xref: /openbmc/linux/arch/x86/kernel/fpu/xstate.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xsave/xrstor support.
4  *
5  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
6  */
7 #include <linux/compat.h>
8 #include <linux/cpu.h>
9 #include <linux/mman.h>
10 #include <linux/pkeys.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 
14 #include <asm/fpu/api.h>
15 #include <asm/fpu/internal.h>
16 #include <asm/fpu/signal.h>
17 #include <asm/fpu/regset.h>
18 #include <asm/fpu/xstate.h>
19 
20 #include <asm/tlbflush.h>
21 #include <asm/cpufeature.h>
22 
23 /*
24  * Although we spell it out in here, the Processor Trace
25  * xfeature is completely unused.  We use other mechanisms
26  * to save/restore PT state in Linux.
27  */
28 static const char *xfeature_names[] =
29 {
30 	"x87 floating point registers"	,
31 	"SSE registers"			,
32 	"AVX registers"			,
33 	"MPX bounds registers"		,
34 	"MPX CSR"			,
35 	"AVX-512 opmask"		,
36 	"AVX-512 Hi256"			,
37 	"AVX-512 ZMM_Hi256"		,
38 	"Processor Trace (unused)"	,
39 	"Protection Keys User registers",
40 	"unknown xstate feature"	,
41 };
42 
43 static short xsave_cpuid_features[] __initdata = {
44 	X86_FEATURE_FPU,
45 	X86_FEATURE_XMM,
46 	X86_FEATURE_AVX,
47 	X86_FEATURE_MPX,
48 	X86_FEATURE_MPX,
49 	X86_FEATURE_AVX512F,
50 	X86_FEATURE_AVX512F,
51 	X86_FEATURE_AVX512F,
52 	X86_FEATURE_INTEL_PT,
53 	X86_FEATURE_PKU,
54 };
55 
56 /*
57  * This represents the full set of bits that should ever be set in a kernel
58  * XSAVE buffer, both supervisor and user xstates.
59  */
60 u64 xfeatures_mask_all __read_mostly;
61 
62 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
63 static unsigned int xstate_sizes[XFEATURE_MAX]   = { [ 0 ... XFEATURE_MAX - 1] = -1};
64 static unsigned int xstate_comp_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
65 static unsigned int xstate_supervisor_only_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
66 
67 /*
68  * The XSAVE area of kernel can be in standard or compacted format;
69  * it is always in standard format for user mode. This is the user
70  * mode standard format size used for signal and ptrace frames.
71  */
72 unsigned int fpu_user_xstate_size;
73 
74 /*
75  * Return whether the system supports a given xfeature.
76  *
77  * Also return the name of the (most advanced) feature that the caller requested:
78  */
79 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
80 {
81 	u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask_all;
82 
83 	if (unlikely(feature_name)) {
84 		long xfeature_idx, max_idx;
85 		u64 xfeatures_print;
86 		/*
87 		 * So we use FLS here to be able to print the most advanced
88 		 * feature that was requested but is missing. So if a driver
89 		 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
90 		 * missing AVX feature - this is the most informative message
91 		 * to users:
92 		 */
93 		if (xfeatures_missing)
94 			xfeatures_print = xfeatures_missing;
95 		else
96 			xfeatures_print = xfeatures_needed;
97 
98 		xfeature_idx = fls64(xfeatures_print)-1;
99 		max_idx = ARRAY_SIZE(xfeature_names)-1;
100 		xfeature_idx = min(xfeature_idx, max_idx);
101 
102 		*feature_name = xfeature_names[xfeature_idx];
103 	}
104 
105 	if (xfeatures_missing)
106 		return 0;
107 
108 	return 1;
109 }
110 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
111 
112 static bool xfeature_is_supervisor(int xfeature_nr)
113 {
114 	/*
115 	 * Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)
116 	 * returns ECX[0] set to (1) for a supervisor state, and cleared (0)
117 	 * for a user state.
118 	 */
119 	u32 eax, ebx, ecx, edx;
120 
121 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
122 	return ecx & 1;
123 }
124 
125 /*
126  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
127  * a processor implementation detects that an FPU state component is still
128  * (or is again) in its initialized state, it may clear the corresponding
129  * bit in the header.xfeatures field, and can skip the writeout of registers
130  * to the corresponding memory layout.
131  *
132  * This means that when the bit is zero, the state component might still contain
133  * some previous - non-initialized register state.
134  *
135  * Before writing xstate information to user-space we sanitize those components,
136  * to always ensure that the memory layout of a feature will be in the init state
137  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
138  * see some stale state in the memory layout during signal handling, debugging etc.
139  */
140 void fpstate_sanitize_xstate(struct fpu *fpu)
141 {
142 	struct fxregs_state *fx = &fpu->state.fxsave;
143 	int feature_bit;
144 	u64 xfeatures;
145 
146 	if (!use_xsaveopt())
147 		return;
148 
149 	xfeatures = fpu->state.xsave.header.xfeatures;
150 
151 	/*
152 	 * None of the feature bits are in init state. So nothing else
153 	 * to do for us, as the memory layout is up to date.
154 	 */
155 	if ((xfeatures & xfeatures_mask_all) == xfeatures_mask_all)
156 		return;
157 
158 	/*
159 	 * FP is in init state
160 	 */
161 	if (!(xfeatures & XFEATURE_MASK_FP)) {
162 		fx->cwd = 0x37f;
163 		fx->swd = 0;
164 		fx->twd = 0;
165 		fx->fop = 0;
166 		fx->rip = 0;
167 		fx->rdp = 0;
168 		memset(&fx->st_space[0], 0, 128);
169 	}
170 
171 	/*
172 	 * SSE is in init state
173 	 */
174 	if (!(xfeatures & XFEATURE_MASK_SSE))
175 		memset(&fx->xmm_space[0], 0, 256);
176 
177 	/*
178 	 * First two features are FPU and SSE, which above we handled
179 	 * in a special way already:
180 	 */
181 	feature_bit = 0x2;
182 	xfeatures = (xfeatures_mask_user() & ~xfeatures) >> 2;
183 
184 	/*
185 	 * Update all the remaining memory layouts according to their
186 	 * standard xstate layout, if their header bit is in the init
187 	 * state:
188 	 */
189 	while (xfeatures) {
190 		if (xfeatures & 0x1) {
191 			int offset = xstate_comp_offsets[feature_bit];
192 			int size = xstate_sizes[feature_bit];
193 
194 			memcpy((void *)fx + offset,
195 			       (void *)&init_fpstate.xsave + offset,
196 			       size);
197 		}
198 
199 		xfeatures >>= 1;
200 		feature_bit++;
201 	}
202 }
203 
204 /*
205  * Enable the extended processor state save/restore feature.
206  * Called once per CPU onlining.
207  */
208 void fpu__init_cpu_xstate(void)
209 {
210 	u64 unsup_bits;
211 
212 	if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask_all)
213 		return;
214 	/*
215 	 * Unsupported supervisor xstates should not be found in
216 	 * the xfeatures mask.
217 	 */
218 	unsup_bits = xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_UNSUPPORTED;
219 	WARN_ONCE(unsup_bits, "x86/fpu: Found unsupported supervisor xstates: 0x%llx\n",
220 		  unsup_bits);
221 
222 	xfeatures_mask_all &= ~XFEATURE_MASK_SUPERVISOR_UNSUPPORTED;
223 
224 	cr4_set_bits(X86_CR4_OSXSAVE);
225 
226 	/*
227 	 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
228 	 * managed by XSAVE{C, OPT, S} and XRSTOR{S}.  Only XSAVE user
229 	 * states can be set here.
230 	 */
231 	xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user());
232 
233 	/*
234 	 * MSR_IA32_XSS sets supervisor states managed by XSAVES.
235 	 */
236 	if (boot_cpu_has(X86_FEATURE_XSAVES))
237 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
238 }
239 
240 static bool xfeature_enabled(enum xfeature xfeature)
241 {
242 	return xfeatures_mask_all & BIT_ULL(xfeature);
243 }
244 
245 /*
246  * Record the offsets and sizes of various xstates contained
247  * in the XSAVE state memory layout.
248  */
249 static void __init setup_xstate_features(void)
250 {
251 	u32 eax, ebx, ecx, edx, i;
252 	/* start at the beginnning of the "extended state" */
253 	unsigned int last_good_offset = offsetof(struct xregs_state,
254 						 extended_state_area);
255 	/*
256 	 * The FP xstates and SSE xstates are legacy states. They are always
257 	 * in the fixed offsets in the xsave area in either compacted form
258 	 * or standard form.
259 	 */
260 	xstate_offsets[XFEATURE_FP]	= 0;
261 	xstate_sizes[XFEATURE_FP]	= offsetof(struct fxregs_state,
262 						   xmm_space);
263 
264 	xstate_offsets[XFEATURE_SSE]	= xstate_sizes[XFEATURE_FP];
265 	xstate_sizes[XFEATURE_SSE]	= sizeof_field(struct fxregs_state,
266 						       xmm_space);
267 
268 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
269 		if (!xfeature_enabled(i))
270 			continue;
271 
272 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
273 
274 		xstate_sizes[i] = eax;
275 
276 		/*
277 		 * If an xfeature is supervisor state, the offset in EBX is
278 		 * invalid, leave it to -1.
279 		 */
280 		if (xfeature_is_supervisor(i))
281 			continue;
282 
283 		xstate_offsets[i] = ebx;
284 
285 		/*
286 		 * In our xstate size checks, we assume that the highest-numbered
287 		 * xstate feature has the highest offset in the buffer.  Ensure
288 		 * it does.
289 		 */
290 		WARN_ONCE(last_good_offset > xstate_offsets[i],
291 			  "x86/fpu: misordered xstate at %d\n", last_good_offset);
292 
293 		last_good_offset = xstate_offsets[i];
294 	}
295 }
296 
297 static void __init print_xstate_feature(u64 xstate_mask)
298 {
299 	const char *feature_name;
300 
301 	if (cpu_has_xfeatures(xstate_mask, &feature_name))
302 		pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
303 }
304 
305 /*
306  * Print out all the supported xstate features:
307  */
308 static void __init print_xstate_features(void)
309 {
310 	print_xstate_feature(XFEATURE_MASK_FP);
311 	print_xstate_feature(XFEATURE_MASK_SSE);
312 	print_xstate_feature(XFEATURE_MASK_YMM);
313 	print_xstate_feature(XFEATURE_MASK_BNDREGS);
314 	print_xstate_feature(XFEATURE_MASK_BNDCSR);
315 	print_xstate_feature(XFEATURE_MASK_OPMASK);
316 	print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
317 	print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
318 	print_xstate_feature(XFEATURE_MASK_PKRU);
319 }
320 
321 /*
322  * This check is important because it is easy to get XSTATE_*
323  * confused with XSTATE_BIT_*.
324  */
325 #define CHECK_XFEATURE(nr) do {		\
326 	WARN_ON(nr < FIRST_EXTENDED_XFEATURE);	\
327 	WARN_ON(nr >= XFEATURE_MAX);	\
328 } while (0)
329 
330 /*
331  * We could cache this like xstate_size[], but we only use
332  * it here, so it would be a waste of space.
333  */
334 static int xfeature_is_aligned(int xfeature_nr)
335 {
336 	u32 eax, ebx, ecx, edx;
337 
338 	CHECK_XFEATURE(xfeature_nr);
339 
340 	if (!xfeature_enabled(xfeature_nr)) {
341 		WARN_ONCE(1, "Checking alignment of disabled xfeature %d\n",
342 			  xfeature_nr);
343 		return 0;
344 	}
345 
346 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
347 	/*
348 	 * The value returned by ECX[1] indicates the alignment
349 	 * of state component 'i' when the compacted format
350 	 * of the extended region of an XSAVE area is used:
351 	 */
352 	return !!(ecx & 2);
353 }
354 
355 /*
356  * This function sets up offsets and sizes of all extended states in
357  * xsave area. This supports both standard format and compacted format
358  * of the xsave area.
359  */
360 static void __init setup_xstate_comp_offsets(void)
361 {
362 	unsigned int next_offset;
363 	int i;
364 
365 	/*
366 	 * The FP xstates and SSE xstates are legacy states. They are always
367 	 * in the fixed offsets in the xsave area in either compacted form
368 	 * or standard form.
369 	 */
370 	xstate_comp_offsets[XFEATURE_FP] = 0;
371 	xstate_comp_offsets[XFEATURE_SSE] = offsetof(struct fxregs_state,
372 						     xmm_space);
373 
374 	if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
375 		for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
376 			if (xfeature_enabled(i))
377 				xstate_comp_offsets[i] = xstate_offsets[i];
378 		}
379 		return;
380 	}
381 
382 	next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE;
383 
384 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
385 		if (!xfeature_enabled(i))
386 			continue;
387 
388 		if (xfeature_is_aligned(i))
389 			next_offset = ALIGN(next_offset, 64);
390 
391 		xstate_comp_offsets[i] = next_offset;
392 		next_offset += xstate_sizes[i];
393 	}
394 }
395 
396 /*
397  * Setup offsets of a supervisor-state-only XSAVES buffer:
398  *
399  * The offsets stored in xstate_comp_offsets[] only work for one specific
400  * value of the Requested Feature BitMap (RFBM).  In cases where a different
401  * RFBM value is used, a different set of offsets is required.  This set of
402  * offsets is for when RFBM=xfeatures_mask_supervisor().
403  */
404 static void __init setup_supervisor_only_offsets(void)
405 {
406 	unsigned int next_offset;
407 	int i;
408 
409 	next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE;
410 
411 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
412 		if (!xfeature_enabled(i) || !xfeature_is_supervisor(i))
413 			continue;
414 
415 		if (xfeature_is_aligned(i))
416 			next_offset = ALIGN(next_offset, 64);
417 
418 		xstate_supervisor_only_offsets[i] = next_offset;
419 		next_offset += xstate_sizes[i];
420 	}
421 }
422 
423 /*
424  * Print out xstate component offsets and sizes
425  */
426 static void __init print_xstate_offset_size(void)
427 {
428 	int i;
429 
430 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
431 		if (!xfeature_enabled(i))
432 			continue;
433 		pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
434 			 i, xstate_comp_offsets[i], i, xstate_sizes[i]);
435 	}
436 }
437 
438 /*
439  * setup the xstate image representing the init state
440  */
441 static void __init setup_init_fpu_buf(void)
442 {
443 	static int on_boot_cpu __initdata = 1;
444 
445 	WARN_ON_FPU(!on_boot_cpu);
446 	on_boot_cpu = 0;
447 
448 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
449 		return;
450 
451 	setup_xstate_features();
452 	print_xstate_features();
453 
454 	if (boot_cpu_has(X86_FEATURE_XSAVES))
455 		init_fpstate.xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT |
456 						     xfeatures_mask_all;
457 
458 	/*
459 	 * Init all the features state with header.xfeatures being 0x0
460 	 */
461 	copy_kernel_to_xregs_booting(&init_fpstate.xsave);
462 
463 	/*
464 	 * Dump the init state again. This is to identify the init state
465 	 * of any feature which is not represented by all zero's.
466 	 */
467 	copy_xregs_to_kernel_booting(&init_fpstate.xsave);
468 }
469 
470 static int xfeature_uncompacted_offset(int xfeature_nr)
471 {
472 	u32 eax, ebx, ecx, edx;
473 
474 	/*
475 	 * Only XSAVES supports supervisor states and it uses compacted
476 	 * format. Checking a supervisor state's uncompacted offset is
477 	 * an error.
478 	 */
479 	if (XFEATURE_MASK_SUPERVISOR_ALL & BIT_ULL(xfeature_nr)) {
480 		WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
481 		return -1;
482 	}
483 
484 	CHECK_XFEATURE(xfeature_nr);
485 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
486 	return ebx;
487 }
488 
489 static int xfeature_size(int xfeature_nr)
490 {
491 	u32 eax, ebx, ecx, edx;
492 
493 	CHECK_XFEATURE(xfeature_nr);
494 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
495 	return eax;
496 }
497 
498 /*
499  * 'XSAVES' implies two different things:
500  * 1. saving of supervisor/system state
501  * 2. using the compacted format
502  *
503  * Use this function when dealing with the compacted format so
504  * that it is obvious which aspect of 'XSAVES' is being handled
505  * by the calling code.
506  */
507 int using_compacted_format(void)
508 {
509 	return boot_cpu_has(X86_FEATURE_XSAVES);
510 }
511 
512 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
513 int validate_user_xstate_header(const struct xstate_header *hdr)
514 {
515 	/* No unknown or supervisor features may be set */
516 	if (hdr->xfeatures & ~xfeatures_mask_user())
517 		return -EINVAL;
518 
519 	/* Userspace must use the uncompacted format */
520 	if (hdr->xcomp_bv)
521 		return -EINVAL;
522 
523 	/*
524 	 * If 'reserved' is shrunken to add a new field, make sure to validate
525 	 * that new field here!
526 	 */
527 	BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
528 
529 	/* No reserved bits may be set */
530 	if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
531 		return -EINVAL;
532 
533 	return 0;
534 }
535 
536 static void __xstate_dump_leaves(void)
537 {
538 	int i;
539 	u32 eax, ebx, ecx, edx;
540 	static int should_dump = 1;
541 
542 	if (!should_dump)
543 		return;
544 	should_dump = 0;
545 	/*
546 	 * Dump out a few leaves past the ones that we support
547 	 * just in case there are some goodies up there
548 	 */
549 	for (i = 0; i < XFEATURE_MAX + 10; i++) {
550 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
551 		pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
552 			XSTATE_CPUID, i, eax, ebx, ecx, edx);
553 	}
554 }
555 
556 #define XSTATE_WARN_ON(x) do {							\
557 	if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {	\
558 		__xstate_dump_leaves();						\
559 	}									\
560 } while (0)
561 
562 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {			\
563 	if ((nr == nr_macro) &&						\
564 	    WARN_ONCE(sz != sizeof(__struct),				\
565 		"%s: struct is %zu bytes, cpu state %d bytes\n",	\
566 		__stringify(nr_macro), sizeof(__struct), sz)) {		\
567 		__xstate_dump_leaves();					\
568 	}								\
569 } while (0)
570 
571 /*
572  * We have a C struct for each 'xstate'.  We need to ensure
573  * that our software representation matches what the CPU
574  * tells us about the state's size.
575  */
576 static void check_xstate_against_struct(int nr)
577 {
578 	/*
579 	 * Ask the CPU for the size of the state.
580 	 */
581 	int sz = xfeature_size(nr);
582 	/*
583 	 * Match each CPU state with the corresponding software
584 	 * structure.
585 	 */
586 	XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
587 	XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
588 	XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
589 	XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
590 	XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
591 	XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
592 	XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
593 
594 	/*
595 	 * Make *SURE* to add any feature numbers in below if
596 	 * there are "holes" in the xsave state component
597 	 * numbers.
598 	 */
599 	if ((nr < XFEATURE_YMM) ||
600 	    (nr >= XFEATURE_MAX) ||
601 	    (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) {
602 		WARN_ONCE(1, "no structure for xstate: %d\n", nr);
603 		XSTATE_WARN_ON(1);
604 	}
605 }
606 
607 /*
608  * This essentially double-checks what the cpu told us about
609  * how large the XSAVE buffer needs to be.  We are recalculating
610  * it to be safe.
611  */
612 static void do_extra_xstate_size_checks(void)
613 {
614 	int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
615 	int i;
616 
617 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
618 		if (!xfeature_enabled(i))
619 			continue;
620 
621 		check_xstate_against_struct(i);
622 		/*
623 		 * Supervisor state components can be managed only by
624 		 * XSAVES, which is compacted-format only.
625 		 */
626 		if (!using_compacted_format())
627 			XSTATE_WARN_ON(xfeature_is_supervisor(i));
628 
629 		/* Align from the end of the previous feature */
630 		if (xfeature_is_aligned(i))
631 			paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
632 		/*
633 		 * The offset of a given state in the non-compacted
634 		 * format is given to us in a CPUID leaf.  We check
635 		 * them for being ordered (increasing offsets) in
636 		 * setup_xstate_features().
637 		 */
638 		if (!using_compacted_format())
639 			paranoid_xstate_size = xfeature_uncompacted_offset(i);
640 		/*
641 		 * The compacted-format offset always depends on where
642 		 * the previous state ended.
643 		 */
644 		paranoid_xstate_size += xfeature_size(i);
645 	}
646 	XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
647 }
648 
649 
650 /*
651  * Get total size of enabled xstates in XCR0 | IA32_XSS.
652  *
653  * Note the SDM's wording here.  "sub-function 0" only enumerates
654  * the size of the *user* states.  If we use it to size a buffer
655  * that we use 'XSAVES' on, we could potentially overflow the
656  * buffer because 'XSAVES' saves system states too.
657  */
658 static unsigned int __init get_xsaves_size(void)
659 {
660 	unsigned int eax, ebx, ecx, edx;
661 	/*
662 	 * - CPUID function 0DH, sub-function 1:
663 	 *    EBX enumerates the size (in bytes) required by
664 	 *    the XSAVES instruction for an XSAVE area
665 	 *    containing all the state components
666 	 *    corresponding to bits currently set in
667 	 *    XCR0 | IA32_XSS.
668 	 */
669 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
670 	return ebx;
671 }
672 
673 static unsigned int __init get_xsave_size(void)
674 {
675 	unsigned int eax, ebx, ecx, edx;
676 	/*
677 	 * - CPUID function 0DH, sub-function 0:
678 	 *    EBX enumerates the size (in bytes) required by
679 	 *    the XSAVE instruction for an XSAVE area
680 	 *    containing all the *user* state components
681 	 *    corresponding to bits currently set in XCR0.
682 	 */
683 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
684 	return ebx;
685 }
686 
687 /*
688  * Will the runtime-enumerated 'xstate_size' fit in the init
689  * task's statically-allocated buffer?
690  */
691 static bool is_supported_xstate_size(unsigned int test_xstate_size)
692 {
693 	if (test_xstate_size <= sizeof(union fpregs_state))
694 		return true;
695 
696 	pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
697 			sizeof(union fpregs_state), test_xstate_size);
698 	return false;
699 }
700 
701 static int __init init_xstate_size(void)
702 {
703 	/* Recompute the context size for enabled features: */
704 	unsigned int possible_xstate_size;
705 	unsigned int xsave_size;
706 
707 	xsave_size = get_xsave_size();
708 
709 	if (boot_cpu_has(X86_FEATURE_XSAVES))
710 		possible_xstate_size = get_xsaves_size();
711 	else
712 		possible_xstate_size = xsave_size;
713 
714 	/* Ensure we have the space to store all enabled: */
715 	if (!is_supported_xstate_size(possible_xstate_size))
716 		return -EINVAL;
717 
718 	/*
719 	 * The size is OK, we are definitely going to use xsave,
720 	 * make it known to the world that we need more space.
721 	 */
722 	fpu_kernel_xstate_size = possible_xstate_size;
723 	do_extra_xstate_size_checks();
724 
725 	/*
726 	 * User space is always in standard format.
727 	 */
728 	fpu_user_xstate_size = xsave_size;
729 	return 0;
730 }
731 
732 /*
733  * We enabled the XSAVE hardware, but something went wrong and
734  * we can not use it.  Disable it.
735  */
736 static void fpu__init_disable_system_xstate(void)
737 {
738 	xfeatures_mask_all = 0;
739 	cr4_clear_bits(X86_CR4_OSXSAVE);
740 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
741 }
742 
743 /*
744  * Enable and initialize the xsave feature.
745  * Called once per system bootup.
746  */
747 void __init fpu__init_system_xstate(void)
748 {
749 	unsigned int eax, ebx, ecx, edx;
750 	static int on_boot_cpu __initdata = 1;
751 	int err;
752 	int i;
753 
754 	WARN_ON_FPU(!on_boot_cpu);
755 	on_boot_cpu = 0;
756 
757 	if (!boot_cpu_has(X86_FEATURE_FPU)) {
758 		pr_info("x86/fpu: No FPU detected\n");
759 		return;
760 	}
761 
762 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
763 		pr_info("x86/fpu: x87 FPU will use %s\n",
764 			boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
765 		return;
766 	}
767 
768 	if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
769 		WARN_ON_FPU(1);
770 		return;
771 	}
772 
773 	/*
774 	 * Find user xstates supported by the processor.
775 	 */
776 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
777 	xfeatures_mask_all = eax + ((u64)edx << 32);
778 
779 	/*
780 	 * Find supervisor xstates supported by the processor.
781 	 */
782 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
783 	xfeatures_mask_all |= ecx + ((u64)edx << 32);
784 
785 	if ((xfeatures_mask_user() & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
786 		/*
787 		 * This indicates that something really unexpected happened
788 		 * with the enumeration.  Disable XSAVE and try to continue
789 		 * booting without it.  This is too early to BUG().
790 		 */
791 		pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
792 		       xfeatures_mask_all);
793 		goto out_disable;
794 	}
795 
796 	/*
797 	 * Clear XSAVE features that are disabled in the normal CPUID.
798 	 */
799 	for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
800 		if (!boot_cpu_has(xsave_cpuid_features[i]))
801 			xfeatures_mask_all &= ~BIT_ULL(i);
802 	}
803 
804 	xfeatures_mask_all &= fpu__get_supported_xfeatures_mask();
805 
806 	/* Enable xstate instructions to be able to continue with initialization: */
807 	fpu__init_cpu_xstate();
808 	err = init_xstate_size();
809 	if (err)
810 		goto out_disable;
811 
812 	/*
813 	 * Update info used for ptrace frames; use standard-format size and no
814 	 * supervisor xstates:
815 	 */
816 	update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask_user());
817 
818 	fpu__init_prepare_fx_sw_frame();
819 	setup_init_fpu_buf();
820 	setup_xstate_comp_offsets();
821 	setup_supervisor_only_offsets();
822 	print_xstate_offset_size();
823 
824 	pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
825 		xfeatures_mask_all,
826 		fpu_kernel_xstate_size,
827 		boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
828 	return;
829 
830 out_disable:
831 	/* something went wrong, try to boot without any XSAVE support */
832 	fpu__init_disable_system_xstate();
833 }
834 
835 /*
836  * Restore minimal FPU state after suspend:
837  */
838 void fpu__resume_cpu(void)
839 {
840 	/*
841 	 * Restore XCR0 on xsave capable CPUs:
842 	 */
843 	if (boot_cpu_has(X86_FEATURE_XSAVE))
844 		xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user());
845 
846 	/*
847 	 * Restore IA32_XSS. The same CPUID bit enumerates support
848 	 * of XSAVES and MSR_IA32_XSS.
849 	 */
850 	if (boot_cpu_has(X86_FEATURE_XSAVES))
851 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
852 }
853 
854 /*
855  * Given an xstate feature nr, calculate where in the xsave
856  * buffer the state is.  Callers should ensure that the buffer
857  * is valid.
858  */
859 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
860 {
861 	if (!xfeature_enabled(xfeature_nr)) {
862 		WARN_ON_FPU(1);
863 		return NULL;
864 	}
865 
866 	return (void *)xsave + xstate_comp_offsets[xfeature_nr];
867 }
868 /*
869  * Given the xsave area and a state inside, this function returns the
870  * address of the state.
871  *
872  * This is the API that is called to get xstate address in either
873  * standard format or compacted format of xsave area.
874  *
875  * Note that if there is no data for the field in the xsave buffer
876  * this will return NULL.
877  *
878  * Inputs:
879  *	xstate: the thread's storage area for all FPU data
880  *	xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
881  *	XFEATURE_SSE, etc...)
882  * Output:
883  *	address of the state in the xsave area, or NULL if the
884  *	field is not present in the xsave buffer.
885  */
886 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
887 {
888 	/*
889 	 * Do we even *have* xsave state?
890 	 */
891 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
892 		return NULL;
893 
894 	/*
895 	 * We should not ever be requesting features that we
896 	 * have not enabled.
897 	 */
898 	WARN_ONCE(!(xfeatures_mask_all & BIT_ULL(xfeature_nr)),
899 		  "get of unsupported state");
900 	/*
901 	 * This assumes the last 'xsave*' instruction to
902 	 * have requested that 'xfeature_nr' be saved.
903 	 * If it did not, we might be seeing and old value
904 	 * of the field in the buffer.
905 	 *
906 	 * This can happen because the last 'xsave' did not
907 	 * request that this feature be saved (unlikely)
908 	 * or because the "init optimization" caused it
909 	 * to not be saved.
910 	 */
911 	if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
912 		return NULL;
913 
914 	return __raw_xsave_addr(xsave, xfeature_nr);
915 }
916 EXPORT_SYMBOL_GPL(get_xsave_addr);
917 
918 /*
919  * This wraps up the common operations that need to occur when retrieving
920  * data from xsave state.  It first ensures that the current task was
921  * using the FPU and retrieves the data in to a buffer.  It then calculates
922  * the offset of the requested field in the buffer.
923  *
924  * This function is safe to call whether the FPU is in use or not.
925  *
926  * Note that this only works on the current task.
927  *
928  * Inputs:
929  *	@xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
930  *	XFEATURE_SSE, etc...)
931  * Output:
932  *	address of the state in the xsave area or NULL if the state
933  *	is not present or is in its 'init state'.
934  */
935 const void *get_xsave_field_ptr(int xfeature_nr)
936 {
937 	struct fpu *fpu = &current->thread.fpu;
938 
939 	/*
940 	 * fpu__save() takes the CPU's xstate registers
941 	 * and saves them off to the 'fpu memory buffer.
942 	 */
943 	fpu__save(fpu);
944 
945 	return get_xsave_addr(&fpu->state.xsave, xfeature_nr);
946 }
947 
948 #ifdef CONFIG_ARCH_HAS_PKEYS
949 
950 /*
951  * This will go out and modify PKRU register to set the access
952  * rights for @pkey to @init_val.
953  */
954 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
955 		unsigned long init_val)
956 {
957 	u32 old_pkru;
958 	int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
959 	u32 new_pkru_bits = 0;
960 
961 	/*
962 	 * This check implies XSAVE support.  OSPKE only gets
963 	 * set if we enable XSAVE and we enable PKU in XCR0.
964 	 */
965 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
966 		return -EINVAL;
967 
968 	/*
969 	 * This code should only be called with valid 'pkey'
970 	 * values originating from in-kernel users.  Complain
971 	 * if a bad value is observed.
972 	 */
973 	WARN_ON_ONCE(pkey >= arch_max_pkey());
974 
975 	/* Set the bits we need in PKRU:  */
976 	if (init_val & PKEY_DISABLE_ACCESS)
977 		new_pkru_bits |= PKRU_AD_BIT;
978 	if (init_val & PKEY_DISABLE_WRITE)
979 		new_pkru_bits |= PKRU_WD_BIT;
980 
981 	/* Shift the bits in to the correct place in PKRU for pkey: */
982 	new_pkru_bits <<= pkey_shift;
983 
984 	/* Get old PKRU and mask off any old bits in place: */
985 	old_pkru = read_pkru();
986 	old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
987 
988 	/* Write old part along with new part: */
989 	write_pkru(old_pkru | new_pkru_bits);
990 
991 	return 0;
992 }
993 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
994 
995 /*
996  * Weird legacy quirk: SSE and YMM states store information in the
997  * MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP
998  * area is marked as unused in the xfeatures header, we need to copy
999  * MXCSR and MXCSR_FLAGS if either SSE or YMM are in use.
1000  */
1001 static inline bool xfeatures_mxcsr_quirk(u64 xfeatures)
1002 {
1003 	if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM)))
1004 		return false;
1005 
1006 	if (xfeatures & XFEATURE_MASK_FP)
1007 		return false;
1008 
1009 	return true;
1010 }
1011 
1012 static void fill_gap(unsigned to, void **kbuf, unsigned *pos, unsigned *count)
1013 {
1014 	if (*pos < to) {
1015 		unsigned size = to - *pos;
1016 
1017 		if (size > *count)
1018 			size = *count;
1019 		memcpy(*kbuf, (void *)&init_fpstate.xsave + *pos, size);
1020 		*kbuf += size;
1021 		*pos += size;
1022 		*count -= size;
1023 	}
1024 }
1025 
1026 static void copy_part(unsigned offset, unsigned size, void *from,
1027 			void **kbuf, unsigned *pos, unsigned *count)
1028 {
1029 	fill_gap(offset, kbuf, pos, count);
1030 	if (size > *count)
1031 		size = *count;
1032 	if (size) {
1033 		memcpy(*kbuf, from, size);
1034 		*kbuf += size;
1035 		*pos += size;
1036 		*count -= size;
1037 	}
1038 }
1039 
1040 /*
1041  * Convert from kernel XSAVES compacted format to standard format and copy
1042  * to a kernel-space ptrace buffer.
1043  *
1044  * It supports partial copy but pos always starts from zero. This is called
1045  * from xstateregs_get() and there we check the CPU has XSAVES.
1046  */
1047 int copy_xstate_to_kernel(void *kbuf, struct xregs_state *xsave, unsigned int offset_start, unsigned int size_total)
1048 {
1049 	struct xstate_header header;
1050 	const unsigned off_mxcsr = offsetof(struct fxregs_state, mxcsr);
1051 	unsigned count = size_total;
1052 	int i;
1053 
1054 	/*
1055 	 * Currently copy_regset_to_user() starts from pos 0:
1056 	 */
1057 	if (unlikely(offset_start != 0))
1058 		return -EFAULT;
1059 
1060 	/*
1061 	 * The destination is a ptrace buffer; we put in only user xstates:
1062 	 */
1063 	memset(&header, 0, sizeof(header));
1064 	header.xfeatures = xsave->header.xfeatures;
1065 	header.xfeatures &= xfeatures_mask_user();
1066 
1067 	if (header.xfeatures & XFEATURE_MASK_FP)
1068 		copy_part(0, off_mxcsr,
1069 			  &xsave->i387, &kbuf, &offset_start, &count);
1070 	if (header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM))
1071 		copy_part(off_mxcsr, MXCSR_AND_FLAGS_SIZE,
1072 			  &xsave->i387.mxcsr, &kbuf, &offset_start, &count);
1073 	if (header.xfeatures & XFEATURE_MASK_FP)
1074 		copy_part(offsetof(struct fxregs_state, st_space), 128,
1075 			  &xsave->i387.st_space, &kbuf, &offset_start, &count);
1076 	if (header.xfeatures & XFEATURE_MASK_SSE)
1077 		copy_part(xstate_offsets[XFEATURE_MASK_SSE], 256,
1078 			  &xsave->i387.xmm_space, &kbuf, &offset_start, &count);
1079 	/*
1080 	 * Fill xsave->i387.sw_reserved value for ptrace frame:
1081 	 */
1082 	copy_part(offsetof(struct fxregs_state, sw_reserved), 48,
1083 		  xstate_fx_sw_bytes, &kbuf, &offset_start, &count);
1084 	/*
1085 	 * Copy xregs_state->header:
1086 	 */
1087 	copy_part(offsetof(struct xregs_state, header), sizeof(header),
1088 		  &header, &kbuf, &offset_start, &count);
1089 
1090 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
1091 		/*
1092 		 * Copy only in-use xstates:
1093 		 */
1094 		if ((header.xfeatures >> i) & 1) {
1095 			void *src = __raw_xsave_addr(xsave, i);
1096 
1097 			copy_part(xstate_offsets[i], xstate_sizes[i],
1098 				  src, &kbuf, &offset_start, &count);
1099 		}
1100 
1101 	}
1102 	fill_gap(size_total, &kbuf, &offset_start, &count);
1103 
1104 	return 0;
1105 }
1106 
1107 static inline int
1108 __copy_xstate_to_user(void __user *ubuf, const void *data, unsigned int offset, unsigned int size, unsigned int size_total)
1109 {
1110 	if (!size)
1111 		return 0;
1112 
1113 	if (offset < size_total) {
1114 		unsigned int copy = min(size, size_total - offset);
1115 
1116 		if (__copy_to_user(ubuf + offset, data, copy))
1117 			return -EFAULT;
1118 	}
1119 	return 0;
1120 }
1121 
1122 /*
1123  * Convert from kernel XSAVES compacted format to standard format and copy
1124  * to a user-space buffer. It supports partial copy but pos always starts from
1125  * zero. This is called from xstateregs_get() and there we check the CPU
1126  * has XSAVES.
1127  */
1128 int copy_xstate_to_user(void __user *ubuf, struct xregs_state *xsave, unsigned int offset_start, unsigned int size_total)
1129 {
1130 	unsigned int offset, size;
1131 	int ret, i;
1132 	struct xstate_header header;
1133 
1134 	/*
1135 	 * Currently copy_regset_to_user() starts from pos 0:
1136 	 */
1137 	if (unlikely(offset_start != 0))
1138 		return -EFAULT;
1139 
1140 	/*
1141 	 * The destination is a ptrace buffer; we put in only user xstates:
1142 	 */
1143 	memset(&header, 0, sizeof(header));
1144 	header.xfeatures = xsave->header.xfeatures;
1145 	header.xfeatures &= xfeatures_mask_user();
1146 
1147 	/*
1148 	 * Copy xregs_state->header:
1149 	 */
1150 	offset = offsetof(struct xregs_state, header);
1151 	size = sizeof(header);
1152 
1153 	ret = __copy_xstate_to_user(ubuf, &header, offset, size, size_total);
1154 	if (ret)
1155 		return ret;
1156 
1157 	for (i = 0; i < XFEATURE_MAX; i++) {
1158 		/*
1159 		 * Copy only in-use xstates:
1160 		 */
1161 		if ((header.xfeatures >> i) & 1) {
1162 			void *src = __raw_xsave_addr(xsave, i);
1163 
1164 			offset = xstate_offsets[i];
1165 			size = xstate_sizes[i];
1166 
1167 			/* The next component has to fit fully into the output buffer: */
1168 			if (offset + size > size_total)
1169 				break;
1170 
1171 			ret = __copy_xstate_to_user(ubuf, src, offset, size, size_total);
1172 			if (ret)
1173 				return ret;
1174 		}
1175 
1176 	}
1177 
1178 	if (xfeatures_mxcsr_quirk(header.xfeatures)) {
1179 		offset = offsetof(struct fxregs_state, mxcsr);
1180 		size = MXCSR_AND_FLAGS_SIZE;
1181 		__copy_xstate_to_user(ubuf, &xsave->i387.mxcsr, offset, size, size_total);
1182 	}
1183 
1184 	/*
1185 	 * Fill xsave->i387.sw_reserved value for ptrace frame:
1186 	 */
1187 	offset = offsetof(struct fxregs_state, sw_reserved);
1188 	size = sizeof(xstate_fx_sw_bytes);
1189 
1190 	ret = __copy_xstate_to_user(ubuf, xstate_fx_sw_bytes, offset, size, size_total);
1191 	if (ret)
1192 		return ret;
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Convert from a ptrace standard-format kernel buffer to kernel XSAVES format
1199  * and copy to the target thread. This is called from xstateregs_set().
1200  */
1201 int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf)
1202 {
1203 	unsigned int offset, size;
1204 	int i;
1205 	struct xstate_header hdr;
1206 
1207 	offset = offsetof(struct xregs_state, header);
1208 	size = sizeof(hdr);
1209 
1210 	memcpy(&hdr, kbuf + offset, size);
1211 
1212 	if (validate_user_xstate_header(&hdr))
1213 		return -EINVAL;
1214 
1215 	for (i = 0; i < XFEATURE_MAX; i++) {
1216 		u64 mask = ((u64)1 << i);
1217 
1218 		if (hdr.xfeatures & mask) {
1219 			void *dst = __raw_xsave_addr(xsave, i);
1220 
1221 			offset = xstate_offsets[i];
1222 			size = xstate_sizes[i];
1223 
1224 			memcpy(dst, kbuf + offset, size);
1225 		}
1226 	}
1227 
1228 	if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
1229 		offset = offsetof(struct fxregs_state, mxcsr);
1230 		size = MXCSR_AND_FLAGS_SIZE;
1231 		memcpy(&xsave->i387.mxcsr, kbuf + offset, size);
1232 	}
1233 
1234 	/*
1235 	 * The state that came in from userspace was user-state only.
1236 	 * Mask all the user states out of 'xfeatures':
1237 	 */
1238 	xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1239 
1240 	/*
1241 	 * Add back in the features that came in from userspace:
1242 	 */
1243 	xsave->header.xfeatures |= hdr.xfeatures;
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * Convert from a ptrace or sigreturn standard-format user-space buffer to
1250  * kernel XSAVES format and copy to the target thread. This is called from
1251  * xstateregs_set(), as well as potentially from the sigreturn() and
1252  * rt_sigreturn() system calls.
1253  */
1254 int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf)
1255 {
1256 	unsigned int offset, size;
1257 	int i;
1258 	struct xstate_header hdr;
1259 
1260 	offset = offsetof(struct xregs_state, header);
1261 	size = sizeof(hdr);
1262 
1263 	if (__copy_from_user(&hdr, ubuf + offset, size))
1264 		return -EFAULT;
1265 
1266 	if (validate_user_xstate_header(&hdr))
1267 		return -EINVAL;
1268 
1269 	for (i = 0; i < XFEATURE_MAX; i++) {
1270 		u64 mask = ((u64)1 << i);
1271 
1272 		if (hdr.xfeatures & mask) {
1273 			void *dst = __raw_xsave_addr(xsave, i);
1274 
1275 			offset = xstate_offsets[i];
1276 			size = xstate_sizes[i];
1277 
1278 			if (__copy_from_user(dst, ubuf + offset, size))
1279 				return -EFAULT;
1280 		}
1281 	}
1282 
1283 	if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
1284 		offset = offsetof(struct fxregs_state, mxcsr);
1285 		size = MXCSR_AND_FLAGS_SIZE;
1286 		if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size))
1287 			return -EFAULT;
1288 	}
1289 
1290 	/*
1291 	 * The state that came in from userspace was user-state only.
1292 	 * Mask all the user states out of 'xfeatures':
1293 	 */
1294 	xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1295 
1296 	/*
1297 	 * Add back in the features that came in from userspace:
1298 	 */
1299 	xsave->header.xfeatures |= hdr.xfeatures;
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Save only supervisor states to the kernel buffer.  This blows away all
1306  * old states, and is intended to be used only in __fpu__restore_sig(), where
1307  * user states are restored from the user buffer.
1308  */
1309 void copy_supervisor_to_kernel(struct xregs_state *xstate)
1310 {
1311 	struct xstate_header *header;
1312 	u64 max_bit, min_bit;
1313 	u32 lmask, hmask;
1314 	int err, i;
1315 
1316 	if (WARN_ON(!boot_cpu_has(X86_FEATURE_XSAVES)))
1317 		return;
1318 
1319 	if (!xfeatures_mask_supervisor())
1320 		return;
1321 
1322 	max_bit = __fls(xfeatures_mask_supervisor());
1323 	min_bit = __ffs(xfeatures_mask_supervisor());
1324 
1325 	lmask = xfeatures_mask_supervisor();
1326 	hmask = xfeatures_mask_supervisor() >> 32;
1327 	XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
1328 
1329 	/* We should never fault when copying to a kernel buffer: */
1330 	if (WARN_ON_FPU(err))
1331 		return;
1332 
1333 	/*
1334 	 * At this point, the buffer has only supervisor states and must be
1335 	 * converted back to normal kernel format.
1336 	 */
1337 	header = &xstate->header;
1338 	header->xcomp_bv |= xfeatures_mask_all;
1339 
1340 	/*
1341 	 * This only moves states up in the buffer.  Start with
1342 	 * the last state and move backwards so that states are
1343 	 * not overwritten until after they are moved.  Note:
1344 	 * memmove() allows overlapping src/dst buffers.
1345 	 */
1346 	for (i = max_bit; i >= min_bit; i--) {
1347 		u8 *xbuf = (u8 *)xstate;
1348 
1349 		if (!((header->xfeatures >> i) & 1))
1350 			continue;
1351 
1352 		/* Move xfeature 'i' into its normal location */
1353 		memmove(xbuf + xstate_comp_offsets[i],
1354 			xbuf + xstate_supervisor_only_offsets[i],
1355 			xstate_sizes[i]);
1356 	}
1357 }
1358 
1359 #ifdef CONFIG_PROC_PID_ARCH_STATUS
1360 /*
1361  * Report the amount of time elapsed in millisecond since last AVX512
1362  * use in the task.
1363  */
1364 static void avx512_status(struct seq_file *m, struct task_struct *task)
1365 {
1366 	unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
1367 	long delta;
1368 
1369 	if (!timestamp) {
1370 		/*
1371 		 * Report -1 if no AVX512 usage
1372 		 */
1373 		delta = -1;
1374 	} else {
1375 		delta = (long)(jiffies - timestamp);
1376 		/*
1377 		 * Cap to LONG_MAX if time difference > LONG_MAX
1378 		 */
1379 		if (delta < 0)
1380 			delta = LONG_MAX;
1381 		delta = jiffies_to_msecs(delta);
1382 	}
1383 
1384 	seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
1385 	seq_putc(m, '\n');
1386 }
1387 
1388 /*
1389  * Report architecture specific information
1390  */
1391 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
1392 			struct pid *pid, struct task_struct *task)
1393 {
1394 	/*
1395 	 * Report AVX512 state if the processor and build option supported.
1396 	 */
1397 	if (cpu_feature_enabled(X86_FEATURE_AVX512F))
1398 		avx512_status(m, task);
1399 
1400 	return 0;
1401 }
1402 #endif /* CONFIG_PROC_PID_ARCH_STATUS */
1403