1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * prepare to run common code 4 * 5 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8 #define DISABLE_BRANCH_PROFILING 9 10 /* cpu_feature_enabled() cannot be used this early */ 11 #define USE_EARLY_PGTABLE_L5 12 13 #include <linux/init.h> 14 #include <linux/linkage.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/string.h> 18 #include <linux/percpu.h> 19 #include <linux/start_kernel.h> 20 #include <linux/io.h> 21 #include <linux/memblock.h> 22 #include <linux/cc_platform.h> 23 #include <linux/pgtable.h> 24 25 #include <asm/processor.h> 26 #include <asm/proto.h> 27 #include <asm/smp.h> 28 #include <asm/setup.h> 29 #include <asm/desc.h> 30 #include <asm/tlbflush.h> 31 #include <asm/sections.h> 32 #include <asm/kdebug.h> 33 #include <asm/e820/api.h> 34 #include <asm/bios_ebda.h> 35 #include <asm/bootparam_utils.h> 36 #include <asm/microcode.h> 37 #include <asm/kasan.h> 38 #include <asm/fixmap.h> 39 #include <asm/realmode.h> 40 #include <asm/extable.h> 41 #include <asm/trapnr.h> 42 #include <asm/sev.h> 43 #include <asm/tdx.h> 44 #include <asm/init.h> 45 46 /* 47 * Manage page tables very early on. 48 */ 49 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD]; 50 static unsigned int __initdata next_early_pgt; 51 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX); 52 53 #ifdef CONFIG_X86_5LEVEL 54 unsigned int __pgtable_l5_enabled __ro_after_init; 55 unsigned int pgdir_shift __ro_after_init = 39; 56 EXPORT_SYMBOL(pgdir_shift); 57 unsigned int ptrs_per_p4d __ro_after_init = 1; 58 EXPORT_SYMBOL(ptrs_per_p4d); 59 #endif 60 61 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT 62 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4; 63 EXPORT_SYMBOL(page_offset_base); 64 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4; 65 EXPORT_SYMBOL(vmalloc_base); 66 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4; 67 EXPORT_SYMBOL(vmemmap_base); 68 #endif 69 70 /* 71 * GDT used on the boot CPU before switching to virtual addresses. 72 */ 73 static struct desc_struct startup_gdt[GDT_ENTRIES] = { 74 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), 75 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), 76 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), 77 }; 78 79 /* 80 * Address needs to be set at runtime because it references the startup_gdt 81 * while the kernel still uses a direct mapping. 82 */ 83 static struct desc_ptr startup_gdt_descr = { 84 .size = sizeof(startup_gdt)-1, 85 .address = 0, 86 }; 87 88 static void __head *fixup_pointer(void *ptr, unsigned long physaddr) 89 { 90 return ptr - (void *)_text + (void *)physaddr; 91 } 92 93 static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr) 94 { 95 return fixup_pointer(ptr, physaddr); 96 } 97 98 #ifdef CONFIG_X86_5LEVEL 99 static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr) 100 { 101 return fixup_pointer(ptr, physaddr); 102 } 103 104 static bool __head check_la57_support(unsigned long physaddr) 105 { 106 /* 107 * 5-level paging is detected and enabled at kernel decompression 108 * stage. Only check if it has been enabled there. 109 */ 110 if (!(native_read_cr4() & X86_CR4_LA57)) 111 return false; 112 113 *fixup_int(&__pgtable_l5_enabled, physaddr) = 1; 114 *fixup_int(&pgdir_shift, physaddr) = 48; 115 *fixup_int(&ptrs_per_p4d, physaddr) = 512; 116 *fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5; 117 *fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5; 118 *fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5; 119 120 return true; 121 } 122 #else 123 static bool __head check_la57_support(unsigned long physaddr) 124 { 125 return false; 126 } 127 #endif 128 129 static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd) 130 { 131 unsigned long vaddr, vaddr_end; 132 int i; 133 134 /* Encrypt the kernel and related (if SME is active) */ 135 sme_encrypt_kernel(bp); 136 137 /* 138 * Clear the memory encryption mask from the .bss..decrypted section. 139 * The bss section will be memset to zero later in the initialization so 140 * there is no need to zero it after changing the memory encryption 141 * attribute. 142 */ 143 if (sme_get_me_mask()) { 144 vaddr = (unsigned long)__start_bss_decrypted; 145 vaddr_end = (unsigned long)__end_bss_decrypted; 146 147 for (; vaddr < vaddr_end; vaddr += PMD_SIZE) { 148 /* 149 * On SNP, transition the page to shared in the RMP table so that 150 * it is consistent with the page table attribute change. 151 * 152 * __start_bss_decrypted has a virtual address in the high range 153 * mapping (kernel .text). PVALIDATE, by way of 154 * early_snp_set_memory_shared(), requires a valid virtual 155 * address but the kernel is currently running off of the identity 156 * mapping so use __pa() to get a *currently* valid virtual address. 157 */ 158 early_snp_set_memory_shared(__pa(vaddr), __pa(vaddr), PTRS_PER_PMD); 159 160 i = pmd_index(vaddr); 161 pmd[i] -= sme_get_me_mask(); 162 } 163 } 164 165 /* 166 * Return the SME encryption mask (if SME is active) to be used as a 167 * modifier for the initial pgdir entry programmed into CR3. 168 */ 169 return sme_get_me_mask(); 170 } 171 172 /* Code in __startup_64() can be relocated during execution, but the compiler 173 * doesn't have to generate PC-relative relocations when accessing globals from 174 * that function. Clang actually does not generate them, which leads to 175 * boot-time crashes. To work around this problem, every global pointer must 176 * be adjusted using fixup_pointer(). 177 */ 178 unsigned long __head __startup_64(unsigned long physaddr, 179 struct boot_params *bp) 180 { 181 unsigned long load_delta, *p; 182 unsigned long pgtable_flags; 183 pgdval_t *pgd; 184 p4dval_t *p4d; 185 pudval_t *pud; 186 pmdval_t *pmd, pmd_entry; 187 pteval_t *mask_ptr; 188 bool la57; 189 int i; 190 unsigned int *next_pgt_ptr; 191 192 la57 = check_la57_support(physaddr); 193 194 /* Is the address too large? */ 195 if (physaddr >> MAX_PHYSMEM_BITS) 196 for (;;); 197 198 /* 199 * Compute the delta between the address I am compiled to run at 200 * and the address I am actually running at. 201 */ 202 load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map); 203 204 /* Is the address not 2M aligned? */ 205 if (load_delta & ~PMD_MASK) 206 for (;;); 207 208 /* Include the SME encryption mask in the fixup value */ 209 load_delta += sme_get_me_mask(); 210 211 /* Fixup the physical addresses in the page table */ 212 213 pgd = fixup_pointer(&early_top_pgt, physaddr); 214 p = pgd + pgd_index(__START_KERNEL_map); 215 if (la57) 216 *p = (unsigned long)level4_kernel_pgt; 217 else 218 *p = (unsigned long)level3_kernel_pgt; 219 *p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta; 220 221 if (la57) { 222 p4d = fixup_pointer(&level4_kernel_pgt, physaddr); 223 p4d[511] += load_delta; 224 } 225 226 pud = fixup_pointer(&level3_kernel_pgt, physaddr); 227 pud[510] += load_delta; 228 pud[511] += load_delta; 229 230 pmd = fixup_pointer(level2_fixmap_pgt, physaddr); 231 for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--) 232 pmd[i] += load_delta; 233 234 /* 235 * Set up the identity mapping for the switchover. These 236 * entries should *NOT* have the global bit set! This also 237 * creates a bunch of nonsense entries but that is fine -- 238 * it avoids problems around wraparound. 239 */ 240 241 next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr); 242 pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr); 243 pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr); 244 245 pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask(); 246 247 if (la57) { 248 p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], 249 physaddr); 250 251 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD; 252 pgd[i + 0] = (pgdval_t)p4d + pgtable_flags; 253 pgd[i + 1] = (pgdval_t)p4d + pgtable_flags; 254 255 i = physaddr >> P4D_SHIFT; 256 p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags; 257 p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags; 258 } else { 259 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD; 260 pgd[i + 0] = (pgdval_t)pud + pgtable_flags; 261 pgd[i + 1] = (pgdval_t)pud + pgtable_flags; 262 } 263 264 i = physaddr >> PUD_SHIFT; 265 pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags; 266 pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags; 267 268 pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL; 269 /* Filter out unsupported __PAGE_KERNEL_* bits: */ 270 mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr); 271 pmd_entry &= *mask_ptr; 272 pmd_entry += sme_get_me_mask(); 273 pmd_entry += physaddr; 274 275 for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) { 276 int idx = i + (physaddr >> PMD_SHIFT); 277 278 pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE; 279 } 280 281 /* 282 * Fixup the kernel text+data virtual addresses. Note that 283 * we might write invalid pmds, when the kernel is relocated 284 * cleanup_highmap() fixes this up along with the mappings 285 * beyond _end. 286 * 287 * Only the region occupied by the kernel image has so far 288 * been checked against the table of usable memory regions 289 * provided by the firmware, so invalidate pages outside that 290 * region. A page table entry that maps to a reserved area of 291 * memory would allow processor speculation into that area, 292 * and on some hardware (particularly the UV platform) even 293 * speculative access to some reserved areas is caught as an 294 * error, causing the BIOS to halt the system. 295 */ 296 297 pmd = fixup_pointer(level2_kernel_pgt, physaddr); 298 299 /* invalidate pages before the kernel image */ 300 for (i = 0; i < pmd_index((unsigned long)_text); i++) 301 pmd[i] &= ~_PAGE_PRESENT; 302 303 /* fixup pages that are part of the kernel image */ 304 for (; i <= pmd_index((unsigned long)_end); i++) 305 if (pmd[i] & _PAGE_PRESENT) 306 pmd[i] += load_delta; 307 308 /* invalidate pages after the kernel image */ 309 for (; i < PTRS_PER_PMD; i++) 310 pmd[i] &= ~_PAGE_PRESENT; 311 312 /* 313 * Fixup phys_base - remove the memory encryption mask to obtain 314 * the true physical address. 315 */ 316 *fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask(); 317 318 return sme_postprocess_startup(bp, pmd); 319 } 320 321 /* Wipe all early page tables except for the kernel symbol map */ 322 static void __init reset_early_page_tables(void) 323 { 324 memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1)); 325 next_early_pgt = 0; 326 write_cr3(__sme_pa_nodebug(early_top_pgt)); 327 } 328 329 /* Create a new PMD entry */ 330 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd) 331 { 332 unsigned long physaddr = address - __PAGE_OFFSET; 333 pgdval_t pgd, *pgd_p; 334 p4dval_t p4d, *p4d_p; 335 pudval_t pud, *pud_p; 336 pmdval_t *pmd_p; 337 338 /* Invalid address or early pgt is done ? */ 339 if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt)) 340 return false; 341 342 again: 343 pgd_p = &early_top_pgt[pgd_index(address)].pgd; 344 pgd = *pgd_p; 345 346 /* 347 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is 348 * critical -- __PAGE_OFFSET would point us back into the dynamic 349 * range and we might end up looping forever... 350 */ 351 if (!pgtable_l5_enabled()) 352 p4d_p = pgd_p; 353 else if (pgd) 354 p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); 355 else { 356 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { 357 reset_early_page_tables(); 358 goto again; 359 } 360 361 p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++]; 362 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D); 363 *pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; 364 } 365 p4d_p += p4d_index(address); 366 p4d = *p4d_p; 367 368 if (p4d) 369 pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); 370 else { 371 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { 372 reset_early_page_tables(); 373 goto again; 374 } 375 376 pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++]; 377 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); 378 *p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; 379 } 380 pud_p += pud_index(address); 381 pud = *pud_p; 382 383 if (pud) 384 pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); 385 else { 386 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { 387 reset_early_page_tables(); 388 goto again; 389 } 390 391 pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++]; 392 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD); 393 *pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; 394 } 395 pmd_p[pmd_index(address)] = pmd; 396 397 return true; 398 } 399 400 static bool __init early_make_pgtable(unsigned long address) 401 { 402 unsigned long physaddr = address - __PAGE_OFFSET; 403 pmdval_t pmd; 404 405 pmd = (physaddr & PMD_MASK) + early_pmd_flags; 406 407 return __early_make_pgtable(address, pmd); 408 } 409 410 void __init do_early_exception(struct pt_regs *regs, int trapnr) 411 { 412 if (trapnr == X86_TRAP_PF && 413 early_make_pgtable(native_read_cr2())) 414 return; 415 416 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) && 417 trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs)) 418 return; 419 420 if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs)) 421 return; 422 423 early_fixup_exception(regs, trapnr); 424 } 425 426 /* Don't add a printk in there. printk relies on the PDA which is not initialized 427 yet. */ 428 void __init clear_bss(void) 429 { 430 memset(__bss_start, 0, 431 (unsigned long) __bss_stop - (unsigned long) __bss_start); 432 memset(__brk_base, 0, 433 (unsigned long) __brk_limit - (unsigned long) __brk_base); 434 } 435 436 static unsigned long get_cmd_line_ptr(void) 437 { 438 unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr; 439 440 cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32; 441 442 return cmd_line_ptr; 443 } 444 445 static void __init copy_bootdata(char *real_mode_data) 446 { 447 char * command_line; 448 unsigned long cmd_line_ptr; 449 450 /* 451 * If SME is active, this will create decrypted mappings of the 452 * boot data in advance of the copy operations. 453 */ 454 sme_map_bootdata(real_mode_data); 455 456 memcpy(&boot_params, real_mode_data, sizeof(boot_params)); 457 sanitize_boot_params(&boot_params); 458 cmd_line_ptr = get_cmd_line_ptr(); 459 if (cmd_line_ptr) { 460 command_line = __va(cmd_line_ptr); 461 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 462 } 463 464 /* 465 * The old boot data is no longer needed and won't be reserved, 466 * freeing up that memory for use by the system. If SME is active, 467 * we need to remove the mappings that were created so that the 468 * memory doesn't remain mapped as decrypted. 469 */ 470 sme_unmap_bootdata(real_mode_data); 471 } 472 473 asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data) 474 { 475 /* 476 * Build-time sanity checks on the kernel image and module 477 * area mappings. (these are purely build-time and produce no code) 478 */ 479 BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map); 480 BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE); 481 BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE); 482 BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0); 483 BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0); 484 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); 485 MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == 486 (__START_KERNEL & PGDIR_MASK))); 487 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END); 488 489 cr4_init_shadow(); 490 491 /* Kill off the identity-map trampoline */ 492 reset_early_page_tables(); 493 494 clear_bss(); 495 496 /* 497 * This needs to happen *before* kasan_early_init() because latter maps stuff 498 * into that page. 499 */ 500 clear_page(init_top_pgt); 501 502 /* 503 * SME support may update early_pmd_flags to include the memory 504 * encryption mask, so it needs to be called before anything 505 * that may generate a page fault. 506 */ 507 sme_early_init(); 508 509 kasan_early_init(); 510 511 /* 512 * Flush global TLB entries which could be left over from the trampoline page 513 * table. 514 * 515 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs 516 * instrument native_write_cr4() so KASAN must be initialized for that 517 * instrumentation to work. 518 */ 519 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 520 521 idt_setup_early_handler(); 522 523 /* Needed before cc_platform_has() can be used for TDX */ 524 tdx_early_init(); 525 526 copy_bootdata(__va(real_mode_data)); 527 528 /* 529 * Load microcode early on BSP. 530 */ 531 load_ucode_bsp(); 532 533 /* set init_top_pgt kernel high mapping*/ 534 init_top_pgt[511] = early_top_pgt[511]; 535 536 x86_64_start_reservations(real_mode_data); 537 } 538 539 void __init __noreturn x86_64_start_reservations(char *real_mode_data) 540 { 541 /* version is always not zero if it is copied */ 542 if (!boot_params.hdr.version) 543 copy_bootdata(__va(real_mode_data)); 544 545 x86_early_init_platform_quirks(); 546 547 switch (boot_params.hdr.hardware_subarch) { 548 case X86_SUBARCH_INTEL_MID: 549 x86_intel_mid_early_setup(); 550 break; 551 default: 552 break; 553 } 554 555 start_kernel(); 556 } 557 558 /* 559 * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is 560 * used until the idt_table takes over. On the boot CPU this happens in 561 * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases 562 * this happens in the functions called from head_64.S. 563 * 564 * The idt_table can't be used that early because all the code modifying it is 565 * in idt.c and can be instrumented by tracing or KASAN, which both don't work 566 * during early CPU bringup. Also the idt_table has the runtime vectors 567 * configured which require certain CPU state to be setup already (like TSS), 568 * which also hasn't happened yet in early CPU bringup. 569 */ 570 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data; 571 572 static struct desc_ptr bringup_idt_descr = { 573 .size = (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1, 574 .address = 0, /* Set at runtime */ 575 }; 576 577 static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler) 578 { 579 #ifdef CONFIG_AMD_MEM_ENCRYPT 580 struct idt_data data; 581 gate_desc desc; 582 583 init_idt_data(&data, n, handler); 584 idt_init_desc(&desc, &data); 585 native_write_idt_entry(idt, n, &desc); 586 #endif 587 } 588 589 /* This runs while still in the direct mapping */ 590 static void startup_64_load_idt(unsigned long physbase) 591 { 592 struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase); 593 gate_desc *idt = fixup_pointer(bringup_idt_table, physbase); 594 595 596 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) { 597 void *handler; 598 599 /* VMM Communication Exception */ 600 handler = fixup_pointer(vc_no_ghcb, physbase); 601 set_bringup_idt_handler(idt, X86_TRAP_VC, handler); 602 } 603 604 desc->address = (unsigned long)idt; 605 native_load_idt(desc); 606 } 607 608 /* This is used when running on kernel addresses */ 609 void early_setup_idt(void) 610 { 611 /* VMM Communication Exception */ 612 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) { 613 setup_ghcb(); 614 set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb); 615 } 616 617 bringup_idt_descr.address = (unsigned long)bringup_idt_table; 618 native_load_idt(&bringup_idt_descr); 619 } 620 621 /* 622 * Setup boot CPU state needed before kernel switches to virtual addresses. 623 */ 624 void __head startup_64_setup_env(unsigned long physbase) 625 { 626 /* Load GDT */ 627 startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase); 628 native_load_gdt(&startup_gdt_descr); 629 630 /* New GDT is live - reload data segment registers */ 631 asm volatile("movl %%eax, %%ds\n" 632 "movl %%eax, %%ss\n" 633 "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory"); 634 635 startup_64_load_idt(physbase); 636 } 637