xref: /openbmc/linux/arch/x86/kernel/head64.c (revision f742b90e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  prepare to run common code
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #define DISABLE_BRANCH_PROFILING
9 
10 /* cpu_feature_enabled() cannot be used this early */
11 #define USE_EARLY_PGTABLE_L5
12 
13 #include <linux/init.h>
14 #include <linux/linkage.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/percpu.h>
19 #include <linux/start_kernel.h>
20 #include <linux/io.h>
21 #include <linux/memblock.h>
22 #include <linux/cc_platform.h>
23 #include <linux/pgtable.h>
24 
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/extable.h>
41 #include <asm/trapnr.h>
42 #include <asm/sev.h>
43 
44 /*
45  * Manage page tables very early on.
46  */
47 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
48 static unsigned int __initdata next_early_pgt;
49 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
50 
51 #ifdef CONFIG_X86_5LEVEL
52 unsigned int __pgtable_l5_enabled __ro_after_init;
53 unsigned int pgdir_shift __ro_after_init = 39;
54 EXPORT_SYMBOL(pgdir_shift);
55 unsigned int ptrs_per_p4d __ro_after_init = 1;
56 EXPORT_SYMBOL(ptrs_per_p4d);
57 #endif
58 
59 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
60 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
61 EXPORT_SYMBOL(page_offset_base);
62 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
63 EXPORT_SYMBOL(vmalloc_base);
64 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
65 EXPORT_SYMBOL(vmemmap_base);
66 #endif
67 
68 /*
69  * GDT used on the boot CPU before switching to virtual addresses.
70  */
71 static struct desc_struct startup_gdt[GDT_ENTRIES] = {
72 	[GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
73 	[GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
74 	[GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
75 };
76 
77 /*
78  * Address needs to be set at runtime because it references the startup_gdt
79  * while the kernel still uses a direct mapping.
80  */
81 static struct desc_ptr startup_gdt_descr = {
82 	.size = sizeof(startup_gdt),
83 	.address = 0,
84 };
85 
86 #define __head	__section(".head.text")
87 
88 static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
89 {
90 	return ptr - (void *)_text + (void *)physaddr;
91 }
92 
93 static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr)
94 {
95 	return fixup_pointer(ptr, physaddr);
96 }
97 
98 #ifdef CONFIG_X86_5LEVEL
99 static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr)
100 {
101 	return fixup_pointer(ptr, physaddr);
102 }
103 
104 static bool __head check_la57_support(unsigned long physaddr)
105 {
106 	/*
107 	 * 5-level paging is detected and enabled at kernel decompression
108 	 * stage. Only check if it has been enabled there.
109 	 */
110 	if (!(native_read_cr4() & X86_CR4_LA57))
111 		return false;
112 
113 	*fixup_int(&__pgtable_l5_enabled, physaddr) = 1;
114 	*fixup_int(&pgdir_shift, physaddr) = 48;
115 	*fixup_int(&ptrs_per_p4d, physaddr) = 512;
116 	*fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5;
117 	*fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5;
118 	*fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5;
119 
120 	return true;
121 }
122 #else
123 static bool __head check_la57_support(unsigned long physaddr)
124 {
125 	return false;
126 }
127 #endif
128 
129 static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd)
130 {
131 	unsigned long vaddr, vaddr_end;
132 	int i;
133 
134 	/* Encrypt the kernel and related (if SME is active) */
135 	sme_encrypt_kernel(bp);
136 
137 	/*
138 	 * Clear the memory encryption mask from the .bss..decrypted section.
139 	 * The bss section will be memset to zero later in the initialization so
140 	 * there is no need to zero it after changing the memory encryption
141 	 * attribute.
142 	 */
143 	if (sme_get_me_mask()) {
144 		vaddr = (unsigned long)__start_bss_decrypted;
145 		vaddr_end = (unsigned long)__end_bss_decrypted;
146 		for (; vaddr < vaddr_end; vaddr += PMD_SIZE) {
147 			i = pmd_index(vaddr);
148 			pmd[i] -= sme_get_me_mask();
149 		}
150 	}
151 
152 	/*
153 	 * Return the SME encryption mask (if SME is active) to be used as a
154 	 * modifier for the initial pgdir entry programmed into CR3.
155 	 */
156 	return sme_get_me_mask();
157 }
158 
159 /* Code in __startup_64() can be relocated during execution, but the compiler
160  * doesn't have to generate PC-relative relocations when accessing globals from
161  * that function. Clang actually does not generate them, which leads to
162  * boot-time crashes. To work around this problem, every global pointer must
163  * be adjusted using fixup_pointer().
164  */
165 unsigned long __head __startup_64(unsigned long physaddr,
166 				  struct boot_params *bp)
167 {
168 	unsigned long load_delta, *p;
169 	unsigned long pgtable_flags;
170 	pgdval_t *pgd;
171 	p4dval_t *p4d;
172 	pudval_t *pud;
173 	pmdval_t *pmd, pmd_entry;
174 	pteval_t *mask_ptr;
175 	bool la57;
176 	int i;
177 	unsigned int *next_pgt_ptr;
178 
179 	la57 = check_la57_support(physaddr);
180 
181 	/* Is the address too large? */
182 	if (physaddr >> MAX_PHYSMEM_BITS)
183 		for (;;);
184 
185 	/*
186 	 * Compute the delta between the address I am compiled to run at
187 	 * and the address I am actually running at.
188 	 */
189 	load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
190 
191 	/* Is the address not 2M aligned? */
192 	if (load_delta & ~PMD_PAGE_MASK)
193 		for (;;);
194 
195 	/* Include the SME encryption mask in the fixup value */
196 	load_delta += sme_get_me_mask();
197 
198 	/* Fixup the physical addresses in the page table */
199 
200 	pgd = fixup_pointer(&early_top_pgt, physaddr);
201 	p = pgd + pgd_index(__START_KERNEL_map);
202 	if (la57)
203 		*p = (unsigned long)level4_kernel_pgt;
204 	else
205 		*p = (unsigned long)level3_kernel_pgt;
206 	*p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta;
207 
208 	if (la57) {
209 		p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
210 		p4d[511] += load_delta;
211 	}
212 
213 	pud = fixup_pointer(&level3_kernel_pgt, physaddr);
214 	pud[510] += load_delta;
215 	pud[511] += load_delta;
216 
217 	pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
218 	for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
219 		pmd[i] += load_delta;
220 
221 	/*
222 	 * Set up the identity mapping for the switchover.  These
223 	 * entries should *NOT* have the global bit set!  This also
224 	 * creates a bunch of nonsense entries but that is fine --
225 	 * it avoids problems around wraparound.
226 	 */
227 
228 	next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
229 	pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
230 	pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
231 
232 	pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
233 
234 	if (la57) {
235 		p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++],
236 				    physaddr);
237 
238 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
239 		pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
240 		pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
241 
242 		i = physaddr >> P4D_SHIFT;
243 		p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
244 		p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
245 	} else {
246 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
247 		pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
248 		pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
249 	}
250 
251 	i = physaddr >> PUD_SHIFT;
252 	pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
253 	pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
254 
255 	pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
256 	/* Filter out unsupported __PAGE_KERNEL_* bits: */
257 	mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr);
258 	pmd_entry &= *mask_ptr;
259 	pmd_entry += sme_get_me_mask();
260 	pmd_entry +=  physaddr;
261 
262 	for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
263 		int idx = i + (physaddr >> PMD_SHIFT);
264 
265 		pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
266 	}
267 
268 	/*
269 	 * Fixup the kernel text+data virtual addresses. Note that
270 	 * we might write invalid pmds, when the kernel is relocated
271 	 * cleanup_highmap() fixes this up along with the mappings
272 	 * beyond _end.
273 	 *
274 	 * Only the region occupied by the kernel image has so far
275 	 * been checked against the table of usable memory regions
276 	 * provided by the firmware, so invalidate pages outside that
277 	 * region. A page table entry that maps to a reserved area of
278 	 * memory would allow processor speculation into that area,
279 	 * and on some hardware (particularly the UV platform) even
280 	 * speculative access to some reserved areas is caught as an
281 	 * error, causing the BIOS to halt the system.
282 	 */
283 
284 	pmd = fixup_pointer(level2_kernel_pgt, physaddr);
285 
286 	/* invalidate pages before the kernel image */
287 	for (i = 0; i < pmd_index((unsigned long)_text); i++)
288 		pmd[i] &= ~_PAGE_PRESENT;
289 
290 	/* fixup pages that are part of the kernel image */
291 	for (; i <= pmd_index((unsigned long)_end); i++)
292 		if (pmd[i] & _PAGE_PRESENT)
293 			pmd[i] += load_delta;
294 
295 	/* invalidate pages after the kernel image */
296 	for (; i < PTRS_PER_PMD; i++)
297 		pmd[i] &= ~_PAGE_PRESENT;
298 
299 	/*
300 	 * Fixup phys_base - remove the memory encryption mask to obtain
301 	 * the true physical address.
302 	 */
303 	*fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask();
304 
305 	return sme_postprocess_startup(bp, pmd);
306 }
307 
308 unsigned long __startup_secondary_64(void)
309 {
310 	/*
311 	 * Return the SME encryption mask (if SME is active) to be used as a
312 	 * modifier for the initial pgdir entry programmed into CR3.
313 	 */
314 	return sme_get_me_mask();
315 }
316 
317 /* Wipe all early page tables except for the kernel symbol map */
318 static void __init reset_early_page_tables(void)
319 {
320 	memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
321 	next_early_pgt = 0;
322 	write_cr3(__sme_pa_nodebug(early_top_pgt));
323 }
324 
325 /* Create a new PMD entry */
326 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
327 {
328 	unsigned long physaddr = address - __PAGE_OFFSET;
329 	pgdval_t pgd, *pgd_p;
330 	p4dval_t p4d, *p4d_p;
331 	pudval_t pud, *pud_p;
332 	pmdval_t *pmd_p;
333 
334 	/* Invalid address or early pgt is done ?  */
335 	if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
336 		return false;
337 
338 again:
339 	pgd_p = &early_top_pgt[pgd_index(address)].pgd;
340 	pgd = *pgd_p;
341 
342 	/*
343 	 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
344 	 * critical -- __PAGE_OFFSET would point us back into the dynamic
345 	 * range and we might end up looping forever...
346 	 */
347 	if (!pgtable_l5_enabled())
348 		p4d_p = pgd_p;
349 	else if (pgd)
350 		p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
351 	else {
352 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
353 			reset_early_page_tables();
354 			goto again;
355 		}
356 
357 		p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
358 		memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
359 		*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
360 	}
361 	p4d_p += p4d_index(address);
362 	p4d = *p4d_p;
363 
364 	if (p4d)
365 		pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
366 	else {
367 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
368 			reset_early_page_tables();
369 			goto again;
370 		}
371 
372 		pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
373 		memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
374 		*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
375 	}
376 	pud_p += pud_index(address);
377 	pud = *pud_p;
378 
379 	if (pud)
380 		pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
381 	else {
382 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
383 			reset_early_page_tables();
384 			goto again;
385 		}
386 
387 		pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
388 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
389 		*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
390 	}
391 	pmd_p[pmd_index(address)] = pmd;
392 
393 	return true;
394 }
395 
396 static bool __init early_make_pgtable(unsigned long address)
397 {
398 	unsigned long physaddr = address - __PAGE_OFFSET;
399 	pmdval_t pmd;
400 
401 	pmd = (physaddr & PMD_MASK) + early_pmd_flags;
402 
403 	return __early_make_pgtable(address, pmd);
404 }
405 
406 void __init do_early_exception(struct pt_regs *regs, int trapnr)
407 {
408 	if (trapnr == X86_TRAP_PF &&
409 	    early_make_pgtable(native_read_cr2()))
410 		return;
411 
412 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
413 	    trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
414 		return;
415 
416 	early_fixup_exception(regs, trapnr);
417 }
418 
419 /* Don't add a printk in there. printk relies on the PDA which is not initialized
420    yet. */
421 static void __init clear_bss(void)
422 {
423 	memset(__bss_start, 0,
424 	       (unsigned long) __bss_stop - (unsigned long) __bss_start);
425 }
426 
427 static unsigned long get_cmd_line_ptr(void)
428 {
429 	unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
430 
431 	cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
432 
433 	return cmd_line_ptr;
434 }
435 
436 static void __init copy_bootdata(char *real_mode_data)
437 {
438 	char * command_line;
439 	unsigned long cmd_line_ptr;
440 
441 	/*
442 	 * If SME is active, this will create decrypted mappings of the
443 	 * boot data in advance of the copy operations.
444 	 */
445 	sme_map_bootdata(real_mode_data);
446 
447 	memcpy(&boot_params, real_mode_data, sizeof(boot_params));
448 	sanitize_boot_params(&boot_params);
449 	cmd_line_ptr = get_cmd_line_ptr();
450 	if (cmd_line_ptr) {
451 		command_line = __va(cmd_line_ptr);
452 		memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
453 	}
454 
455 	/*
456 	 * The old boot data is no longer needed and won't be reserved,
457 	 * freeing up that memory for use by the system. If SME is active,
458 	 * we need to remove the mappings that were created so that the
459 	 * memory doesn't remain mapped as decrypted.
460 	 */
461 	sme_unmap_bootdata(real_mode_data);
462 }
463 
464 asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data)
465 {
466 	/*
467 	 * Build-time sanity checks on the kernel image and module
468 	 * area mappings. (these are purely build-time and produce no code)
469 	 */
470 	BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
471 	BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
472 	BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
473 	BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
474 	BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
475 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
476 	MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
477 				(__START_KERNEL & PGDIR_MASK)));
478 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
479 
480 	cr4_init_shadow();
481 
482 	/* Kill off the identity-map trampoline */
483 	reset_early_page_tables();
484 
485 	clear_bss();
486 
487 	/*
488 	 * This needs to happen *before* kasan_early_init() because latter maps stuff
489 	 * into that page.
490 	 */
491 	clear_page(init_top_pgt);
492 
493 	/*
494 	 * SME support may update early_pmd_flags to include the memory
495 	 * encryption mask, so it needs to be called before anything
496 	 * that may generate a page fault.
497 	 */
498 	sme_early_init();
499 
500 	kasan_early_init();
501 
502 	/*
503 	 * Flush global TLB entries which could be left over from the trampoline page
504 	 * table.
505 	 *
506 	 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
507 	 * instrument native_write_cr4() so KASAN must be initialized for that
508 	 * instrumentation to work.
509 	 */
510 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
511 
512 	idt_setup_early_handler();
513 
514 	copy_bootdata(__va(real_mode_data));
515 
516 	/*
517 	 * Load microcode early on BSP.
518 	 */
519 	load_ucode_bsp();
520 
521 	/* set init_top_pgt kernel high mapping*/
522 	init_top_pgt[511] = early_top_pgt[511];
523 
524 	x86_64_start_reservations(real_mode_data);
525 }
526 
527 void __init x86_64_start_reservations(char *real_mode_data)
528 {
529 	/* version is always not zero if it is copied */
530 	if (!boot_params.hdr.version)
531 		copy_bootdata(__va(real_mode_data));
532 
533 	x86_early_init_platform_quirks();
534 
535 	switch (boot_params.hdr.hardware_subarch) {
536 	case X86_SUBARCH_INTEL_MID:
537 		x86_intel_mid_early_setup();
538 		break;
539 	default:
540 		break;
541 	}
542 
543 	start_kernel();
544 }
545 
546 /*
547  * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
548  * used until the idt_table takes over. On the boot CPU this happens in
549  * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
550  * this happens in the functions called from head_64.S.
551  *
552  * The idt_table can't be used that early because all the code modifying it is
553  * in idt.c and can be instrumented by tracing or KASAN, which both don't work
554  * during early CPU bringup. Also the idt_table has the runtime vectors
555  * configured which require certain CPU state to be setup already (like TSS),
556  * which also hasn't happened yet in early CPU bringup.
557  */
558 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
559 
560 static struct desc_ptr bringup_idt_descr = {
561 	.size		= (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1,
562 	.address	= 0, /* Set at runtime */
563 };
564 
565 static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler)
566 {
567 #ifdef CONFIG_AMD_MEM_ENCRYPT
568 	struct idt_data data;
569 	gate_desc desc;
570 
571 	init_idt_data(&data, n, handler);
572 	idt_init_desc(&desc, &data);
573 	native_write_idt_entry(idt, n, &desc);
574 #endif
575 }
576 
577 /* This runs while still in the direct mapping */
578 static void startup_64_load_idt(unsigned long physbase)
579 {
580 	struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase);
581 	gate_desc *idt = fixup_pointer(bringup_idt_table, physbase);
582 
583 
584 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
585 		void *handler;
586 
587 		/* VMM Communication Exception */
588 		handler = fixup_pointer(vc_no_ghcb, physbase);
589 		set_bringup_idt_handler(idt, X86_TRAP_VC, handler);
590 	}
591 
592 	desc->address = (unsigned long)idt;
593 	native_load_idt(desc);
594 }
595 
596 /* This is used when running on kernel addresses */
597 void early_setup_idt(void)
598 {
599 	/* VMM Communication Exception */
600 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT))
601 		set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb);
602 
603 	bringup_idt_descr.address = (unsigned long)bringup_idt_table;
604 	native_load_idt(&bringup_idt_descr);
605 }
606 
607 /*
608  * Setup boot CPU state needed before kernel switches to virtual addresses.
609  */
610 void __head startup_64_setup_env(unsigned long physbase)
611 {
612 	/* Load GDT */
613 	startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase);
614 	native_load_gdt(&startup_gdt_descr);
615 
616 	/* New GDT is live - reload data segment registers */
617 	asm volatile("movl %%eax, %%ds\n"
618 		     "movl %%eax, %%ss\n"
619 		     "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
620 
621 	startup_64_load_idt(physbase);
622 }
623