1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9
10 #include <asm/irq_remapping.h>
11 #include <asm/hpet.h>
12 #include <asm/time.h>
13 #include <asm/mwait.h>
14
15 #undef pr_fmt
16 #define pr_fmt(fmt) "hpet: " fmt
17
18 enum hpet_mode {
19 HPET_MODE_UNUSED,
20 HPET_MODE_LEGACY,
21 HPET_MODE_CLOCKEVT,
22 HPET_MODE_DEVICE,
23 };
24
25 struct hpet_channel {
26 struct clock_event_device evt;
27 unsigned int num;
28 unsigned int cpu;
29 unsigned int irq;
30 unsigned int in_use;
31 enum hpet_mode mode;
32 unsigned int boot_cfg;
33 char name[10];
34 };
35
36 struct hpet_base {
37 unsigned int nr_channels;
38 unsigned int nr_clockevents;
39 unsigned int boot_cfg;
40 struct hpet_channel *channels;
41 };
42
43 #define HPET_MASK CLOCKSOURCE_MASK(32)
44
45 #define HPET_MIN_CYCLES 128
46 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
47
48 /*
49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
50 */
51 unsigned long hpet_address;
52 u8 hpet_blockid; /* OS timer block num */
53 bool hpet_msi_disable;
54
55 #ifdef CONFIG_GENERIC_MSI_IRQ
56 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
57 static struct irq_domain *hpet_domain;
58 #endif
59
60 static void __iomem *hpet_virt_address;
61
62 static struct hpet_base hpet_base;
63
64 static bool hpet_legacy_int_enabled;
65 static unsigned long hpet_freq;
66
67 bool boot_hpet_disable;
68 bool hpet_force_user;
69 static bool hpet_verbose;
70
71 static inline
clockevent_to_channel(struct clock_event_device * evt)72 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
73 {
74 return container_of(evt, struct hpet_channel, evt);
75 }
76
hpet_readl(unsigned int a)77 inline unsigned int hpet_readl(unsigned int a)
78 {
79 return readl(hpet_virt_address + a);
80 }
81
hpet_writel(unsigned int d,unsigned int a)82 static inline void hpet_writel(unsigned int d, unsigned int a)
83 {
84 writel(d, hpet_virt_address + a);
85 }
86
hpet_set_mapping(void)87 static inline void hpet_set_mapping(void)
88 {
89 hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
90 }
91
hpet_clear_mapping(void)92 static inline void hpet_clear_mapping(void)
93 {
94 iounmap(hpet_virt_address);
95 hpet_virt_address = NULL;
96 }
97
98 /*
99 * HPET command line enable / disable
100 */
hpet_setup(char * str)101 static int __init hpet_setup(char *str)
102 {
103 while (str) {
104 char *next = strchr(str, ',');
105
106 if (next)
107 *next++ = 0;
108 if (!strncmp("disable", str, 7))
109 boot_hpet_disable = true;
110 if (!strncmp("force", str, 5))
111 hpet_force_user = true;
112 if (!strncmp("verbose", str, 7))
113 hpet_verbose = true;
114 str = next;
115 }
116 return 1;
117 }
118 __setup("hpet=", hpet_setup);
119
disable_hpet(char * str)120 static int __init disable_hpet(char *str)
121 {
122 boot_hpet_disable = true;
123 return 1;
124 }
125 __setup("nohpet", disable_hpet);
126
is_hpet_capable(void)127 static inline int is_hpet_capable(void)
128 {
129 return !boot_hpet_disable && hpet_address;
130 }
131
132 /**
133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
134 */
is_hpet_enabled(void)135 int is_hpet_enabled(void)
136 {
137 return is_hpet_capable() && hpet_legacy_int_enabled;
138 }
139 EXPORT_SYMBOL_GPL(is_hpet_enabled);
140
_hpet_print_config(const char * function,int line)141 static void _hpet_print_config(const char *function, int line)
142 {
143 u32 i, id, period, cfg, status, channels, l, h;
144
145 pr_info("%s(%d):\n", function, line);
146
147 id = hpet_readl(HPET_ID);
148 period = hpet_readl(HPET_PERIOD);
149 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
150
151 cfg = hpet_readl(HPET_CFG);
152 status = hpet_readl(HPET_STATUS);
153 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
154
155 l = hpet_readl(HPET_COUNTER);
156 h = hpet_readl(HPET_COUNTER+4);
157 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
158
159 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
160
161 for (i = 0; i < channels; i++) {
162 l = hpet_readl(HPET_Tn_CFG(i));
163 h = hpet_readl(HPET_Tn_CFG(i)+4);
164 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
165
166 l = hpet_readl(HPET_Tn_CMP(i));
167 h = hpet_readl(HPET_Tn_CMP(i)+4);
168 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
169
170 l = hpet_readl(HPET_Tn_ROUTE(i));
171 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
172 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
173 }
174 }
175
176 #define hpet_print_config() \
177 do { \
178 if (hpet_verbose) \
179 _hpet_print_config(__func__, __LINE__); \
180 } while (0)
181
182 /*
183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
184 * timer 0 and timer 1 in case of RTC emulation.
185 */
186 #ifdef CONFIG_HPET
187
hpet_reserve_platform_timers(void)188 static void __init hpet_reserve_platform_timers(void)
189 {
190 struct hpet_data hd;
191 unsigned int i;
192
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet_virt_address;
196 hd.hd_nirqs = hpet_base.nr_channels;
197
198 /*
199 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
200 * is wrong for i8259!) not the output IRQ. Many BIOS writers
201 * don't bother configuring *any* comparator interrupts.
202 */
203 hd.hd_irq[0] = HPET_LEGACY_8254;
204 hd.hd_irq[1] = HPET_LEGACY_RTC;
205
206 for (i = 0; i < hpet_base.nr_channels; i++) {
207 struct hpet_channel *hc = hpet_base.channels + i;
208
209 if (i >= 2)
210 hd.hd_irq[i] = hc->irq;
211
212 switch (hc->mode) {
213 case HPET_MODE_UNUSED:
214 case HPET_MODE_DEVICE:
215 hc->mode = HPET_MODE_DEVICE;
216 break;
217 case HPET_MODE_CLOCKEVT:
218 case HPET_MODE_LEGACY:
219 hpet_reserve_timer(&hd, hc->num);
220 break;
221 }
222 }
223
224 hpet_alloc(&hd);
225 }
226
hpet_select_device_channel(void)227 static void __init hpet_select_device_channel(void)
228 {
229 int i;
230
231 for (i = 0; i < hpet_base.nr_channels; i++) {
232 struct hpet_channel *hc = hpet_base.channels + i;
233
234 /* Associate the first unused channel to /dev/hpet */
235 if (hc->mode == HPET_MODE_UNUSED) {
236 hc->mode = HPET_MODE_DEVICE;
237 return;
238 }
239 }
240 }
241
242 #else
hpet_reserve_platform_timers(void)243 static inline void hpet_reserve_platform_timers(void) { }
hpet_select_device_channel(void)244 static inline void hpet_select_device_channel(void) {}
245 #endif
246
247 /* Common HPET functions */
hpet_stop_counter(void)248 static void hpet_stop_counter(void)
249 {
250 u32 cfg = hpet_readl(HPET_CFG);
251
252 cfg &= ~HPET_CFG_ENABLE;
253 hpet_writel(cfg, HPET_CFG);
254 }
255
hpet_reset_counter(void)256 static void hpet_reset_counter(void)
257 {
258 hpet_writel(0, HPET_COUNTER);
259 hpet_writel(0, HPET_COUNTER + 4);
260 }
261
hpet_start_counter(void)262 static void hpet_start_counter(void)
263 {
264 unsigned int cfg = hpet_readl(HPET_CFG);
265
266 cfg |= HPET_CFG_ENABLE;
267 hpet_writel(cfg, HPET_CFG);
268 }
269
hpet_restart_counter(void)270 static void hpet_restart_counter(void)
271 {
272 hpet_stop_counter();
273 hpet_reset_counter();
274 hpet_start_counter();
275 }
276
hpet_resume_device(void)277 static void hpet_resume_device(void)
278 {
279 force_hpet_resume();
280 }
281
hpet_resume_counter(struct clocksource * cs)282 static void hpet_resume_counter(struct clocksource *cs)
283 {
284 hpet_resume_device();
285 hpet_restart_counter();
286 }
287
hpet_enable_legacy_int(void)288 static void hpet_enable_legacy_int(void)
289 {
290 unsigned int cfg = hpet_readl(HPET_CFG);
291
292 cfg |= HPET_CFG_LEGACY;
293 hpet_writel(cfg, HPET_CFG);
294 hpet_legacy_int_enabled = true;
295 }
296
hpet_clkevt_set_state_periodic(struct clock_event_device * evt)297 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
298 {
299 unsigned int channel = clockevent_to_channel(evt)->num;
300 unsigned int cfg, cmp, now;
301 uint64_t delta;
302
303 hpet_stop_counter();
304 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
305 delta >>= evt->shift;
306 now = hpet_readl(HPET_COUNTER);
307 cmp = now + (unsigned int)delta;
308 cfg = hpet_readl(HPET_Tn_CFG(channel));
309 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
310 HPET_TN_32BIT;
311 hpet_writel(cfg, HPET_Tn_CFG(channel));
312 hpet_writel(cmp, HPET_Tn_CMP(channel));
313 udelay(1);
314 /*
315 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
316 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
317 * bit is automatically cleared after the first write.
318 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
319 * Publication # 24674)
320 */
321 hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
322 hpet_start_counter();
323 hpet_print_config();
324
325 return 0;
326 }
327
hpet_clkevt_set_state_oneshot(struct clock_event_device * evt)328 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
329 {
330 unsigned int channel = clockevent_to_channel(evt)->num;
331 unsigned int cfg;
332
333 cfg = hpet_readl(HPET_Tn_CFG(channel));
334 cfg &= ~HPET_TN_PERIODIC;
335 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
336 hpet_writel(cfg, HPET_Tn_CFG(channel));
337
338 return 0;
339 }
340
hpet_clkevt_set_state_shutdown(struct clock_event_device * evt)341 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
342 {
343 unsigned int channel = clockevent_to_channel(evt)->num;
344 unsigned int cfg;
345
346 cfg = hpet_readl(HPET_Tn_CFG(channel));
347 cfg &= ~HPET_TN_ENABLE;
348 hpet_writel(cfg, HPET_Tn_CFG(channel));
349
350 return 0;
351 }
352
hpet_clkevt_legacy_resume(struct clock_event_device * evt)353 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
354 {
355 hpet_enable_legacy_int();
356 hpet_print_config();
357 return 0;
358 }
359
360 static int
hpet_clkevt_set_next_event(unsigned long delta,struct clock_event_device * evt)361 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
362 {
363 unsigned int channel = clockevent_to_channel(evt)->num;
364 u32 cnt;
365 s32 res;
366
367 cnt = hpet_readl(HPET_COUNTER);
368 cnt += (u32) delta;
369 hpet_writel(cnt, HPET_Tn_CMP(channel));
370
371 /*
372 * HPETs are a complete disaster. The compare register is
373 * based on a equal comparison and neither provides a less
374 * than or equal functionality (which would require to take
375 * the wraparound into account) nor a simple count down event
376 * mode. Further the write to the comparator register is
377 * delayed internally up to two HPET clock cycles in certain
378 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
379 * longer delays. We worked around that by reading back the
380 * compare register, but that required another workaround for
381 * ICH9,10 chips where the first readout after write can
382 * return the old stale value. We already had a minimum
383 * programming delta of 5us enforced, but a NMI or SMI hitting
384 * between the counter readout and the comparator write can
385 * move us behind that point easily. Now instead of reading
386 * the compare register back several times, we make the ETIME
387 * decision based on the following: Return ETIME if the
388 * counter value after the write is less than HPET_MIN_CYCLES
389 * away from the event or if the counter is already ahead of
390 * the event. The minimum programming delta for the generic
391 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
392 */
393 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
394
395 return res < HPET_MIN_CYCLES ? -ETIME : 0;
396 }
397
hpet_init_clockevent(struct hpet_channel * hc,unsigned int rating)398 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
399 {
400 struct clock_event_device *evt = &hc->evt;
401
402 evt->rating = rating;
403 evt->irq = hc->irq;
404 evt->name = hc->name;
405 evt->cpumask = cpumask_of(hc->cpu);
406 evt->set_state_oneshot = hpet_clkevt_set_state_oneshot;
407 evt->set_next_event = hpet_clkevt_set_next_event;
408 evt->set_state_shutdown = hpet_clkevt_set_state_shutdown;
409
410 evt->features = CLOCK_EVT_FEAT_ONESHOT;
411 if (hc->boot_cfg & HPET_TN_PERIODIC) {
412 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
413 evt->set_state_periodic = hpet_clkevt_set_state_periodic;
414 }
415 }
416
hpet_legacy_clockevent_register(struct hpet_channel * hc)417 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
418 {
419 /*
420 * Start HPET with the boot CPU's cpumask and make it global after
421 * the IO_APIC has been initialized.
422 */
423 hc->cpu = boot_cpu_data.cpu_index;
424 strscpy(hc->name, "hpet", sizeof(hc->name));
425 hpet_init_clockevent(hc, 50);
426
427 hc->evt.tick_resume = hpet_clkevt_legacy_resume;
428
429 /*
430 * Legacy horrors and sins from the past. HPET used periodic mode
431 * unconditionally forever on the legacy channel 0. Removing the
432 * below hack and using the conditional in hpet_init_clockevent()
433 * makes at least Qemu and one hardware machine fail to boot.
434 * There are two issues which cause the boot failure:
435 *
436 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
437 * the next interrupt is not delivered despite the HPET channel
438 * being programmed correctly. Reprogramming the HPET after
439 * switching to IOAPIC makes it work again. After fixing this,
440 * the next issue surfaces:
441 *
442 * #2 Due to the unconditional periodic mode availability the Local
443 * APIC timer calibration can hijack the global clockevents
444 * event handler without causing damage. Using oneshot at this
445 * stage makes if hang because the HPET does not get
446 * reprogrammed due to the handler hijacking. Duh, stupid me!
447 *
448 * Both issues require major surgery and especially the kick HPET
449 * again after enabling IOAPIC results in really nasty hackery.
450 * This 'assume periodic works' magic has survived since HPET
451 * support got added, so it's questionable whether this should be
452 * fixed. Both Qemu and the failing hardware machine support
453 * periodic mode despite the fact that both don't advertise it in
454 * the configuration register and both need that extra kick after
455 * switching to IOAPIC. Seems to be a feature...
456 */
457 hc->evt.features |= CLOCK_EVT_FEAT_PERIODIC;
458 hc->evt.set_state_periodic = hpet_clkevt_set_state_periodic;
459
460 /* Start HPET legacy interrupts */
461 hpet_enable_legacy_int();
462
463 clockevents_config_and_register(&hc->evt, hpet_freq,
464 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
465 global_clock_event = &hc->evt;
466 pr_debug("Clockevent registered\n");
467 }
468
469 /*
470 * HPET MSI Support
471 */
472 #ifdef CONFIG_GENERIC_MSI_IRQ
hpet_msi_unmask(struct irq_data * data)473 static void hpet_msi_unmask(struct irq_data *data)
474 {
475 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
476 unsigned int cfg;
477
478 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
479 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
480 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
481 }
482
hpet_msi_mask(struct irq_data * data)483 static void hpet_msi_mask(struct irq_data *data)
484 {
485 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
486 unsigned int cfg;
487
488 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
489 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
490 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
491 }
492
hpet_msi_write(struct hpet_channel * hc,struct msi_msg * msg)493 static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
494 {
495 hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
496 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
497 }
498
hpet_msi_write_msg(struct irq_data * data,struct msi_msg * msg)499 static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
500 {
501 hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
502 }
503
504 static struct irq_chip hpet_msi_controller __ro_after_init = {
505 .name = "HPET-MSI",
506 .irq_unmask = hpet_msi_unmask,
507 .irq_mask = hpet_msi_mask,
508 .irq_ack = irq_chip_ack_parent,
509 .irq_set_affinity = msi_domain_set_affinity,
510 .irq_retrigger = irq_chip_retrigger_hierarchy,
511 .irq_write_msi_msg = hpet_msi_write_msg,
512 .flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
513 };
514
hpet_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)515 static int hpet_msi_init(struct irq_domain *domain,
516 struct msi_domain_info *info, unsigned int virq,
517 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
518 {
519 irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
520 irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
521 handle_edge_irq, arg->data, "edge");
522
523 return 0;
524 }
525
hpet_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq)526 static void hpet_msi_free(struct irq_domain *domain,
527 struct msi_domain_info *info, unsigned int virq)
528 {
529 irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
530 }
531
532 static struct msi_domain_ops hpet_msi_domain_ops = {
533 .msi_init = hpet_msi_init,
534 .msi_free = hpet_msi_free,
535 };
536
537 static struct msi_domain_info hpet_msi_domain_info = {
538 .ops = &hpet_msi_domain_ops,
539 .chip = &hpet_msi_controller,
540 .flags = MSI_FLAG_USE_DEF_DOM_OPS,
541 };
542
hpet_create_irq_domain(int hpet_id)543 static struct irq_domain *hpet_create_irq_domain(int hpet_id)
544 {
545 struct msi_domain_info *domain_info;
546 struct irq_domain *parent, *d;
547 struct fwnode_handle *fn;
548 struct irq_fwspec fwspec;
549
550 if (x86_vector_domain == NULL)
551 return NULL;
552
553 domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
554 if (!domain_info)
555 return NULL;
556
557 *domain_info = hpet_msi_domain_info;
558 domain_info->data = (void *)(long)hpet_id;
559
560 fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
561 hpet_id);
562 if (!fn) {
563 kfree(domain_info);
564 return NULL;
565 }
566
567 fwspec.fwnode = fn;
568 fwspec.param_count = 1;
569 fwspec.param[0] = hpet_id;
570
571 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_ANY);
572 if (!parent) {
573 irq_domain_free_fwnode(fn);
574 kfree(domain_info);
575 return NULL;
576 }
577 if (parent != x86_vector_domain)
578 hpet_msi_controller.name = "IR-HPET-MSI";
579
580 d = msi_create_irq_domain(fn, domain_info, parent);
581 if (!d) {
582 irq_domain_free_fwnode(fn);
583 kfree(domain_info);
584 }
585 return d;
586 }
587
hpet_dev_id(struct irq_domain * domain)588 static inline int hpet_dev_id(struct irq_domain *domain)
589 {
590 struct msi_domain_info *info = msi_get_domain_info(domain);
591
592 return (int)(long)info->data;
593 }
594
hpet_assign_irq(struct irq_domain * domain,struct hpet_channel * hc,int dev_num)595 static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
596 int dev_num)
597 {
598 struct irq_alloc_info info;
599
600 init_irq_alloc_info(&info, NULL);
601 info.type = X86_IRQ_ALLOC_TYPE_HPET;
602 info.data = hc;
603 info.devid = hpet_dev_id(domain);
604 info.hwirq = dev_num;
605
606 return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
607 }
608
hpet_clkevt_msi_resume(struct clock_event_device * evt)609 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
610 {
611 struct hpet_channel *hc = clockevent_to_channel(evt);
612 struct irq_data *data = irq_get_irq_data(hc->irq);
613 struct msi_msg msg;
614
615 /* Restore the MSI msg and unmask the interrupt */
616 irq_chip_compose_msi_msg(data, &msg);
617 hpet_msi_write(hc, &msg);
618 hpet_msi_unmask(data);
619 return 0;
620 }
621
hpet_msi_interrupt_handler(int irq,void * data)622 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
623 {
624 struct hpet_channel *hc = data;
625 struct clock_event_device *evt = &hc->evt;
626
627 if (!evt->event_handler) {
628 pr_info("Spurious interrupt HPET channel %d\n", hc->num);
629 return IRQ_HANDLED;
630 }
631
632 evt->event_handler(evt);
633 return IRQ_HANDLED;
634 }
635
hpet_setup_msi_irq(struct hpet_channel * hc)636 static int hpet_setup_msi_irq(struct hpet_channel *hc)
637 {
638 if (request_irq(hc->irq, hpet_msi_interrupt_handler,
639 IRQF_TIMER | IRQF_NOBALANCING,
640 hc->name, hc))
641 return -1;
642
643 disable_irq(hc->irq);
644 irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
645 enable_irq(hc->irq);
646
647 pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
648
649 return 0;
650 }
651
652 /* Invoked from the hotplug callback on @cpu */
init_one_hpet_msi_clockevent(struct hpet_channel * hc,int cpu)653 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
654 {
655 struct clock_event_device *evt = &hc->evt;
656
657 hc->cpu = cpu;
658 per_cpu(cpu_hpet_channel, cpu) = hc;
659 hpet_setup_msi_irq(hc);
660
661 hpet_init_clockevent(hc, 110);
662 evt->tick_resume = hpet_clkevt_msi_resume;
663
664 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
665 0x7FFFFFFF);
666 }
667
hpet_get_unused_clockevent(void)668 static struct hpet_channel *hpet_get_unused_clockevent(void)
669 {
670 int i;
671
672 for (i = 0; i < hpet_base.nr_channels; i++) {
673 struct hpet_channel *hc = hpet_base.channels + i;
674
675 if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
676 continue;
677 hc->in_use = 1;
678 return hc;
679 }
680 return NULL;
681 }
682
hpet_cpuhp_online(unsigned int cpu)683 static int hpet_cpuhp_online(unsigned int cpu)
684 {
685 struct hpet_channel *hc = hpet_get_unused_clockevent();
686
687 if (hc)
688 init_one_hpet_msi_clockevent(hc, cpu);
689 return 0;
690 }
691
hpet_cpuhp_dead(unsigned int cpu)692 static int hpet_cpuhp_dead(unsigned int cpu)
693 {
694 struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
695
696 if (!hc)
697 return 0;
698 free_irq(hc->irq, hc);
699 hc->in_use = 0;
700 per_cpu(cpu_hpet_channel, cpu) = NULL;
701 return 0;
702 }
703
hpet_select_clockevents(void)704 static void __init hpet_select_clockevents(void)
705 {
706 unsigned int i;
707
708 hpet_base.nr_clockevents = 0;
709
710 /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
711 if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
712 return;
713
714 hpet_print_config();
715
716 hpet_domain = hpet_create_irq_domain(hpet_blockid);
717 if (!hpet_domain)
718 return;
719
720 for (i = 0; i < hpet_base.nr_channels; i++) {
721 struct hpet_channel *hc = hpet_base.channels + i;
722 int irq;
723
724 if (hc->mode != HPET_MODE_UNUSED)
725 continue;
726
727 /* Only consider HPET channel with MSI support */
728 if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
729 continue;
730
731 sprintf(hc->name, "hpet%d", i);
732
733 irq = hpet_assign_irq(hpet_domain, hc, hc->num);
734 if (irq <= 0)
735 continue;
736
737 hc->irq = irq;
738 hc->mode = HPET_MODE_CLOCKEVT;
739
740 if (++hpet_base.nr_clockevents == num_possible_cpus())
741 break;
742 }
743
744 pr_info("%d channels of %d reserved for per-cpu timers\n",
745 hpet_base.nr_channels, hpet_base.nr_clockevents);
746 }
747
748 #else
749
hpet_select_clockevents(void)750 static inline void hpet_select_clockevents(void) { }
751
752 #define hpet_cpuhp_online NULL
753 #define hpet_cpuhp_dead NULL
754
755 #endif
756
757 /*
758 * Clock source related code
759 */
760 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761 /*
762 * Reading the HPET counter is a very slow operation. If a large number of
763 * CPUs are trying to access the HPET counter simultaneously, it can cause
764 * massive delays and slow down system performance dramatically. This may
765 * happen when HPET is the default clock source instead of TSC. For a
766 * really large system with hundreds of CPUs, the slowdown may be so
767 * severe, that it can actually crash the system because of a NMI watchdog
768 * soft lockup, for example.
769 *
770 * If multiple CPUs are trying to access the HPET counter at the same time,
771 * we don't actually need to read the counter multiple times. Instead, the
772 * other CPUs can use the counter value read by the first CPU in the group.
773 *
774 * This special feature is only enabled on x86-64 systems. It is unlikely
775 * that 32-bit x86 systems will have enough CPUs to require this feature
776 * with its associated locking overhead. We also need 64-bit atomic read.
777 *
778 * The lock and the HPET value are stored together and can be read in a
779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
780 * is 32 bits in size.
781 */
782 union hpet_lock {
783 struct {
784 arch_spinlock_t lock;
785 u32 value;
786 };
787 u64 lockval;
788 };
789
790 static union hpet_lock hpet __cacheline_aligned = {
791 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
792 };
793
read_hpet(struct clocksource * cs)794 static u64 read_hpet(struct clocksource *cs)
795 {
796 unsigned long flags;
797 union hpet_lock old, new;
798
799 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
800
801 /*
802 * Read HPET directly if in NMI.
803 */
804 if (in_nmi())
805 return (u64)hpet_readl(HPET_COUNTER);
806
807 /*
808 * Read the current state of the lock and HPET value atomically.
809 */
810 old.lockval = READ_ONCE(hpet.lockval);
811
812 if (arch_spin_is_locked(&old.lock))
813 goto contended;
814
815 local_irq_save(flags);
816 if (arch_spin_trylock(&hpet.lock)) {
817 new.value = hpet_readl(HPET_COUNTER);
818 /*
819 * Use WRITE_ONCE() to prevent store tearing.
820 */
821 WRITE_ONCE(hpet.value, new.value);
822 arch_spin_unlock(&hpet.lock);
823 local_irq_restore(flags);
824 return (u64)new.value;
825 }
826 local_irq_restore(flags);
827
828 contended:
829 /*
830 * Contended case
831 * --------------
832 * Wait until the HPET value change or the lock is free to indicate
833 * its value is up-to-date.
834 *
835 * It is possible that old.value has already contained the latest
836 * HPET value while the lock holder was in the process of releasing
837 * the lock. Checking for lock state change will enable us to return
838 * the value immediately instead of waiting for the next HPET reader
839 * to come along.
840 */
841 do {
842 cpu_relax();
843 new.lockval = READ_ONCE(hpet.lockval);
844 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
845
846 return (u64)new.value;
847 }
848 #else
849 /*
850 * For UP or 32-bit.
851 */
read_hpet(struct clocksource * cs)852 static u64 read_hpet(struct clocksource *cs)
853 {
854 return (u64)hpet_readl(HPET_COUNTER);
855 }
856 #endif
857
858 static struct clocksource clocksource_hpet = {
859 .name = "hpet",
860 .rating = 250,
861 .read = read_hpet,
862 .mask = HPET_MASK,
863 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
864 .resume = hpet_resume_counter,
865 };
866
867 /*
868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
869 * HPET emulation to provide proper frequency setting.
870 *
871 * On such systems the SMM code is initialized with the first HPET register
872 * access and takes some time to complete. During this time the config
873 * register reads 0xffffffff. We check for max 1000 loops whether the
874 * config register reads a non-0xffffffff value to make sure that the
875 * HPET is up and running before we proceed any further.
876 *
877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
878 *
879 * On non-SB700 based machines this check is only done once and has no
880 * side effects.
881 */
hpet_cfg_working(void)882 static bool __init hpet_cfg_working(void)
883 {
884 int i;
885
886 for (i = 0; i < 1000; i++) {
887 if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
888 return true;
889 }
890
891 pr_warn("Config register invalid. Disabling HPET\n");
892 return false;
893 }
894
hpet_counting(void)895 static bool __init hpet_counting(void)
896 {
897 u64 start, now, t1;
898
899 hpet_restart_counter();
900
901 t1 = hpet_readl(HPET_COUNTER);
902 start = rdtsc();
903
904 /*
905 * We don't know the TSC frequency yet, but waiting for
906 * 200000 TSC cycles is safe:
907 * 4 GHz == 50us
908 * 1 GHz == 200us
909 */
910 do {
911 if (t1 != hpet_readl(HPET_COUNTER))
912 return true;
913 now = rdtsc();
914 } while ((now - start) < 200000UL);
915
916 pr_warn("Counter not counting. HPET disabled\n");
917 return false;
918 }
919
mwait_pc10_supported(void)920 static bool __init mwait_pc10_supported(void)
921 {
922 unsigned int eax, ebx, ecx, mwait_substates;
923
924 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
925 return false;
926
927 if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
928 return false;
929
930 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
931 return false;
932
933 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
934
935 return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
936 (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
937 (mwait_substates & (0xF << 28));
938 }
939
940 /*
941 * Check whether the system supports PC10. If so force disable HPET as that
942 * stops counting in PC10. This check is overbroad as it does not take any
943 * of the following into account:
944 *
945 * - ACPI tables
946 * - Enablement of intel_idle
947 * - Command line arguments which limit intel_idle C-state support
948 *
949 * That's perfectly fine. HPET is a piece of hardware designed by committee
950 * and the only reasons why it is still in use on modern systems is the
951 * fact that it is impossible to reliably query TSC and CPU frequency via
952 * CPUID or firmware.
953 *
954 * If HPET is functional it is useful for calibrating TSC, but this can be
955 * done via PMTIMER as well which seems to be the last remaining timer on
956 * X86/INTEL platforms that has not been completely wreckaged by feature
957 * creep.
958 *
959 * In theory HPET support should be removed altogether, but there are older
960 * systems out there which depend on it because TSC and APIC timer are
961 * dysfunctional in deeper C-states.
962 *
963 * It's only 20 years now that hardware people have been asked to provide
964 * reliable and discoverable facilities which can be used for timekeeping
965 * and per CPU timer interrupts.
966 *
967 * The probability that this problem is going to be solved in the
968 * forseeable future is close to zero, so the kernel has to be cluttered
969 * with heuristics to keep up with the ever growing amount of hardware and
970 * firmware trainwrecks. Hopefully some day hardware people will understand
971 * that the approach of "This can be fixed in software" is not sustainable.
972 * Hope dies last...
973 */
hpet_is_pc10_damaged(void)974 static bool __init hpet_is_pc10_damaged(void)
975 {
976 unsigned long long pcfg;
977
978 /* Check whether PC10 substates are supported */
979 if (!mwait_pc10_supported())
980 return false;
981
982 /* Check whether PC10 is enabled in PKG C-state limit */
983 rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
984 if ((pcfg & 0xF) < 8)
985 return false;
986
987 if (hpet_force_user) {
988 pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
989 return false;
990 }
991
992 pr_info("HPET dysfunctional in PC10. Force disabled.\n");
993 boot_hpet_disable = true;
994 return true;
995 }
996
997 /**
998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
999 */
hpet_enable(void)1000 int __init hpet_enable(void)
1001 {
1002 u32 hpet_period, cfg, id, irq;
1003 unsigned int i, channels;
1004 struct hpet_channel *hc;
1005 u64 freq;
1006
1007 if (!is_hpet_capable())
1008 return 0;
1009
1010 if (hpet_is_pc10_damaged())
1011 return 0;
1012
1013 hpet_set_mapping();
1014 if (!hpet_virt_address)
1015 return 0;
1016
1017 /* Validate that the config register is working */
1018 if (!hpet_cfg_working())
1019 goto out_nohpet;
1020
1021 /*
1022 * Read the period and check for a sane value:
1023 */
1024 hpet_period = hpet_readl(HPET_PERIOD);
1025 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1026 goto out_nohpet;
1027
1028 /* The period is a femtoseconds value. Convert it to a frequency. */
1029 freq = FSEC_PER_SEC;
1030 do_div(freq, hpet_period);
1031 hpet_freq = freq;
1032
1033 /*
1034 * Read the HPET ID register to retrieve the IRQ routing
1035 * information and the number of channels
1036 */
1037 id = hpet_readl(HPET_ID);
1038 hpet_print_config();
1039
1040 /* This is the HPET channel number which is zero based */
1041 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1042
1043 /*
1044 * The legacy routing mode needs at least two channels, tick timer
1045 * and the rtc emulation channel.
1046 */
1047 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1048 goto out_nohpet;
1049
1050 hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1051 if (!hc) {
1052 pr_warn("Disabling HPET.\n");
1053 goto out_nohpet;
1054 }
1055 hpet_base.channels = hc;
1056 hpet_base.nr_channels = channels;
1057
1058 /* Read, store and sanitize the global configuration */
1059 cfg = hpet_readl(HPET_CFG);
1060 hpet_base.boot_cfg = cfg;
1061 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1062 hpet_writel(cfg, HPET_CFG);
1063 if (cfg)
1064 pr_warn("Global config: Unknown bits %#x\n", cfg);
1065
1066 /* Read, store and sanitize the per channel configuration */
1067 for (i = 0; i < channels; i++, hc++) {
1068 hc->num = i;
1069
1070 cfg = hpet_readl(HPET_Tn_CFG(i));
1071 hc->boot_cfg = cfg;
1072 irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1073 hc->irq = irq;
1074
1075 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1076 hpet_writel(cfg, HPET_Tn_CFG(i));
1077
1078 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1079 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1080 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1081 if (cfg)
1082 pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1083 }
1084 hpet_print_config();
1085
1086 /*
1087 * Validate that the counter is counting. This needs to be done
1088 * after sanitizing the config registers to properly deal with
1089 * force enabled HPETs.
1090 */
1091 if (!hpet_counting())
1092 goto out_nohpet;
1093
1094 if (tsc_clocksource_watchdog_disabled())
1095 clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
1096 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1097
1098 if (id & HPET_ID_LEGSUP) {
1099 hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1100 hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1101 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1102 hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1103 return 1;
1104 }
1105 return 0;
1106
1107 out_nohpet:
1108 kfree(hpet_base.channels);
1109 hpet_base.channels = NULL;
1110 hpet_base.nr_channels = 0;
1111 hpet_clear_mapping();
1112 hpet_address = 0;
1113 return 0;
1114 }
1115
1116 /*
1117 * The late initialization runs after the PCI quirks have been invoked
1118 * which might have detected a system on which the HPET can be enforced.
1119 *
1120 * Also, the MSI machinery is not working yet when the HPET is initialized
1121 * early.
1122 *
1123 * If the HPET is enabled, then:
1124 *
1125 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1126 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1127 * 3) Setup /dev/hpet if CONFIG_HPET=y
1128 * 4) Register hotplug callbacks when clockevents are available
1129 */
hpet_late_init(void)1130 static __init int hpet_late_init(void)
1131 {
1132 int ret;
1133
1134 if (!hpet_address) {
1135 if (!force_hpet_address)
1136 return -ENODEV;
1137
1138 hpet_address = force_hpet_address;
1139 hpet_enable();
1140 }
1141
1142 if (!hpet_virt_address)
1143 return -ENODEV;
1144
1145 hpet_select_device_channel();
1146 hpet_select_clockevents();
1147 hpet_reserve_platform_timers();
1148 hpet_print_config();
1149
1150 if (!hpet_base.nr_clockevents)
1151 return 0;
1152
1153 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1154 hpet_cpuhp_online, NULL);
1155 if (ret)
1156 return ret;
1157 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1158 hpet_cpuhp_dead);
1159 if (ret)
1160 goto err_cpuhp;
1161 return 0;
1162
1163 err_cpuhp:
1164 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1165 return ret;
1166 }
1167 fs_initcall(hpet_late_init);
1168
hpet_disable(void)1169 void hpet_disable(void)
1170 {
1171 unsigned int i;
1172 u32 cfg;
1173
1174 if (!is_hpet_capable() || !hpet_virt_address)
1175 return;
1176
1177 /* Restore boot configuration with the enable bit cleared */
1178 cfg = hpet_base.boot_cfg;
1179 cfg &= ~HPET_CFG_ENABLE;
1180 hpet_writel(cfg, HPET_CFG);
1181
1182 /* Restore the channel boot configuration */
1183 for (i = 0; i < hpet_base.nr_channels; i++)
1184 hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1185
1186 /* If the HPET was enabled at boot time, reenable it */
1187 if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1188 hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1189 }
1190
1191 #ifdef CONFIG_HPET_EMULATE_RTC
1192
1193 /*
1194 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1195 * is enabled, we support RTC interrupt functionality in software.
1196 *
1197 * RTC has 3 kinds of interrupts:
1198 *
1199 * 1) Update Interrupt - generate an interrupt, every second, when the
1200 * RTC clock is updated
1201 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1202 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1203 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1204 *
1205 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1206 * DEFAULT_RTC_INT_FREQ.
1207 *
1208 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1209 *
1210 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1211 * if it's higher.
1212 */
1213 #include <linux/mc146818rtc.h>
1214 #include <linux/rtc.h>
1215
1216 #define DEFAULT_RTC_INT_FREQ 64
1217 #define DEFAULT_RTC_SHIFT 6
1218 #define RTC_NUM_INTS 1
1219
1220 static unsigned long hpet_rtc_flags;
1221 static int hpet_prev_update_sec;
1222 static struct rtc_time hpet_alarm_time;
1223 static unsigned long hpet_pie_count;
1224 static u32 hpet_t1_cmp;
1225 static u32 hpet_default_delta;
1226 static u32 hpet_pie_delta;
1227 static unsigned long hpet_pie_limit;
1228
1229 static rtc_irq_handler irq_handler;
1230
1231 /*
1232 * Check that the HPET counter c1 is ahead of c2
1233 */
hpet_cnt_ahead(u32 c1,u32 c2)1234 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1235 {
1236 return (s32)(c2 - c1) < 0;
1237 }
1238
1239 /*
1240 * Registers a IRQ handler.
1241 */
hpet_register_irq_handler(rtc_irq_handler handler)1242 int hpet_register_irq_handler(rtc_irq_handler handler)
1243 {
1244 if (!is_hpet_enabled())
1245 return -ENODEV;
1246 if (irq_handler)
1247 return -EBUSY;
1248
1249 irq_handler = handler;
1250
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1254
1255 /*
1256 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1257 * and does cleanup.
1258 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1259 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1260 {
1261 if (!is_hpet_enabled())
1262 return;
1263
1264 irq_handler = NULL;
1265 hpet_rtc_flags = 0;
1266 }
1267 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1268
1269 /*
1270 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1271 * is not supported by all HPET implementations for channel 1.
1272 *
1273 * hpet_rtc_timer_init() is called when the rtc is initialized.
1274 */
hpet_rtc_timer_init(void)1275 int hpet_rtc_timer_init(void)
1276 {
1277 unsigned int cfg, cnt, delta;
1278 unsigned long flags;
1279
1280 if (!is_hpet_enabled())
1281 return 0;
1282
1283 if (!hpet_default_delta) {
1284 struct clock_event_device *evt = &hpet_base.channels[0].evt;
1285 uint64_t clc;
1286
1287 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1288 clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1289 hpet_default_delta = clc;
1290 }
1291
1292 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1293 delta = hpet_default_delta;
1294 else
1295 delta = hpet_pie_delta;
1296
1297 local_irq_save(flags);
1298
1299 cnt = delta + hpet_readl(HPET_COUNTER);
1300 hpet_writel(cnt, HPET_T1_CMP);
1301 hpet_t1_cmp = cnt;
1302
1303 cfg = hpet_readl(HPET_T1_CFG);
1304 cfg &= ~HPET_TN_PERIODIC;
1305 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1306 hpet_writel(cfg, HPET_T1_CFG);
1307
1308 local_irq_restore(flags);
1309
1310 return 1;
1311 }
1312 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1313
hpet_disable_rtc_channel(void)1314 static void hpet_disable_rtc_channel(void)
1315 {
1316 u32 cfg = hpet_readl(HPET_T1_CFG);
1317
1318 cfg &= ~HPET_TN_ENABLE;
1319 hpet_writel(cfg, HPET_T1_CFG);
1320 }
1321
1322 /*
1323 * The functions below are called from rtc driver.
1324 * Return 0 if HPET is not being used.
1325 * Otherwise do the necessary changes and return 1.
1326 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1327 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1328 {
1329 if (!is_hpet_enabled())
1330 return 0;
1331
1332 hpet_rtc_flags &= ~bit_mask;
1333 if (unlikely(!hpet_rtc_flags))
1334 hpet_disable_rtc_channel();
1335
1336 return 1;
1337 }
1338 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1339
hpet_set_rtc_irq_bit(unsigned long bit_mask)1340 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1341 {
1342 unsigned long oldbits = hpet_rtc_flags;
1343
1344 if (!is_hpet_enabled())
1345 return 0;
1346
1347 hpet_rtc_flags |= bit_mask;
1348
1349 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1350 hpet_prev_update_sec = -1;
1351
1352 if (!oldbits)
1353 hpet_rtc_timer_init();
1354
1355 return 1;
1356 }
1357 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1358
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1359 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1360 {
1361 if (!is_hpet_enabled())
1362 return 0;
1363
1364 hpet_alarm_time.tm_hour = hrs;
1365 hpet_alarm_time.tm_min = min;
1366 hpet_alarm_time.tm_sec = sec;
1367
1368 return 1;
1369 }
1370 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1371
hpet_set_periodic_freq(unsigned long freq)1372 int hpet_set_periodic_freq(unsigned long freq)
1373 {
1374 uint64_t clc;
1375
1376 if (!is_hpet_enabled())
1377 return 0;
1378
1379 if (freq <= DEFAULT_RTC_INT_FREQ) {
1380 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1381 } else {
1382 struct clock_event_device *evt = &hpet_base.channels[0].evt;
1383
1384 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1385 do_div(clc, freq);
1386 clc >>= evt->shift;
1387 hpet_pie_delta = clc;
1388 hpet_pie_limit = 0;
1389 }
1390
1391 return 1;
1392 }
1393 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1394
hpet_rtc_dropped_irq(void)1395 int hpet_rtc_dropped_irq(void)
1396 {
1397 return is_hpet_enabled();
1398 }
1399 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1400
hpet_rtc_timer_reinit(void)1401 static void hpet_rtc_timer_reinit(void)
1402 {
1403 unsigned int delta;
1404 int lost_ints = -1;
1405
1406 if (unlikely(!hpet_rtc_flags))
1407 hpet_disable_rtc_channel();
1408
1409 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1410 delta = hpet_default_delta;
1411 else
1412 delta = hpet_pie_delta;
1413
1414 /*
1415 * Increment the comparator value until we are ahead of the
1416 * current count.
1417 */
1418 do {
1419 hpet_t1_cmp += delta;
1420 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1421 lost_ints++;
1422 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1423
1424 if (lost_ints) {
1425 if (hpet_rtc_flags & RTC_PIE)
1426 hpet_pie_count += lost_ints;
1427 if (printk_ratelimit())
1428 pr_warn("Lost %d RTC interrupts\n", lost_ints);
1429 }
1430 }
1431
hpet_rtc_interrupt(int irq,void * dev_id)1432 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1433 {
1434 struct rtc_time curr_time;
1435 unsigned long rtc_int_flag = 0;
1436
1437 hpet_rtc_timer_reinit();
1438 memset(&curr_time, 0, sizeof(struct rtc_time));
1439
1440 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
1441 if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
1442 pr_err_ratelimited("unable to read current time from RTC\n");
1443 return IRQ_HANDLED;
1444 }
1445 }
1446
1447 if (hpet_rtc_flags & RTC_UIE &&
1448 curr_time.tm_sec != hpet_prev_update_sec) {
1449 if (hpet_prev_update_sec >= 0)
1450 rtc_int_flag = RTC_UF;
1451 hpet_prev_update_sec = curr_time.tm_sec;
1452 }
1453
1454 if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1455 rtc_int_flag |= RTC_PF;
1456 hpet_pie_count = 0;
1457 }
1458
1459 if (hpet_rtc_flags & RTC_AIE &&
1460 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1461 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1462 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1463 rtc_int_flag |= RTC_AF;
1464
1465 if (rtc_int_flag) {
1466 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1467 if (irq_handler)
1468 irq_handler(rtc_int_flag, dev_id);
1469 }
1470 return IRQ_HANDLED;
1471 }
1472 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1473 #endif
1474