xref: /openbmc/linux/arch/x86/kernel/hpet.c (revision 22fd411a)
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13 
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17 
18 #define HPET_MASK			CLOCKSOURCE_MASK(32)
19 
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC			1000000L
23 
24 #define HPET_DEV_USED_BIT		2
25 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID			0x8
27 #define HPET_DEV_FSB_CAP		0x1000
28 #define HPET_DEV_PERI_CAP		0x2000
29 
30 #define HPET_MIN_CYCLES			128
31 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32 
33 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34 
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long				hpet_address;
39 u8					hpet_blockid; /* OS timer block num */
40 u8					hpet_msi_disable;
41 
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long			hpet_num_timers;
44 #endif
45 static void __iomem			*hpet_virt_address;
46 
47 struct hpet_dev {
48 	struct clock_event_device	evt;
49 	unsigned int			num;
50 	int				cpu;
51 	unsigned int			irq;
52 	unsigned int			flags;
53 	char				name[10];
54 };
55 
56 inline unsigned int hpet_readl(unsigned int a)
57 {
58 	return readl(hpet_virt_address + a);
59 }
60 
61 static inline void hpet_writel(unsigned int d, unsigned int a)
62 {
63 	writel(d, hpet_virt_address + a);
64 }
65 
66 #ifdef CONFIG_X86_64
67 #include <asm/pgtable.h>
68 #endif
69 
70 static inline void hpet_set_mapping(void)
71 {
72 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73 #ifdef CONFIG_X86_64
74 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
75 #endif
76 }
77 
78 static inline void hpet_clear_mapping(void)
79 {
80 	iounmap(hpet_virt_address);
81 	hpet_virt_address = NULL;
82 }
83 
84 /*
85  * HPET command line enable / disable
86  */
87 static int boot_hpet_disable;
88 int hpet_force_user;
89 static int hpet_verbose;
90 
91 static int __init hpet_setup(char *str)
92 {
93 	if (str) {
94 		if (!strncmp("disable", str, 7))
95 			boot_hpet_disable = 1;
96 		if (!strncmp("force", str, 5))
97 			hpet_force_user = 1;
98 		if (!strncmp("verbose", str, 7))
99 			hpet_verbose = 1;
100 	}
101 	return 1;
102 }
103 __setup("hpet=", hpet_setup);
104 
105 static int __init disable_hpet(char *str)
106 {
107 	boot_hpet_disable = 1;
108 	return 1;
109 }
110 __setup("nohpet", disable_hpet);
111 
112 static inline int is_hpet_capable(void)
113 {
114 	return !boot_hpet_disable && hpet_address;
115 }
116 
117 /*
118  * HPET timer interrupt enable / disable
119  */
120 static int hpet_legacy_int_enabled;
121 
122 /**
123  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
124  */
125 int is_hpet_enabled(void)
126 {
127 	return is_hpet_capable() && hpet_legacy_int_enabled;
128 }
129 EXPORT_SYMBOL_GPL(is_hpet_enabled);
130 
131 static void _hpet_print_config(const char *function, int line)
132 {
133 	u32 i, timers, l, h;
134 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135 	l = hpet_readl(HPET_ID);
136 	h = hpet_readl(HPET_PERIOD);
137 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139 	l = hpet_readl(HPET_CFG);
140 	h = hpet_readl(HPET_STATUS);
141 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142 	l = hpet_readl(HPET_COUNTER);
143 	h = hpet_readl(HPET_COUNTER+4);
144 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145 
146 	for (i = 0; i < timers; i++) {
147 		l = hpet_readl(HPET_Tn_CFG(i));
148 		h = hpet_readl(HPET_Tn_CFG(i)+4);
149 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150 		       i, l, h);
151 		l = hpet_readl(HPET_Tn_CMP(i));
152 		h = hpet_readl(HPET_Tn_CMP(i)+4);
153 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154 		       i, l, h);
155 		l = hpet_readl(HPET_Tn_ROUTE(i));
156 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158 		       i, l, h);
159 	}
160 }
161 
162 #define hpet_print_config()					\
163 do {								\
164 	if (hpet_verbose)					\
165 		_hpet_print_config(__FUNCTION__, __LINE__);	\
166 } while (0)
167 
168 /*
169  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
170  * timer 0 and timer 1 in case of RTC emulation.
171  */
172 #ifdef CONFIG_HPET
173 
174 static void hpet_reserve_msi_timers(struct hpet_data *hd);
175 
176 static void hpet_reserve_platform_timers(unsigned int id)
177 {
178 	struct hpet __iomem *hpet = hpet_virt_address;
179 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180 	unsigned int nrtimers, i;
181 	struct hpet_data hd;
182 
183 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184 
185 	memset(&hd, 0, sizeof(hd));
186 	hd.hd_phys_address	= hpet_address;
187 	hd.hd_address		= hpet;
188 	hd.hd_nirqs		= nrtimers;
189 	hpet_reserve_timer(&hd, 0);
190 
191 #ifdef CONFIG_HPET_EMULATE_RTC
192 	hpet_reserve_timer(&hd, 1);
193 #endif
194 
195 	/*
196 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
198 	 * don't bother configuring *any* comparator interrupts.
199 	 */
200 	hd.hd_irq[0] = HPET_LEGACY_8254;
201 	hd.hd_irq[1] = HPET_LEGACY_RTC;
202 
203 	for (i = 2; i < nrtimers; timer++, i++) {
204 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
205 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206 	}
207 
208 	hpet_reserve_msi_timers(&hd);
209 
210 	hpet_alloc(&hd);
211 
212 }
213 #else
214 static void hpet_reserve_platform_timers(unsigned int id) { }
215 #endif
216 
217 /*
218  * Common hpet info
219  */
220 static unsigned long hpet_period;
221 
222 static void hpet_legacy_set_mode(enum clock_event_mode mode,
223 			  struct clock_event_device *evt);
224 static int hpet_legacy_next_event(unsigned long delta,
225 			   struct clock_event_device *evt);
226 
227 /*
228  * The hpet clock event device
229  */
230 static struct clock_event_device hpet_clockevent = {
231 	.name		= "hpet",
232 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233 	.set_mode	= hpet_legacy_set_mode,
234 	.set_next_event = hpet_legacy_next_event,
235 	.shift		= 32,
236 	.irq		= 0,
237 	.rating		= 50,
238 };
239 
240 static void hpet_stop_counter(void)
241 {
242 	unsigned long cfg = hpet_readl(HPET_CFG);
243 	cfg &= ~HPET_CFG_ENABLE;
244 	hpet_writel(cfg, HPET_CFG);
245 }
246 
247 static void hpet_reset_counter(void)
248 {
249 	hpet_writel(0, HPET_COUNTER);
250 	hpet_writel(0, HPET_COUNTER + 4);
251 }
252 
253 static void hpet_start_counter(void)
254 {
255 	unsigned int cfg = hpet_readl(HPET_CFG);
256 	cfg |= HPET_CFG_ENABLE;
257 	hpet_writel(cfg, HPET_CFG);
258 }
259 
260 static void hpet_restart_counter(void)
261 {
262 	hpet_stop_counter();
263 	hpet_reset_counter();
264 	hpet_start_counter();
265 }
266 
267 static void hpet_resume_device(void)
268 {
269 	force_hpet_resume();
270 }
271 
272 static void hpet_resume_counter(struct clocksource *cs)
273 {
274 	hpet_resume_device();
275 	hpet_restart_counter();
276 }
277 
278 static void hpet_enable_legacy_int(void)
279 {
280 	unsigned int cfg = hpet_readl(HPET_CFG);
281 
282 	cfg |= HPET_CFG_LEGACY;
283 	hpet_writel(cfg, HPET_CFG);
284 	hpet_legacy_int_enabled = 1;
285 }
286 
287 static void hpet_legacy_clockevent_register(void)
288 {
289 	/* Start HPET legacy interrupts */
290 	hpet_enable_legacy_int();
291 
292 	/*
293 	 * The mult factor is defined as (include/linux/clockchips.h)
294 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
295 	 * hpet_period is in units of femtoseconds (per cycle), so
296 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
297 	 *  mult = (10^6 * 2^shift)/hpet_period
298 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
299 	 */
300 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
301 				      hpet_period, hpet_clockevent.shift);
302 	/* Calculate the min / max delta */
303 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
304 							   &hpet_clockevent);
305 	/* Setup minimum reprogramming delta. */
306 	hpet_clockevent.min_delta_ns = clockevent_delta2ns(HPET_MIN_PROG_DELTA,
307 							   &hpet_clockevent);
308 
309 	/*
310 	 * Start hpet with the boot cpu mask and make it
311 	 * global after the IO_APIC has been initialized.
312 	 */
313 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
314 	clockevents_register_device(&hpet_clockevent);
315 	global_clock_event = &hpet_clockevent;
316 	printk(KERN_DEBUG "hpet clockevent registered\n");
317 }
318 
319 static int hpet_setup_msi_irq(unsigned int irq);
320 
321 static void hpet_set_mode(enum clock_event_mode mode,
322 			  struct clock_event_device *evt, int timer)
323 {
324 	unsigned int cfg, cmp, now;
325 	uint64_t delta;
326 
327 	switch (mode) {
328 	case CLOCK_EVT_MODE_PERIODIC:
329 		hpet_stop_counter();
330 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
331 		delta >>= evt->shift;
332 		now = hpet_readl(HPET_COUNTER);
333 		cmp = now + (unsigned int) delta;
334 		cfg = hpet_readl(HPET_Tn_CFG(timer));
335 		/* Make sure we use edge triggered interrupts */
336 		cfg &= ~HPET_TN_LEVEL;
337 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
338 		       HPET_TN_SETVAL | HPET_TN_32BIT;
339 		hpet_writel(cfg, HPET_Tn_CFG(timer));
340 		hpet_writel(cmp, HPET_Tn_CMP(timer));
341 		udelay(1);
342 		/*
343 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
344 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
345 		 * bit is automatically cleared after the first write.
346 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
347 		 * Publication # 24674)
348 		 */
349 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
350 		hpet_start_counter();
351 		hpet_print_config();
352 		break;
353 
354 	case CLOCK_EVT_MODE_ONESHOT:
355 		cfg = hpet_readl(HPET_Tn_CFG(timer));
356 		cfg &= ~HPET_TN_PERIODIC;
357 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
358 		hpet_writel(cfg, HPET_Tn_CFG(timer));
359 		break;
360 
361 	case CLOCK_EVT_MODE_UNUSED:
362 	case CLOCK_EVT_MODE_SHUTDOWN:
363 		cfg = hpet_readl(HPET_Tn_CFG(timer));
364 		cfg &= ~HPET_TN_ENABLE;
365 		hpet_writel(cfg, HPET_Tn_CFG(timer));
366 		break;
367 
368 	case CLOCK_EVT_MODE_RESUME:
369 		if (timer == 0) {
370 			hpet_enable_legacy_int();
371 		} else {
372 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
373 			hpet_setup_msi_irq(hdev->irq);
374 			disable_irq(hdev->irq);
375 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
376 			enable_irq(hdev->irq);
377 		}
378 		hpet_print_config();
379 		break;
380 	}
381 }
382 
383 static int hpet_next_event(unsigned long delta,
384 			   struct clock_event_device *evt, int timer)
385 {
386 	u32 cnt;
387 	s32 res;
388 
389 	cnt = hpet_readl(HPET_COUNTER);
390 	cnt += (u32) delta;
391 	hpet_writel(cnt, HPET_Tn_CMP(timer));
392 
393 	/*
394 	 * HPETs are a complete disaster. The compare register is
395 	 * based on a equal comparison and neither provides a less
396 	 * than or equal functionality (which would require to take
397 	 * the wraparound into account) nor a simple count down event
398 	 * mode. Further the write to the comparator register is
399 	 * delayed internally up to two HPET clock cycles in certain
400 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
401 	 * longer delays. We worked around that by reading back the
402 	 * compare register, but that required another workaround for
403 	 * ICH9,10 chips where the first readout after write can
404 	 * return the old stale value. We already had a minimum
405 	 * programming delta of 5us enforced, but a NMI or SMI hitting
406 	 * between the counter readout and the comparator write can
407 	 * move us behind that point easily. Now instead of reading
408 	 * the compare register back several times, we make the ETIME
409 	 * decision based on the following: Return ETIME if the
410 	 * counter value after the write is less than HPET_MIN_CYCLES
411 	 * away from the event or if the counter is already ahead of
412 	 * the event. The minimum programming delta for the generic
413 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
414 	 */
415 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
416 
417 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
418 }
419 
420 static void hpet_legacy_set_mode(enum clock_event_mode mode,
421 			struct clock_event_device *evt)
422 {
423 	hpet_set_mode(mode, evt, 0);
424 }
425 
426 static int hpet_legacy_next_event(unsigned long delta,
427 			struct clock_event_device *evt)
428 {
429 	return hpet_next_event(delta, evt, 0);
430 }
431 
432 /*
433  * HPET MSI Support
434  */
435 #ifdef CONFIG_PCI_MSI
436 
437 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
438 static struct hpet_dev	*hpet_devs;
439 
440 void hpet_msi_unmask(struct irq_data *data)
441 {
442 	struct hpet_dev *hdev = data->handler_data;
443 	unsigned int cfg;
444 
445 	/* unmask it */
446 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447 	cfg |= HPET_TN_FSB;
448 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 }
450 
451 void hpet_msi_mask(struct irq_data *data)
452 {
453 	struct hpet_dev *hdev = data->handler_data;
454 	unsigned int cfg;
455 
456 	/* mask it */
457 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
458 	cfg &= ~HPET_TN_FSB;
459 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
460 }
461 
462 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
463 {
464 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
465 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
466 }
467 
468 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
469 {
470 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
471 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
472 	msg->address_hi = 0;
473 }
474 
475 static void hpet_msi_set_mode(enum clock_event_mode mode,
476 				struct clock_event_device *evt)
477 {
478 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
479 	hpet_set_mode(mode, evt, hdev->num);
480 }
481 
482 static int hpet_msi_next_event(unsigned long delta,
483 				struct clock_event_device *evt)
484 {
485 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486 	return hpet_next_event(delta, evt, hdev->num);
487 }
488 
489 static int hpet_setup_msi_irq(unsigned int irq)
490 {
491 	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
492 		destroy_irq(irq);
493 		return -EINVAL;
494 	}
495 	return 0;
496 }
497 
498 static int hpet_assign_irq(struct hpet_dev *dev)
499 {
500 	unsigned int irq;
501 
502 	irq = create_irq_nr(0, -1);
503 	if (!irq)
504 		return -EINVAL;
505 
506 	set_irq_data(irq, dev);
507 
508 	if (hpet_setup_msi_irq(irq))
509 		return -EINVAL;
510 
511 	dev->irq = irq;
512 	return 0;
513 }
514 
515 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
516 {
517 	struct hpet_dev *dev = (struct hpet_dev *)data;
518 	struct clock_event_device *hevt = &dev->evt;
519 
520 	if (!hevt->event_handler) {
521 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
522 				dev->num);
523 		return IRQ_HANDLED;
524 	}
525 
526 	hevt->event_handler(hevt);
527 	return IRQ_HANDLED;
528 }
529 
530 static int hpet_setup_irq(struct hpet_dev *dev)
531 {
532 
533 	if (request_irq(dev->irq, hpet_interrupt_handler,
534 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
535 			dev->name, dev))
536 		return -1;
537 
538 	disable_irq(dev->irq);
539 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
540 	enable_irq(dev->irq);
541 
542 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
543 			 dev->name, dev->irq);
544 
545 	return 0;
546 }
547 
548 /* This should be called in specific @cpu */
549 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
550 {
551 	struct clock_event_device *evt = &hdev->evt;
552 	uint64_t hpet_freq;
553 
554 	WARN_ON(cpu != smp_processor_id());
555 	if (!(hdev->flags & HPET_DEV_VALID))
556 		return;
557 
558 	if (hpet_setup_msi_irq(hdev->irq))
559 		return;
560 
561 	hdev->cpu = cpu;
562 	per_cpu(cpu_hpet_dev, cpu) = hdev;
563 	evt->name = hdev->name;
564 	hpet_setup_irq(hdev);
565 	evt->irq = hdev->irq;
566 
567 	evt->rating = 110;
568 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
569 	if (hdev->flags & HPET_DEV_PERI_CAP)
570 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
571 
572 	evt->set_mode = hpet_msi_set_mode;
573 	evt->set_next_event = hpet_msi_next_event;
574 	evt->shift = 32;
575 
576 	/*
577 	 * The period is a femto seconds value. We need to calculate the
578 	 * scaled math multiplication factor for nanosecond to hpet tick
579 	 * conversion.
580 	 */
581 	hpet_freq = FSEC_PER_SEC;
582 	do_div(hpet_freq, hpet_period);
583 	evt->mult = div_sc((unsigned long) hpet_freq,
584 				      NSEC_PER_SEC, evt->shift);
585 	/* Calculate the max delta */
586 	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
587 	/* 5 usec minimum reprogramming delta. */
588 	evt->min_delta_ns = 5000;
589 
590 	evt->cpumask = cpumask_of(hdev->cpu);
591 	clockevents_register_device(evt);
592 }
593 
594 #ifdef CONFIG_HPET
595 /* Reserve at least one timer for userspace (/dev/hpet) */
596 #define RESERVE_TIMERS 1
597 #else
598 #define RESERVE_TIMERS 0
599 #endif
600 
601 static void hpet_msi_capability_lookup(unsigned int start_timer)
602 {
603 	unsigned int id;
604 	unsigned int num_timers;
605 	unsigned int num_timers_used = 0;
606 	int i;
607 
608 	if (hpet_msi_disable)
609 		return;
610 
611 	if (boot_cpu_has(X86_FEATURE_ARAT))
612 		return;
613 	id = hpet_readl(HPET_ID);
614 
615 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
616 	num_timers++; /* Value read out starts from 0 */
617 	hpet_print_config();
618 
619 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
620 	if (!hpet_devs)
621 		return;
622 
623 	hpet_num_timers = num_timers;
624 
625 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
626 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
627 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
628 
629 		/* Only consider HPET timer with MSI support */
630 		if (!(cfg & HPET_TN_FSB_CAP))
631 			continue;
632 
633 		hdev->flags = 0;
634 		if (cfg & HPET_TN_PERIODIC_CAP)
635 			hdev->flags |= HPET_DEV_PERI_CAP;
636 		hdev->num = i;
637 
638 		sprintf(hdev->name, "hpet%d", i);
639 		if (hpet_assign_irq(hdev))
640 			continue;
641 
642 		hdev->flags |= HPET_DEV_FSB_CAP;
643 		hdev->flags |= HPET_DEV_VALID;
644 		num_timers_used++;
645 		if (num_timers_used == num_possible_cpus())
646 			break;
647 	}
648 
649 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 		num_timers, num_timers_used);
651 }
652 
653 #ifdef CONFIG_HPET
654 static void hpet_reserve_msi_timers(struct hpet_data *hd)
655 {
656 	int i;
657 
658 	if (!hpet_devs)
659 		return;
660 
661 	for (i = 0; i < hpet_num_timers; i++) {
662 		struct hpet_dev *hdev = &hpet_devs[i];
663 
664 		if (!(hdev->flags & HPET_DEV_VALID))
665 			continue;
666 
667 		hd->hd_irq[hdev->num] = hdev->irq;
668 		hpet_reserve_timer(hd, hdev->num);
669 	}
670 }
671 #endif
672 
673 static struct hpet_dev *hpet_get_unused_timer(void)
674 {
675 	int i;
676 
677 	if (!hpet_devs)
678 		return NULL;
679 
680 	for (i = 0; i < hpet_num_timers; i++) {
681 		struct hpet_dev *hdev = &hpet_devs[i];
682 
683 		if (!(hdev->flags & HPET_DEV_VALID))
684 			continue;
685 		if (test_and_set_bit(HPET_DEV_USED_BIT,
686 			(unsigned long *)&hdev->flags))
687 			continue;
688 		return hdev;
689 	}
690 	return NULL;
691 }
692 
693 struct hpet_work_struct {
694 	struct delayed_work work;
695 	struct completion complete;
696 };
697 
698 static void hpet_work(struct work_struct *w)
699 {
700 	struct hpet_dev *hdev;
701 	int cpu = smp_processor_id();
702 	struct hpet_work_struct *hpet_work;
703 
704 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
705 
706 	hdev = hpet_get_unused_timer();
707 	if (hdev)
708 		init_one_hpet_msi_clockevent(hdev, cpu);
709 
710 	complete(&hpet_work->complete);
711 }
712 
713 static int hpet_cpuhp_notify(struct notifier_block *n,
714 		unsigned long action, void *hcpu)
715 {
716 	unsigned long cpu = (unsigned long)hcpu;
717 	struct hpet_work_struct work;
718 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
719 
720 	switch (action & 0xf) {
721 	case CPU_ONLINE:
722 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
723 		init_completion(&work.complete);
724 		/* FIXME: add schedule_work_on() */
725 		schedule_delayed_work_on(cpu, &work.work, 0);
726 		wait_for_completion(&work.complete);
727 		destroy_timer_on_stack(&work.work.timer);
728 		break;
729 	case CPU_DEAD:
730 		if (hdev) {
731 			free_irq(hdev->irq, hdev);
732 			hdev->flags &= ~HPET_DEV_USED;
733 			per_cpu(cpu_hpet_dev, cpu) = NULL;
734 		}
735 		break;
736 	}
737 	return NOTIFY_OK;
738 }
739 #else
740 
741 static int hpet_setup_msi_irq(unsigned int irq)
742 {
743 	return 0;
744 }
745 static void hpet_msi_capability_lookup(unsigned int start_timer)
746 {
747 	return;
748 }
749 
750 #ifdef CONFIG_HPET
751 static void hpet_reserve_msi_timers(struct hpet_data *hd)
752 {
753 	return;
754 }
755 #endif
756 
757 static int hpet_cpuhp_notify(struct notifier_block *n,
758 		unsigned long action, void *hcpu)
759 {
760 	return NOTIFY_OK;
761 }
762 
763 #endif
764 
765 /*
766  * Clock source related code
767  */
768 static cycle_t read_hpet(struct clocksource *cs)
769 {
770 	return (cycle_t)hpet_readl(HPET_COUNTER);
771 }
772 
773 #ifdef CONFIG_X86_64
774 static cycle_t __vsyscall_fn vread_hpet(void)
775 {
776 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
777 }
778 #endif
779 
780 static struct clocksource clocksource_hpet = {
781 	.name		= "hpet",
782 	.rating		= 250,
783 	.read		= read_hpet,
784 	.mask		= HPET_MASK,
785 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
786 	.resume		= hpet_resume_counter,
787 #ifdef CONFIG_X86_64
788 	.vread		= vread_hpet,
789 #endif
790 };
791 
792 static int hpet_clocksource_register(void)
793 {
794 	u64 start, now;
795 	u64 hpet_freq;
796 	cycle_t t1;
797 
798 	/* Start the counter */
799 	hpet_restart_counter();
800 
801 	/* Verify whether hpet counter works */
802 	t1 = hpet_readl(HPET_COUNTER);
803 	rdtscll(start);
804 
805 	/*
806 	 * We don't know the TSC frequency yet, but waiting for
807 	 * 200000 TSC cycles is safe:
808 	 * 4 GHz == 50us
809 	 * 1 GHz == 200us
810 	 */
811 	do {
812 		rep_nop();
813 		rdtscll(now);
814 	} while ((now - start) < 200000UL);
815 
816 	if (t1 == hpet_readl(HPET_COUNTER)) {
817 		printk(KERN_WARNING
818 		       "HPET counter not counting. HPET disabled\n");
819 		return -ENODEV;
820 	}
821 
822 	/*
823 	 * The definition of mult is (include/linux/clocksource.h)
824 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
825 	 * so we first need to convert hpet_period to ns/cyc units:
826 	 *  mult/2^shift = ns/cyc = hpet_period/10^6
827 	 *  mult = (hpet_period * 2^shift)/10^6
828 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
829 	 */
830 
831 	/* Need to convert hpet_period (fsec/cyc) to cyc/sec:
832 	 *
833 	 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
834 	 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
835 	 */
836 	hpet_freq = FSEC_PER_SEC;
837 	do_div(hpet_freq, hpet_period);
838 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
839 
840 	return 0;
841 }
842 
843 /**
844  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
845  */
846 int __init hpet_enable(void)
847 {
848 	unsigned int id;
849 	int i;
850 
851 	if (!is_hpet_capable())
852 		return 0;
853 
854 	hpet_set_mapping();
855 
856 	/*
857 	 * Read the period and check for a sane value:
858 	 */
859 	hpet_period = hpet_readl(HPET_PERIOD);
860 
861 	/*
862 	 * AMD SB700 based systems with spread spectrum enabled use a
863 	 * SMM based HPET emulation to provide proper frequency
864 	 * setting. The SMM code is initialized with the first HPET
865 	 * register access and takes some time to complete. During
866 	 * this time the config register reads 0xffffffff. We check
867 	 * for max. 1000 loops whether the config register reads a non
868 	 * 0xffffffff value to make sure that HPET is up and running
869 	 * before we go further. A counting loop is safe, as the HPET
870 	 * access takes thousands of CPU cycles. On non SB700 based
871 	 * machines this check is only done once and has no side
872 	 * effects.
873 	 */
874 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
875 		if (i == 1000) {
876 			printk(KERN_WARNING
877 			       "HPET config register value = 0xFFFFFFFF. "
878 			       "Disabling HPET\n");
879 			goto out_nohpet;
880 		}
881 	}
882 
883 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
884 		goto out_nohpet;
885 
886 	/*
887 	 * Read the HPET ID register to retrieve the IRQ routing
888 	 * information and the number of channels
889 	 */
890 	id = hpet_readl(HPET_ID);
891 	hpet_print_config();
892 
893 #ifdef CONFIG_HPET_EMULATE_RTC
894 	/*
895 	 * The legacy routing mode needs at least two channels, tick timer
896 	 * and the rtc emulation channel.
897 	 */
898 	if (!(id & HPET_ID_NUMBER))
899 		goto out_nohpet;
900 #endif
901 
902 	if (hpet_clocksource_register())
903 		goto out_nohpet;
904 
905 	if (id & HPET_ID_LEGSUP) {
906 		hpet_legacy_clockevent_register();
907 		return 1;
908 	}
909 	return 0;
910 
911 out_nohpet:
912 	hpet_clear_mapping();
913 	hpet_address = 0;
914 	return 0;
915 }
916 
917 /*
918  * Needs to be late, as the reserve_timer code calls kalloc !
919  *
920  * Not a problem on i386 as hpet_enable is called from late_time_init,
921  * but on x86_64 it is necessary !
922  */
923 static __init int hpet_late_init(void)
924 {
925 	int cpu;
926 
927 	if (boot_hpet_disable)
928 		return -ENODEV;
929 
930 	if (!hpet_address) {
931 		if (!force_hpet_address)
932 			return -ENODEV;
933 
934 		hpet_address = force_hpet_address;
935 		hpet_enable();
936 	}
937 
938 	if (!hpet_virt_address)
939 		return -ENODEV;
940 
941 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
942 		hpet_msi_capability_lookup(2);
943 	else
944 		hpet_msi_capability_lookup(0);
945 
946 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
947 	hpet_print_config();
948 
949 	if (hpet_msi_disable)
950 		return 0;
951 
952 	if (boot_cpu_has(X86_FEATURE_ARAT))
953 		return 0;
954 
955 	for_each_online_cpu(cpu) {
956 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
957 	}
958 
959 	/* This notifier should be called after workqueue is ready */
960 	hotcpu_notifier(hpet_cpuhp_notify, -20);
961 
962 	return 0;
963 }
964 fs_initcall(hpet_late_init);
965 
966 void hpet_disable(void)
967 {
968 	if (is_hpet_capable() && hpet_virt_address) {
969 		unsigned int cfg = hpet_readl(HPET_CFG);
970 
971 		if (hpet_legacy_int_enabled) {
972 			cfg &= ~HPET_CFG_LEGACY;
973 			hpet_legacy_int_enabled = 0;
974 		}
975 		cfg &= ~HPET_CFG_ENABLE;
976 		hpet_writel(cfg, HPET_CFG);
977 	}
978 }
979 
980 #ifdef CONFIG_HPET_EMULATE_RTC
981 
982 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
983  * is enabled, we support RTC interrupt functionality in software.
984  * RTC has 3 kinds of interrupts:
985  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
986  *    is updated
987  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
988  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
989  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
990  * (1) and (2) above are implemented using polling at a frequency of
991  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
992  * overhead. (DEFAULT_RTC_INT_FREQ)
993  * For (3), we use interrupts at 64Hz or user specified periodic
994  * frequency, whichever is higher.
995  */
996 #include <linux/mc146818rtc.h>
997 #include <linux/rtc.h>
998 #include <asm/rtc.h>
999 
1000 #define DEFAULT_RTC_INT_FREQ	64
1001 #define DEFAULT_RTC_SHIFT	6
1002 #define RTC_NUM_INTS		1
1003 
1004 static unsigned long hpet_rtc_flags;
1005 static int hpet_prev_update_sec;
1006 static struct rtc_time hpet_alarm_time;
1007 static unsigned long hpet_pie_count;
1008 static u32 hpet_t1_cmp;
1009 static u32 hpet_default_delta;
1010 static u32 hpet_pie_delta;
1011 static unsigned long hpet_pie_limit;
1012 
1013 static rtc_irq_handler irq_handler;
1014 
1015 /*
1016  * Check that the hpet counter c1 is ahead of the c2
1017  */
1018 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1019 {
1020 	return (s32)(c2 - c1) < 0;
1021 }
1022 
1023 /*
1024  * Registers a IRQ handler.
1025  */
1026 int hpet_register_irq_handler(rtc_irq_handler handler)
1027 {
1028 	if (!is_hpet_enabled())
1029 		return -ENODEV;
1030 	if (irq_handler)
1031 		return -EBUSY;
1032 
1033 	irq_handler = handler;
1034 
1035 	return 0;
1036 }
1037 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1038 
1039 /*
1040  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1041  * and does cleanup.
1042  */
1043 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1044 {
1045 	if (!is_hpet_enabled())
1046 		return;
1047 
1048 	irq_handler = NULL;
1049 	hpet_rtc_flags = 0;
1050 }
1051 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1052 
1053 /*
1054  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1055  * is not supported by all HPET implementations for timer 1.
1056  *
1057  * hpet_rtc_timer_init() is called when the rtc is initialized.
1058  */
1059 int hpet_rtc_timer_init(void)
1060 {
1061 	unsigned int cfg, cnt, delta;
1062 	unsigned long flags;
1063 
1064 	if (!is_hpet_enabled())
1065 		return 0;
1066 
1067 	if (!hpet_default_delta) {
1068 		uint64_t clc;
1069 
1070 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1071 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1072 		hpet_default_delta = clc;
1073 	}
1074 
1075 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1076 		delta = hpet_default_delta;
1077 	else
1078 		delta = hpet_pie_delta;
1079 
1080 	local_irq_save(flags);
1081 
1082 	cnt = delta + hpet_readl(HPET_COUNTER);
1083 	hpet_writel(cnt, HPET_T1_CMP);
1084 	hpet_t1_cmp = cnt;
1085 
1086 	cfg = hpet_readl(HPET_T1_CFG);
1087 	cfg &= ~HPET_TN_PERIODIC;
1088 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1089 	hpet_writel(cfg, HPET_T1_CFG);
1090 
1091 	local_irq_restore(flags);
1092 
1093 	return 1;
1094 }
1095 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1096 
1097 /*
1098  * The functions below are called from rtc driver.
1099  * Return 0 if HPET is not being used.
1100  * Otherwise do the necessary changes and return 1.
1101  */
1102 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1103 {
1104 	if (!is_hpet_enabled())
1105 		return 0;
1106 
1107 	hpet_rtc_flags &= ~bit_mask;
1108 	return 1;
1109 }
1110 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1111 
1112 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1113 {
1114 	unsigned long oldbits = hpet_rtc_flags;
1115 
1116 	if (!is_hpet_enabled())
1117 		return 0;
1118 
1119 	hpet_rtc_flags |= bit_mask;
1120 
1121 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1122 		hpet_prev_update_sec = -1;
1123 
1124 	if (!oldbits)
1125 		hpet_rtc_timer_init();
1126 
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1130 
1131 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1132 			unsigned char sec)
1133 {
1134 	if (!is_hpet_enabled())
1135 		return 0;
1136 
1137 	hpet_alarm_time.tm_hour = hrs;
1138 	hpet_alarm_time.tm_min = min;
1139 	hpet_alarm_time.tm_sec = sec;
1140 
1141 	return 1;
1142 }
1143 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1144 
1145 int hpet_set_periodic_freq(unsigned long freq)
1146 {
1147 	uint64_t clc;
1148 
1149 	if (!is_hpet_enabled())
1150 		return 0;
1151 
1152 	if (freq <= DEFAULT_RTC_INT_FREQ)
1153 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1154 	else {
1155 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1156 		do_div(clc, freq);
1157 		clc >>= hpet_clockevent.shift;
1158 		hpet_pie_delta = clc;
1159 		hpet_pie_limit = 0;
1160 	}
1161 	return 1;
1162 }
1163 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1164 
1165 int hpet_rtc_dropped_irq(void)
1166 {
1167 	return is_hpet_enabled();
1168 }
1169 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1170 
1171 static void hpet_rtc_timer_reinit(void)
1172 {
1173 	unsigned int cfg, delta;
1174 	int lost_ints = -1;
1175 
1176 	if (unlikely(!hpet_rtc_flags)) {
1177 		cfg = hpet_readl(HPET_T1_CFG);
1178 		cfg &= ~HPET_TN_ENABLE;
1179 		hpet_writel(cfg, HPET_T1_CFG);
1180 		return;
1181 	}
1182 
1183 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1184 		delta = hpet_default_delta;
1185 	else
1186 		delta = hpet_pie_delta;
1187 
1188 	/*
1189 	 * Increment the comparator value until we are ahead of the
1190 	 * current count.
1191 	 */
1192 	do {
1193 		hpet_t1_cmp += delta;
1194 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1195 		lost_ints++;
1196 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1197 
1198 	if (lost_ints) {
1199 		if (hpet_rtc_flags & RTC_PIE)
1200 			hpet_pie_count += lost_ints;
1201 		if (printk_ratelimit())
1202 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1203 				lost_ints);
1204 	}
1205 }
1206 
1207 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1208 {
1209 	struct rtc_time curr_time;
1210 	unsigned long rtc_int_flag = 0;
1211 
1212 	hpet_rtc_timer_reinit();
1213 	memset(&curr_time, 0, sizeof(struct rtc_time));
1214 
1215 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1216 		get_rtc_time(&curr_time);
1217 
1218 	if (hpet_rtc_flags & RTC_UIE &&
1219 	    curr_time.tm_sec != hpet_prev_update_sec) {
1220 		if (hpet_prev_update_sec >= 0)
1221 			rtc_int_flag = RTC_UF;
1222 		hpet_prev_update_sec = curr_time.tm_sec;
1223 	}
1224 
1225 	if (hpet_rtc_flags & RTC_PIE &&
1226 	    ++hpet_pie_count >= hpet_pie_limit) {
1227 		rtc_int_flag |= RTC_PF;
1228 		hpet_pie_count = 0;
1229 	}
1230 
1231 	if (hpet_rtc_flags & RTC_AIE &&
1232 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1233 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1234 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1235 			rtc_int_flag |= RTC_AF;
1236 
1237 	if (rtc_int_flag) {
1238 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1239 		if (irq_handler)
1240 			irq_handler(rtc_int_flag, dev_id);
1241 	}
1242 	return IRQ_HANDLED;
1243 }
1244 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1245 #endif
1246