIODIC;
331 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 	hpet_writel(cfg, HPET_Tn_CFG(timer));
333 
334 	return 0;
335 }
336 
337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 	unsigned int cfg;
340 
341 	cfg = hpet_readl(HPET_Tn_CFG(timer));
342 	cfg &= ~HPET_TN_ENABLE;
343 	hpet_writel(cfg, HPET_Tn_CFG(timer));
344 
345 	return 0;
346 }
347 
348 static int hpet_resume(struct clock_event_device *evt)
349 {
350 	hpet_enable_legacy_int();
351 	hpet_print_config();
352 	return 0;
353 }
354 
355 static int hpet_next_event(unsigned long delta,
356 			   struct clock_event_device *evt, int timer)
357 {
358 	u32 cnt;
359 	s32 res;
360 
361 	cnt = hpet_readl(HPET_COUNTER);
362 	cnt += (u32) delta;
363 	hpet_writel(cnt, HPET_Tn_CMP(timer));
364 
365 	/*
366 	 * HPETs are a complete disaster. The compare register is
367 	 * based on a equal comparison and neither provides a less
368 	 * than or equal functionality (which would require to take
369 	 * the wraparound into account) nor a simple count down event
370 	 * mode. Further the write to the comparator register is
371 	 * delayed internally up to two HPET clock cycles in certain
372 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
373 	 * longer delays. We worked around that by reading back the
374 	 * compare register, but that required another workaround for
375 	 * ICH9,10 chips where the first readout after write can
376 	 * return the old stale value. We already had a minimum
377 	 * programming delta of 5us enforced, but a NMI or SMI hitting
378 	 * between the counter readout and the comparator write can
379 	 * move us behind that point easily. Now instead of reading
380 	 * the compare register back several times, we make the ETIME
381 	 * decision based on the following: Return ETIME if the
382 	 * counter value after the write is less than HPET_MIN_CYCLES
383 	 * away from the event or if the counter is already ahead of
384 	 * the event. The minimum programming delta for the generic
385 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
386 	 */
387 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
388 
389 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
390 }
391 
392 static int hpet_legacy_shutdown(struct clock_event_device *evt)
393 {
394 	return hpet_shutdown(evt, 0);
395 }
396 
397 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
398 {
399 	return hpet_set_oneshot(evt, 0);
400 }
401 
402 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
403 {
404 	return hpet_set_periodic(evt, 0);
405 }
406 
407 static int hpet_legacy_resume(struct clock_event_device *evt)
408 {
409 	return hpet_resume(evt);
410 }
411 
412 static int hpet_legacy_next_event(unsigned long delta,
413 			struct clock_event_device *evt)
414 {
415 	return hpet_next_event(delta, evt, 0);
416 }
417 
418 /*
419  * The hpet clock event device
420  */
421 static struct clock_event_device hpet_clockevent = {
422 	.name			= "hpet",
423 	.features		= CLOCK_EVT_FEAT_PERIODIC |
424 				  CLOCK_EVT_FEAT_ONESHOT,
425 	.set_state_periodic	= hpet_legacy_set_periodic,
426 	.set_state_oneshot	= hpet_legacy_set_oneshot,
427 	.set_state_shutdown	= hpet_legacy_shutdown,
428 	.tick_resume		= hpet_legacy_resume,
429 	.set_next_event		= hpet_legacy_next_event,
430 	.irq			= 0,
431 	.rating			= 50,
432 };
433 
434 /*
435  * HPET MSI Support
436  */
437 #ifdef CONFIG_PCI_MSI
438 
439 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
440 static struct hpet_dev	*hpet_devs;
441 static struct irq_domain *hpet_domain;
442 
443 void hpet_msi_unmask(struct irq_data *data)
444 {
445 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
446 	unsigned int cfg;
447 
448 	/* unmask it */
449 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
450 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
451 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
452 }
453 
454 void hpet_msi_mask(struct irq_data *data)
455 {
456 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457 	unsigned int cfg;
458 
459 	/* mask it */
460 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
462 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464 
465 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
466 {
467 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
468 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
469 }
470 
471 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
472 {
473 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
474 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
475 	msg->address_hi = 0;
476 }
477 
478 static int hpet_msi_shutdown(struct clock_event_device *evt)
479 {
480 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
481 
482 	return hpet_shutdown(evt, hdev->num);
483 }
484 
485 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
486 {
487 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
488 
489 	return hpet_set_oneshot(evt, hdev->num);
490 }
491 
492 static int hpet_msi_set_periodic(struct clock_event_device *evt)
493 {
494 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
495 
496 	return hpet_set_periodic(evt, hdev->num);
497 }
498 
499 static int hpet_msi_resume(struct clock_event_device *evt)
500 {
501 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
502 	struct irq_data *data = irq_get_irq_data(hdev->irq);
503 	struct msi_msg msg;
504 
505 	/* Restore the MSI msg and unmask the interrupt */
506 	irq_chip_compose_msi_msg(data, &msg);
507 	hpet_msi_write(hdev, &msg);
508 	hpet_msi_unmask(data);
509 	return 0;
510 }
511 
512 static int hpet_msi_next_event(unsigned long delta,
513 				struct clock_event_device *evt)
514 {
515 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
516 	return hpet_next_event(delta, evt, hdev->num);
517 }
518 
519 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
520 {
521 	struct hpet_dev *dev = (struct hpet_dev *)data;
522 	struct clock_event_device *hevt = &dev->evt;
523 
524 	if (!hevt->event_handler) {
525 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
526 				dev->num);
527 		return IRQ_HANDLED;
528 	}
529 
530 	hevt->event_handler(hevt);
531 	return IRQ_HANDLED;
532 }
533 
534 static int hpet_setup_irq(struct hpet_dev *dev)
535 {
536 
537 	if (request_irq(dev->irq, hpet_interrupt_handler,
538 			IRQF_TIMER | IRQF_NOBALANCING,
539 			dev->name, dev))
540 		return -1;
541 
542 	disable_irq(dev->irq);
543 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
544 	enable_irq(dev->irq);
545 
546 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
547 			 dev->name, dev->irq);
548 
549 	return 0;
550 }
551 
552 /* This should be called in specific @cpu */
553 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
554 {
555 	struct clock_event_device *evt = &hdev->evt;
556 
557 	WARN_ON(cpu != smp_processor_id());
558 	if (!(hdev->flags & HPET_DEV_VALID))
559 		return;
560 
561 	hdev->cpu = cpu;
562 	per_cpu(cpu_hpet_dev, cpu) = hdev;
563 	evt->name = hdev->name;
564 	hpet_setup_irq(hdev);
565 	evt->irq = hdev->irq;
566 
567 	evt->rating = 110;
568 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
569 	if (hdev->flags & HPET_DEV_PERI_CAP) {
570 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
571 		evt->set_state_periodic = hpet_msi_set_periodic;
572 	}
573 
574 	evt->set_state_shutdown = hpet_msi_shutdown;
575 	evt->set_state_oneshot = hpet_msi_set_oneshot;
576 	evt->tick_resume = hpet_msi_resume;
577 	evt->set_next_event = hpet_msi_next_event;
578 	evt->cpumask = cpumask_of(hdev->cpu);
579 
580 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
581 					0x7FFFFFFF);
582 }
583 
584 #ifdef CONFIG_HPET
585 /* Reserve at least one timer for userspace (/dev/hpet) */
586 #define RESERVE_TIMERS 1
587 #else
588 #define RESERVE_TIMERS 0
589 #endif
590 
591 static void hpet_msi_capability_lookup(unsigned int start_timer)
592 {
593 	unsigned int id;
594 	unsigned int num_timers;
595 	unsigned int num_timers_used = 0;
596 	int i, irq;
597 
598 	if (hpet_msi_disable)
599 		return;
600 
601 	if (boot_cpu_has(X86_FEATURE_ARAT))
602 		return;
603 	id = hpet_readl(HPET_ID);
604 
605 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
606 	num_timers++; /* Value read out starts from 0 */
607 	hpet_print_config();
608 
609 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
610 	if (!hpet_domain)
611 		return;
612 
613 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
614 	if (!hpet_devs)
615 		return;
616 
617 	hpet_num_timers = num_timers;
618 
619 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
620 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
621 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
622 
623 		/* Only consider HPET timer with MSI support */
624 		if (!(cfg & HPET_TN_FSB_CAP))
625 			continue;
626 
627 		hdev->flags = 0;
628 		if (cfg & HPET_TN_PERIODIC_CAP)
629 			hdev->flags |= HPET_DEV_PERI_CAP;
630 		sprintf(hdev->name, "hpet%d", i);
631 		hdev->num = i;
632 
633 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
634 		if (irq <= 0)
635 			continue;
636 
637 		hdev->irq = irq;
638 		hdev->flags |= HPET_DEV_FSB_CAP;
639 		hdev->flags |= HPET_DEV_VALID;
640 		num_timers_used++;
641 		if (num_timers_used == num_possible_cpus())
642 			break;
643 	}
644 
645 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
646 		num_timers, num_timers_used);
647 }
648 
649 #ifdef CONFIG_HPET
650 static void hpet_reserve_msi_timers(struct hpet_data *hd)
651 {
652 	int i;
653 
654 	if (!hpet_devs)
655 		return;
656 
657 	for (i = 0; i < hpet_num_timers; i++) {
658 		struct hpet_dev *hdev = &hpet_devs[i];
659 
660 		if (!(hdev->flags & HPET_DEV_VALID))
661 			continue;
662 
663 		hd->hd_irq[hdev->num] = hdev->irq;
664 		hpet_reserve_timer(hd, hdev->num);
665 	}
666 }
667 #endif
668 
669 static struct hpet_dev *hpet_get_unused_timer(void)
670 {
671 	int i;
672 
673 	if (!hpet_devs)
674 		return NULL;
675 
676 	for (i = 0; i < hpet_num_timers; i++) {
677 		struct hpet_dev *hdev = &hpet_devs[i];
678 
679 		if (!(hdev->flags & HPET_DEV_VALID))
680 			continue;
681 		if (test_and_set_bit(HPET_DEV_USED_BIT,
682 			(unsigned long *)&hdev->flags))
683 			continue;
684 		return hdev;
685 	}
686 	return NULL;
687 }
688 
689 struct hpet_work_struct {
690 	struct delayed_work work;
691 	struct completion complete;
692 };
693 
694 static void hpet_work(struct work_struct *w)
695 {
696 	struct hpet_dev *hdev;
697 	int cpu = smp_processor_id();
698 	struct hpet_work_struct *hpet_work;
699 
700 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
701 
702 	hdev = hpet_get_unused_timer();
703 	if (hdev)
704 		init_one_hpet_msi_clockevent(hdev, cpu);
705 
706 	complete(&hpet_work->complete);
707 }
708 
709 static int hpet_cpuhp_online(unsigned int cpu)
710 {
711 	struct hpet_work_struct work;
712 
713 	INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
714 	init_completion(&work.complete);
715 	/* FIXME: add schedule_work_on() */
716 	schedule_delayed_work_on(cpu, &work.work, 0);
717 	wait_for_completion(&work.complete);
718 	destroy_delayed_work_on_stack(&work.work);
719 	return 0;
720 }
721 
722 static int hpet_cpuhp_dead(unsigned int cpu)
723 {
724 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
725 
726 	if (!hdev)
727 		return 0;
728 	free_irq(hdev->irq, hdev);
729 	hdev->flags &= ~HPET_DEV_USED;
730 	per_cpu(cpu_hpet_dev, cpu) = NULL;
731 	return 0;
732 }
733 #else
734 
735 static void hpet_msi_capability_lookup(unsigned int start_timer)
736 {
737 	return;
738 }
739 
740 #ifdef CONFIG_HPET
741 static void hpet_reserve_msi_timers(struct hpet_data *hd)
742 {
743 	return;
744 }
745 #endif
746 
747 #define hpet_cpuhp_online	NULL
748 #define hpet_cpuhp_dead		NULL
749 
750 #endif
751 
752 /*
753  * Clock source related code
754  */
755 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
756 /*
757  * Reading the HPET counter is a very slow operation. If a large number of
758  * CPUs are trying to access the HPET counter simultaneously, it can cause
759  * massive delay and slow down system performance dramatically. This may
760  * happen when HPET is the default clock source instead of TSC. For a
761  * really large system with hundreds of CPUs, the slowdown may be so
762  * severe that it may actually crash the system because of a NMI watchdog
763  * soft lockup, for example.
764  *
765  * If multiple CPUs are trying to access the HPET counter at the same time,
766  * we don't actually need to read the counter multiple times. Instead, the
767  * other CPUs can use the counter value read by the first CPU in the group.
768  *
769  * This special feature is only enabled on x86-64 systems. It is unlikely
770  * that 32-bit x86 systems will have enough CPUs to require this feature
771  * with its associated locking overhead. And we also need 64-bit atomic
772  * read.
773  *
774  * The lock and the hpet value are stored together and can be read in a
775  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
776  * is 32 bits in size.
777  */
778 union hpet_lock {
779 	struct {
780 		arch_spinlock_t lock;
781 		u32 value;
782 	};
783 	u64 lockval;
784 };
785 
786 static union hpet_lock hpet __cacheline_aligned = {
787 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
788 };
789 
790 static u64 read_hpet(struct clocksource *cs)
791 {
792 	unsigned long flags;
793 	union hpet_lock old, new;
794 
795 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
796 
797 	/*
798 	 * Read HPET directly if in NMI.
799 	 */
800 	if (in_nmi())
801 		return (u64)hpet_readl(HPET_COUNTER);
802 
803 	/*
804 	 * Read the current state of the lock and HPET value atomically.
805 	 */
806 	old.lockval = READ_ONCE(hpet.lockval);
807 
808 	if (arch_spin_is_locked(&old.lock))
809 		goto contended;
810 
811 	local_irq_save(flags);
812 	if (arch_spin_trylock(&hpet.lock)) {
813 		new.value = hpet_readl(HPET_COUNTER);
814 		/*
815 		 * Use WRITE_ONCE() to prevent store tearing.
816 		 */
817 		WRITE_ONCE(hpet.value, new.value);
818 		arch_spin_unlock(&hpet.lock);
819 		local_irq_restore(flags);
820 		return (u64)new.value;
821 	}
822 	local_irq_restore(flags);
823 
824 contended:
825 	/*
826 	 * Contended case
827 	 * --------------
828 	 * Wait until the HPET value change or the lock is free to indicate
829 	 * its value is up-to-date.
830 	 *
831 	 * It is possible that old.value has already contained the latest
832 	 * HPET value while the lock holder was in the process of releasing
833 	 * the lock. Checking for lock state change will enable us to return
834 	 * the value immediately instead of waiting for the next HPET reader
835 	 * to come along.
836 	 */
837 	do {
838 		cpu_relax();
839 		new.lockval = READ_ONCE(hpet.lockval);
840 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
841 
842 	return (u64)new.value;
843 }
844 #else
845 /*
846  * For UP or 32-bit.
847  */
848 static u64 read_hpet(struct clocksource *cs)
849 {
850 	return (u64)hpet_readl(HPET_COUNTER);
851 }
852 #endif
853 
854 static struct clocksource clocksource_hpet = {
855 	.name		= "hpet",
856 	.rating		= 250,
857 	.read		= read_hpet,
858 	.mask		= HPET_MASK,
859 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
860 	.resume		= hpet_resume_counter,
861 };
862 
863 static int hpet_clocksource_register(void)
864 {
865 	u64 start, now;
866 	u64 t1;
867 
868 	/* Start the counter */
869 	hpet_restart_counter();
870 
871 	/* Verify whether hpet counter works */
872 	t1 = hpet_readl(HPET_COUNTER);
873 	start = rdtsc();
874 
875 	/*
876 	 * We don't know the TSC frequency yet, but waiting for
877 	 * 200000 TSC cycles is safe:
878 	 * 4 GHz == 50us
879 	 * 1 GHz == 200us
880 	 */
881 	do {
882 		rep_nop();
883 		now = rdtsc();
884 	} while ((now - start) < 200000UL);
885 
886 	if (t1 == hpet_readl(HPET_COUNTER)) {
887 		printk(KERN_WARNING
888 		       "HPET counter not counting. HPET disabled\n");
889 		return -ENODEV;
890 	}
891 
892 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
893 	return 0;
894 }
895 
896 static u32 *hpet_boot_cfg;
897 
898 /**
899  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
900  */
901 int __init hpet_enable(void)
902 {
903 	u32 hpet_period, cfg, id;
904 	u64 freq;
905 	unsigned int i, last;
906 
907 	if (!is_hpet_capable())
908 		return 0;
909 
910 	hpet_set_mapping();
911 
912 	/*
913 	 * Read the period and check for a sane value:
914 	 */
915 	hpet_period = hpet_readl(HPET_PERIOD);
916 
917 	/*
918 	 * AMD SB700 based systems with spread spectrum enabled use a
919 	 * SMM based HPET emulation to provide proper frequency
920 	 * setting. The SMM code is initialized with the first HPET
921 	 * register access and takes some time to complete. During
922 	 * this time the config register reads 0xffffffff. We check
923 	 * for max. 1000 loops whether the config register reads a non
924 	 * 0xffffffff value to make sure that HPET is up and running
925 	 * before we go further. A counting loop is safe, as the HPET
926 	 * access takes thousands of CPU cycles. On non SB700 based
927 	 * machines this check is only done once and has no side
928 	 * effects.
929 	 */
930 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
931 		if (i == 1000) {
932 			printk(KERN_WARNING
933 			       "HPET config register value = 0xFFFFFFFF. "
934 			       "Disabling HPET\n");
935 			goto out_nohpet;
936 		}
937 	}
938 
939 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
940 		goto out_nohpet;
941 
942 	/*
943 	 * The period is a femto seconds value. Convert it to a
944 	 * frequency.
945 	 */
946 	freq = FSEC_PER_SEC;
947 	do_div(freq, hpet_period);
948 	hpet_freq = freq;
949 
950 	/*
951 	 * Read the HPET ID register to retrieve the IRQ routing
952 	 * information and the number of channels
953 	 */
954 	id = hpet_readl(HPET_ID);
955 	hpet_print_config();
956 
957 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
958 
959 #ifdef CONFIG_HPET_EMULATE_RTC
960 	/*
961 	 * The legacy routing mode needs at least two channels, tick timer
962 	 * and the rtc emulation channel.
963 	 */
964 	if (!last)
965 		goto out_nohpet;
966 #endif
967 
968 	cfg = hpet_readl(HPET_CFG);
969 	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
970 				GFP_KERNEL);
971 	if (hpet_boot_cfg)
972 		*hpet_boot_cfg = cfg;
973 	else
974 		pr_warn("HPET initial state will not be saved\n");
975 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
976 	hpet_writel(cfg, HPET_CFG);
977 	if (cfg)
978 		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
979 			cfg);
980 
981 	for (i = 0; i <= last; ++i) {
982 		cfg = hpet_readl(HPET_Tn_CFG(i));
983 		if (hpet_boot_cfg)
984 			hpet_boot_cfg[i + 1] = cfg;
985 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
986 		hpet_writel(cfg, HPET_Tn_CFG(i));
987 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
988 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
989 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
990 		if (cfg)
991 			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
992 				cfg, i);
993 	}
994 	hpet_print_config();
995 
996 	if (hpet_clocksource_register())
997 		goto out_nohpet;
998 
999 	if (id & HPET_ID_LEGSUP) {
1000 		hpet_legacy_clockevent_register();
1001 		return 1;
1002 	}
1003 	return 0;
1004 
1005 out_nohpet:
1006 	hpet_clear_mapping();
1007 	hpet_address = 0;
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Needs to be late, as the reserve_timer code calls kalloc !
1013  *
1014  * Not a problem on i386 as hpet_enable is called from late_time_init,
1015  * but on x86_64 it is necessary !
1016  */
1017 static __init int hpet_late_init(void)
1018 {
1019 	int ret;
1020 
1021 	if (boot_hpet_disable)
1022 		return -ENODEV;
1023 
1024 	if (!hpet_address) {
1025 		if (!force_hpet_address)
1026 			return -ENODEV;
1027 
1028 		hpet_address = force_hpet_address;
1029 		hpet_enable();
1030 	}
1031 
1032 	if (!hpet_virt_address)
1033 		return -ENODEV;
1034 
1035 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1036 		hpet_msi_capability_lookup(2);
1037 	else
1038 		hpet_msi_capability_lookup(0);
1039 
1040 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1041 	hpet_print_config();
1042 
1043 	if (hpet_msi_disable)
1044 		return 0;
1045 
1046 	if (boot_cpu_has(X86_FEATURE_ARAT))
1047 		return 0;
1048 
1049 	/* This notifier should be called after workqueue is ready */
1050 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1051 				hpet_cpuhp_online, NULL);
1052 	if (ret)
1053 		return ret;
1054 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1055 				hpet_cpuhp_dead);
1056 	if (ret)
1057 		goto err_cpuhp;
1058 	return 0;
1059 
1060 err_cpuhp:
1061 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1062 	return ret;
1063 }
1064 fs_initcall(hpet_late_init);
1065 
1066 void hpet_disable(void)
1067 {
1068 	if (is_hpet_capable() && hpet_virt_address) {
1069 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1070 
1071 		if (hpet_boot_cfg)
1072 			cfg = *hpet_boot_cfg;
1073 		else if (hpet_legacy_int_enabled) {
1074 			cfg &= ~HPET_CFG_LEGACY;
1075 			hpet_legacy_int_enabled = false;
1076 		}
1077 		cfg &= ~HPET_CFG_ENABLE;
1078 		hpet_writel(cfg, HPET_CFG);
1079 
1080 		if (!hpet_boot_cfg)
1081 			return;
1082 
1083 		id = hpet_readl(HPET_ID);
1084 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1085 
1086 		for (id = 0; id <= last; ++id)
1087 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1088 
1089 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1090 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1091 	}
1092 }
1093 
1094 #ifdef CONFIG_HPET_EMULATE_RTC
1095 
1096 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1097  * is enabled, we support RTC interrupt functionality in software.
1098  * RTC has 3 kinds of interrupts:
1099  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1100  *    is updated
1101  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1102  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1103  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1104  * (1) and (2) above are implemented using polling at a frequency of
1105  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1106  * overhead. (DEFAULT_RTC_INT_FREQ)
1107  * For (3), we use interrupts at 64Hz or user specified periodic
1108  * frequency, whichever is higher.
1109  */
1110 #include <linux/mc146818rtc.h>
1111 #include <linux/rtc.h>
1112 
1113 #define DEFAULT_RTC_INT_FREQ	64
1114 #define DEFAULT_RTC_SHIFT	6
1115 #define RTC_NUM_INTS		1
1116 
1117 static unsigned long hpet_rtc_flags;
1118 static int hpet_prev_update_sec;
1119 static struct rtc_time hpet_alarm_time;
1120 static unsigned long hpet_pie_count;
1121 static u32 hpet_t1_cmp;
1122 static u32 hpet_default_delta;
1123 static u32 hpet_pie_delta;
1124 static unsigned long hpet_pie_limit;
1125 
1126 static rtc_irq_handler irq_handler;
1127 
1128 /*
1129  * Check that the hpet counter c1 is ahead of the c2
1130  */
1131 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1132 {
1133 	return (s32)(c2 - c1) < 0;
1134 }
1135 
1136 /*
1137  * Registers a IRQ handler.
1138  */
1139 int hpet_register_irq_handler(rtc_irq_handler handler)
1140 {
1141 	if (!is_hpet_enabled())
1142 		return -ENODEV;
1143 	if (irq_handler)
1144 		return -EBUSY;
1145 
1146 	irq_handler = handler;
1147 
1148 	return 0;
1149 }
1150 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1151 
1152 /*
1153  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1154  * and does cleanup.
1155  */
1156 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1157 {
1158 	if (!is_hpet_enabled())
1159 		return;
1160 
1161 	irq_handler = NULL;
1162 	hpet_rtc_flags = 0;
1163 }
1164 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1165 
1166 /*
1167  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1168  * is not supported by all HPET implementations for timer 1.
1169  *
1170  * hpet_rtc_timer_init() is called when the rtc is initialized.
1171  */
1172 int hpet_rtc_timer_init(void)
1173 {
1174 	unsigned int cfg, cnt, delta;
1175 	unsigned long flags;
1176 
1177 	if (!is_hpet_enabled())
1178 		return 0;
1179 
1180 	if (!hpet_default_delta) {
1181 		uint64_t clc;
1182 
1183 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1184 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1185 		hpet_default_delta = clc;
1186 	}
1187 
1188 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1189 		delta = hpet_default_delta;
1190 	else
1191 		delta = hpet_pie_delta;
1192 
1193 	local_irq_save(flags);
1194 
1195 	cnt = delta + hpet_readl(HPET_COUNTER);
1196 	hpet_writel(cnt, HPET_T1_CMP);
1197 	hpet_t1_cmp = cnt;
1198 
1199 	cfg = hpet_readl(HPET_T1_CFG);
1200 	cfg &= ~HPET_TN_PERIODIC;
1201 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1202 	hpet_writel(cfg, HPET_T1_CFG);
1203 
1204 	local_irq_restore(flags);
1205 
1206 	return 1;
1207 }
1208 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1209 
1210 static void hpet_disable_rtc_channel(void)
1211 {
1212 	u32 cfg = hpet_readl(HPET_T1_CFG);
1213 	cfg &= ~HPET_TN_ENABLE;
1214 	hpet_writel(cfg, HPET_T1_CFG);
1215 }
1216 
1217 /*
1218  * The functions below are called from rtc driver.
1219  * Return 0 if HPET is not being used.
1220  * Otherwise do the necessary changes and return 1.
1221  */
1222 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1223 {
1224 	if (!is_hpet_enabled())
1225 		return 0;
1226 
1227 	hpet_rtc_flags &= ~bit_mask;
1228 	if (unlikely(!hpet_rtc_flags))
1229 		hpet_disable_rtc_channel();
1230 
1231 	return 1;
1232 }
1233 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1234 
1235 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1236 {
1237 	unsigned long oldbits = hpet_rtc_flags;
1238 
1239 	if (!is_hpet_enabled())
1240 		return 0;
1241 
1242 	hpet_rtc_flags |= bit_mask;
1243 
1244 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1245 		hpet_prev_update_sec = -1;
1246 
1247 	if (!oldbits)
1248 		hpet_rtc_timer_init();
1249 
1250 	return 1;
1251 }
1252 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1253 
1254 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1255 			unsigned char sec)
1256 {
1257 	if (!is_hpet_enabled())
1258 		return 0;
1259 
1260 	hpet_alarm_time.tm_hour = hrs;
1261 	hpet_alarm_time.tm_min = min;
1262 	hpet_alarm_time.tm_sec = sec;
1263 
1264 	return 1;
1265 }
1266 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1267 
1268 int hpet_set_periodic_freq(unsigned long freq)
1269 {
1270 	uint64_t clc;
1271 
1272 	if (!is_hpet_enabled())
1273 		return 0;
1274 
1275 	if (freq <= DEFAULT_RTC_INT_FREQ)
1276 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1277 	else {
1278 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1279 		do_div(clc, freq);
1280 		clc >>= hpet_clockevent.shift;
1281 		hpet_pie_delta = clc;
1282 		hpet_pie_limit = 0;
1283 	}
1284 	return 1;
1285 }
1286 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1287 
1288 int hpet_rtc_dropped_irq(void)
1289 {
1290 	return is_hpet_enabled();
1291 }
1292 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1293 
1294 static void hpet_rtc_timer_reinit(void)
1295 {
1296 	unsigned int delta;
1297 	int lost_ints = -1;
1298 
1299 	if (unlikely(!hpet_rtc_flags))
1300 		hpet_disable_rtc_channel();
1301 
1302 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1303 		delta = hpet_default_delta;
1304 	else
1305 		delta = hpet_pie_delta;
1306 
1307 	/*
1308 	 * Increment the comparator value until we are ahead of the
1309 	 * current count.
1310 	 */
1311 	do {
1312 		hpet_t1_cmp += delta;
1313 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1314 		lost_ints++;
1315 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1316 
1317 	if (lost_ints) {
1318 		if (hpet_rtc_flags & RTC_PIE)
1319 			hpet_pie_count += lost_ints;
1320 		if (printk_ratelimit())
1321 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1322 				lost_ints);
1323 	}
1324 }
1325 
1326 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1327 {
1328 	struct rtc_time curr_time;
1329 	unsigned long rtc_int_flag = 0;
1330 
1331 	hpet_rtc_timer_reinit();
1332 	memset(&curr_time, 0, sizeof(struct rtc_time));
1333 
1334 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1335 		mc146818_get_time(&curr_time);
1336 
1337 	if (hpet_rtc_flags & RTC_UIE &&
1338 	    curr_time.tm_sec != hpet_prev_update_sec) {
1339 		if (hpet_prev_update_sec >= 0)
1340 			rtc_int_flag = RTC_UF;
1341 		hpet_prev_update_sec = curr_time.tm_sec;
1342 	}
1343 
1344 	if (hpet_rtc_flags & RTC_PIE &&
1345 	    ++hpet_pie_count >= hpet_pie_limit) {
1346 		rtc_int_flag |= RTC_PF;
1347 		hpet_pie_count = 0;
1348 	}
1349 
1350 	if (hpet_rtc_flags & RTC_AIE &&
1351 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1352 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1353 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1354 			rtc_int_flag |= RTC_AF;
1355 
1356 	if (rtc_int_flag) {
1357 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1358 		if (irq_handler)
1359 			irq_handler(rtc_int_flag, dev_id);
1360 	}
1361 	return IRQ_HANDLED;
1362 }
1363 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1364 #endif
1365