1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xsave/xrstor support. 4 * 5 * Author: Suresh Siddha <suresh.b.siddha@intel.com> 6 */ 7 #include <linux/compat.h> 8 #include <linux/cpu.h> 9 #include <linux/mman.h> 10 #include <linux/pkeys.h> 11 #include <linux/seq_file.h> 12 #include <linux/proc_fs.h> 13 14 #include <asm/fpu/api.h> 15 #include <asm/fpu/internal.h> 16 #include <asm/fpu/signal.h> 17 #include <asm/fpu/regset.h> 18 #include <asm/fpu/xstate.h> 19 20 #include <asm/tlbflush.h> 21 #include <asm/cpufeature.h> 22 23 /* 24 * Although we spell it out in here, the Processor Trace 25 * xfeature is completely unused. We use other mechanisms 26 * to save/restore PT state in Linux. 27 */ 28 static const char *xfeature_names[] = 29 { 30 "x87 floating point registers" , 31 "SSE registers" , 32 "AVX registers" , 33 "MPX bounds registers" , 34 "MPX CSR" , 35 "AVX-512 opmask" , 36 "AVX-512 Hi256" , 37 "AVX-512 ZMM_Hi256" , 38 "Processor Trace (unused)" , 39 "Protection Keys User registers", 40 "unknown xstate feature" , 41 }; 42 43 static short xsave_cpuid_features[] __initdata = { 44 X86_FEATURE_FPU, 45 X86_FEATURE_XMM, 46 X86_FEATURE_AVX, 47 X86_FEATURE_MPX, 48 X86_FEATURE_MPX, 49 X86_FEATURE_AVX512F, 50 X86_FEATURE_AVX512F, 51 X86_FEATURE_AVX512F, 52 X86_FEATURE_INTEL_PT, 53 X86_FEATURE_PKU, 54 }; 55 56 /* 57 * This represents the full set of bits that should ever be set in a kernel 58 * XSAVE buffer, both supervisor and user xstates. 59 */ 60 u64 xfeatures_mask_all __read_mostly; 61 62 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 63 static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 64 static unsigned int xstate_comp_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 65 static unsigned int xstate_supervisor_only_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 66 67 /* 68 * The XSAVE area of kernel can be in standard or compacted format; 69 * it is always in standard format for user mode. This is the user 70 * mode standard format size used for signal and ptrace frames. 71 */ 72 unsigned int fpu_user_xstate_size; 73 74 /* 75 * Return whether the system supports a given xfeature. 76 * 77 * Also return the name of the (most advanced) feature that the caller requested: 78 */ 79 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) 80 { 81 u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask_all; 82 83 if (unlikely(feature_name)) { 84 long xfeature_idx, max_idx; 85 u64 xfeatures_print; 86 /* 87 * So we use FLS here to be able to print the most advanced 88 * feature that was requested but is missing. So if a driver 89 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the 90 * missing AVX feature - this is the most informative message 91 * to users: 92 */ 93 if (xfeatures_missing) 94 xfeatures_print = xfeatures_missing; 95 else 96 xfeatures_print = xfeatures_needed; 97 98 xfeature_idx = fls64(xfeatures_print)-1; 99 max_idx = ARRAY_SIZE(xfeature_names)-1; 100 xfeature_idx = min(xfeature_idx, max_idx); 101 102 *feature_name = xfeature_names[xfeature_idx]; 103 } 104 105 if (xfeatures_missing) 106 return 0; 107 108 return 1; 109 } 110 EXPORT_SYMBOL_GPL(cpu_has_xfeatures); 111 112 static bool xfeature_is_supervisor(int xfeature_nr) 113 { 114 /* 115 * Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1) 116 * returns ECX[0] set to (1) for a supervisor state, and cleared (0) 117 * for a user state. 118 */ 119 u32 eax, ebx, ecx, edx; 120 121 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 122 return ecx & 1; 123 } 124 125 /* 126 * When executing XSAVEOPT (or other optimized XSAVE instructions), if 127 * a processor implementation detects that an FPU state component is still 128 * (or is again) in its initialized state, it may clear the corresponding 129 * bit in the header.xfeatures field, and can skip the writeout of registers 130 * to the corresponding memory layout. 131 * 132 * This means that when the bit is zero, the state component might still contain 133 * some previous - non-initialized register state. 134 * 135 * Before writing xstate information to user-space we sanitize those components, 136 * to always ensure that the memory layout of a feature will be in the init state 137 * if the corresponding header bit is zero. This is to ensure that user-space doesn't 138 * see some stale state in the memory layout during signal handling, debugging etc. 139 */ 140 void fpstate_sanitize_xstate(struct fpu *fpu) 141 { 142 struct fxregs_state *fx = &fpu->state.fxsave; 143 int feature_bit; 144 u64 xfeatures; 145 146 if (!use_xsaveopt()) 147 return; 148 149 xfeatures = fpu->state.xsave.header.xfeatures; 150 151 /* 152 * None of the feature bits are in init state. So nothing else 153 * to do for us, as the memory layout is up to date. 154 */ 155 if ((xfeatures & xfeatures_mask_all) == xfeatures_mask_all) 156 return; 157 158 /* 159 * FP is in init state 160 */ 161 if (!(xfeatures & XFEATURE_MASK_FP)) { 162 fx->cwd = 0x37f; 163 fx->swd = 0; 164 fx->twd = 0; 165 fx->fop = 0; 166 fx->rip = 0; 167 fx->rdp = 0; 168 memset(&fx->st_space[0], 0, 128); 169 } 170 171 /* 172 * SSE is in init state 173 */ 174 if (!(xfeatures & XFEATURE_MASK_SSE)) 175 memset(&fx->xmm_space[0], 0, 256); 176 177 /* 178 * First two features are FPU and SSE, which above we handled 179 * in a special way already: 180 */ 181 feature_bit = 0x2; 182 xfeatures = (xfeatures_mask_user() & ~xfeatures) >> 2; 183 184 /* 185 * Update all the remaining memory layouts according to their 186 * standard xstate layout, if their header bit is in the init 187 * state: 188 */ 189 while (xfeatures) { 190 if (xfeatures & 0x1) { 191 int offset = xstate_comp_offsets[feature_bit]; 192 int size = xstate_sizes[feature_bit]; 193 194 memcpy((void *)fx + offset, 195 (void *)&init_fpstate.xsave + offset, 196 size); 197 } 198 199 xfeatures >>= 1; 200 feature_bit++; 201 } 202 } 203 204 /* 205 * Enable the extended processor state save/restore feature. 206 * Called once per CPU onlining. 207 */ 208 void fpu__init_cpu_xstate(void) 209 { 210 u64 unsup_bits; 211 212 if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask_all) 213 return; 214 /* 215 * Unsupported supervisor xstates should not be found in 216 * the xfeatures mask. 217 */ 218 unsup_bits = xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_UNSUPPORTED; 219 WARN_ONCE(unsup_bits, "x86/fpu: Found unsupported supervisor xstates: 0x%llx\n", 220 unsup_bits); 221 222 xfeatures_mask_all &= ~XFEATURE_MASK_SUPERVISOR_UNSUPPORTED; 223 224 cr4_set_bits(X86_CR4_OSXSAVE); 225 226 /* 227 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features 228 * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user 229 * states can be set here. 230 */ 231 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user()); 232 233 /* 234 * MSR_IA32_XSS sets supervisor states managed by XSAVES. 235 */ 236 if (boot_cpu_has(X86_FEATURE_XSAVES)) 237 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); 238 } 239 240 static bool xfeature_enabled(enum xfeature xfeature) 241 { 242 return xfeatures_mask_all & BIT_ULL(xfeature); 243 } 244 245 /* 246 * Record the offsets and sizes of various xstates contained 247 * in the XSAVE state memory layout. 248 */ 249 static void __init setup_xstate_features(void) 250 { 251 u32 eax, ebx, ecx, edx, i; 252 /* start at the beginnning of the "extended state" */ 253 unsigned int last_good_offset = offsetof(struct xregs_state, 254 extended_state_area); 255 /* 256 * The FP xstates and SSE xstates are legacy states. They are always 257 * in the fixed offsets in the xsave area in either compacted form 258 * or standard form. 259 */ 260 xstate_offsets[XFEATURE_FP] = 0; 261 xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state, 262 xmm_space); 263 264 xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP]; 265 xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state, 266 xmm_space); 267 268 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 269 if (!xfeature_enabled(i)) 270 continue; 271 272 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 273 274 xstate_sizes[i] = eax; 275 276 /* 277 * If an xfeature is supervisor state, the offset in EBX is 278 * invalid, leave it to -1. 279 */ 280 if (xfeature_is_supervisor(i)) 281 continue; 282 283 xstate_offsets[i] = ebx; 284 285 /* 286 * In our xstate size checks, we assume that the highest-numbered 287 * xstate feature has the highest offset in the buffer. Ensure 288 * it does. 289 */ 290 WARN_ONCE(last_good_offset > xstate_offsets[i], 291 "x86/fpu: misordered xstate at %d\n", last_good_offset); 292 293 last_good_offset = xstate_offsets[i]; 294 } 295 } 296 297 static void __init print_xstate_feature(u64 xstate_mask) 298 { 299 const char *feature_name; 300 301 if (cpu_has_xfeatures(xstate_mask, &feature_name)) 302 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); 303 } 304 305 /* 306 * Print out all the supported xstate features: 307 */ 308 static void __init print_xstate_features(void) 309 { 310 print_xstate_feature(XFEATURE_MASK_FP); 311 print_xstate_feature(XFEATURE_MASK_SSE); 312 print_xstate_feature(XFEATURE_MASK_YMM); 313 print_xstate_feature(XFEATURE_MASK_BNDREGS); 314 print_xstate_feature(XFEATURE_MASK_BNDCSR); 315 print_xstate_feature(XFEATURE_MASK_OPMASK); 316 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); 317 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); 318 print_xstate_feature(XFEATURE_MASK_PKRU); 319 } 320 321 /* 322 * This check is important because it is easy to get XSTATE_* 323 * confused with XSTATE_BIT_*. 324 */ 325 #define CHECK_XFEATURE(nr) do { \ 326 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ 327 WARN_ON(nr >= XFEATURE_MAX); \ 328 } while (0) 329 330 /* 331 * We could cache this like xstate_size[], but we only use 332 * it here, so it would be a waste of space. 333 */ 334 static int xfeature_is_aligned(int xfeature_nr) 335 { 336 u32 eax, ebx, ecx, edx; 337 338 CHECK_XFEATURE(xfeature_nr); 339 340 if (!xfeature_enabled(xfeature_nr)) { 341 WARN_ONCE(1, "Checking alignment of disabled xfeature %d\n", 342 xfeature_nr); 343 return 0; 344 } 345 346 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 347 /* 348 * The value returned by ECX[1] indicates the alignment 349 * of state component 'i' when the compacted format 350 * of the extended region of an XSAVE area is used: 351 */ 352 return !!(ecx & 2); 353 } 354 355 /* 356 * This function sets up offsets and sizes of all extended states in 357 * xsave area. This supports both standard format and compacted format 358 * of the xsave area. 359 */ 360 static void __init setup_xstate_comp_offsets(void) 361 { 362 unsigned int next_offset; 363 int i; 364 365 /* 366 * The FP xstates and SSE xstates are legacy states. They are always 367 * in the fixed offsets in the xsave area in either compacted form 368 * or standard form. 369 */ 370 xstate_comp_offsets[XFEATURE_FP] = 0; 371 xstate_comp_offsets[XFEATURE_SSE] = offsetof(struct fxregs_state, 372 xmm_space); 373 374 if (!boot_cpu_has(X86_FEATURE_XSAVES)) { 375 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 376 if (xfeature_enabled(i)) 377 xstate_comp_offsets[i] = xstate_offsets[i]; 378 } 379 return; 380 } 381 382 next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE; 383 384 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 385 if (!xfeature_enabled(i)) 386 continue; 387 388 if (xfeature_is_aligned(i)) 389 next_offset = ALIGN(next_offset, 64); 390 391 xstate_comp_offsets[i] = next_offset; 392 next_offset += xstate_sizes[i]; 393 } 394 } 395 396 /* 397 * Setup offsets of a supervisor-state-only XSAVES buffer: 398 * 399 * The offsets stored in xstate_comp_offsets[] only work for one specific 400 * value of the Requested Feature BitMap (RFBM). In cases where a different 401 * RFBM value is used, a different set of offsets is required. This set of 402 * offsets is for when RFBM=xfeatures_mask_supervisor(). 403 */ 404 static void __init setup_supervisor_only_offsets(void) 405 { 406 unsigned int next_offset; 407 int i; 408 409 next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE; 410 411 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 412 if (!xfeature_enabled(i) || !xfeature_is_supervisor(i)) 413 continue; 414 415 if (xfeature_is_aligned(i)) 416 next_offset = ALIGN(next_offset, 64); 417 418 xstate_supervisor_only_offsets[i] = next_offset; 419 next_offset += xstate_sizes[i]; 420 } 421 } 422 423 /* 424 * Print out xstate component offsets and sizes 425 */ 426 static void __init print_xstate_offset_size(void) 427 { 428 int i; 429 430 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 431 if (!xfeature_enabled(i)) 432 continue; 433 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", 434 i, xstate_comp_offsets[i], i, xstate_sizes[i]); 435 } 436 } 437 438 /* 439 * setup the xstate image representing the init state 440 */ 441 static void __init setup_init_fpu_buf(void) 442 { 443 static int on_boot_cpu __initdata = 1; 444 445 WARN_ON_FPU(!on_boot_cpu); 446 on_boot_cpu = 0; 447 448 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 449 return; 450 451 setup_xstate_features(); 452 print_xstate_features(); 453 454 if (boot_cpu_has(X86_FEATURE_XSAVES)) 455 init_fpstate.xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | 456 xfeatures_mask_all; 457 458 /* 459 * Init all the features state with header.xfeatures being 0x0 460 */ 461 copy_kernel_to_xregs_booting(&init_fpstate.xsave); 462 463 /* 464 * Dump the init state again. This is to identify the init state 465 * of any feature which is not represented by all zero's. 466 */ 467 copy_xregs_to_kernel_booting(&init_fpstate.xsave); 468 } 469 470 static int xfeature_uncompacted_offset(int xfeature_nr) 471 { 472 u32 eax, ebx, ecx, edx; 473 474 /* 475 * Only XSAVES supports supervisor states and it uses compacted 476 * format. Checking a supervisor state's uncompacted offset is 477 * an error. 478 */ 479 if (XFEATURE_MASK_SUPERVISOR_ALL & BIT_ULL(xfeature_nr)) { 480 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr); 481 return -1; 482 } 483 484 CHECK_XFEATURE(xfeature_nr); 485 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 486 return ebx; 487 } 488 489 static int xfeature_size(int xfeature_nr) 490 { 491 u32 eax, ebx, ecx, edx; 492 493 CHECK_XFEATURE(xfeature_nr); 494 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 495 return eax; 496 } 497 498 /* 499 * 'XSAVES' implies two different things: 500 * 1. saving of supervisor/system state 501 * 2. using the compacted format 502 * 503 * Use this function when dealing with the compacted format so 504 * that it is obvious which aspect of 'XSAVES' is being handled 505 * by the calling code. 506 */ 507 int using_compacted_format(void) 508 { 509 return boot_cpu_has(X86_FEATURE_XSAVES); 510 } 511 512 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ 513 int validate_user_xstate_header(const struct xstate_header *hdr) 514 { 515 /* No unknown or supervisor features may be set */ 516 if (hdr->xfeatures & ~xfeatures_mask_user()) 517 return -EINVAL; 518 519 /* Userspace must use the uncompacted format */ 520 if (hdr->xcomp_bv) 521 return -EINVAL; 522 523 /* 524 * If 'reserved' is shrunken to add a new field, make sure to validate 525 * that new field here! 526 */ 527 BUILD_BUG_ON(sizeof(hdr->reserved) != 48); 528 529 /* No reserved bits may be set */ 530 if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved))) 531 return -EINVAL; 532 533 return 0; 534 } 535 536 static void __xstate_dump_leaves(void) 537 { 538 int i; 539 u32 eax, ebx, ecx, edx; 540 static int should_dump = 1; 541 542 if (!should_dump) 543 return; 544 should_dump = 0; 545 /* 546 * Dump out a few leaves past the ones that we support 547 * just in case there are some goodies up there 548 */ 549 for (i = 0; i < XFEATURE_MAX + 10; i++) { 550 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 551 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", 552 XSTATE_CPUID, i, eax, ebx, ecx, edx); 553 } 554 } 555 556 #define XSTATE_WARN_ON(x) do { \ 557 if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \ 558 __xstate_dump_leaves(); \ 559 } \ 560 } while (0) 561 562 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \ 563 if ((nr == nr_macro) && \ 564 WARN_ONCE(sz != sizeof(__struct), \ 565 "%s: struct is %zu bytes, cpu state %d bytes\n", \ 566 __stringify(nr_macro), sizeof(__struct), sz)) { \ 567 __xstate_dump_leaves(); \ 568 } \ 569 } while (0) 570 571 /* 572 * We have a C struct for each 'xstate'. We need to ensure 573 * that our software representation matches what the CPU 574 * tells us about the state's size. 575 */ 576 static void check_xstate_against_struct(int nr) 577 { 578 /* 579 * Ask the CPU for the size of the state. 580 */ 581 int sz = xfeature_size(nr); 582 /* 583 * Match each CPU state with the corresponding software 584 * structure. 585 */ 586 XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct); 587 XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state); 588 XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state); 589 XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state); 590 XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state); 591 XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state); 592 XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state); 593 594 /* 595 * Make *SURE* to add any feature numbers in below if 596 * there are "holes" in the xsave state component 597 * numbers. 598 */ 599 if ((nr < XFEATURE_YMM) || 600 (nr >= XFEATURE_MAX) || 601 (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) { 602 WARN_ONCE(1, "no structure for xstate: %d\n", nr); 603 XSTATE_WARN_ON(1); 604 } 605 } 606 607 /* 608 * This essentially double-checks what the cpu told us about 609 * how large the XSAVE buffer needs to be. We are recalculating 610 * it to be safe. 611 */ 612 static void do_extra_xstate_size_checks(void) 613 { 614 int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE; 615 int i; 616 617 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 618 if (!xfeature_enabled(i)) 619 continue; 620 621 check_xstate_against_struct(i); 622 /* 623 * Supervisor state components can be managed only by 624 * XSAVES, which is compacted-format only. 625 */ 626 if (!using_compacted_format()) 627 XSTATE_WARN_ON(xfeature_is_supervisor(i)); 628 629 /* Align from the end of the previous feature */ 630 if (xfeature_is_aligned(i)) 631 paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64); 632 /* 633 * The offset of a given state in the non-compacted 634 * format is given to us in a CPUID leaf. We check 635 * them for being ordered (increasing offsets) in 636 * setup_xstate_features(). 637 */ 638 if (!using_compacted_format()) 639 paranoid_xstate_size = xfeature_uncompacted_offset(i); 640 /* 641 * The compacted-format offset always depends on where 642 * the previous state ended. 643 */ 644 paranoid_xstate_size += xfeature_size(i); 645 } 646 XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size); 647 } 648 649 650 /* 651 * Get total size of enabled xstates in XCR0 | IA32_XSS. 652 * 653 * Note the SDM's wording here. "sub-function 0" only enumerates 654 * the size of the *user* states. If we use it to size a buffer 655 * that we use 'XSAVES' on, we could potentially overflow the 656 * buffer because 'XSAVES' saves system states too. 657 */ 658 static unsigned int __init get_xsaves_size(void) 659 { 660 unsigned int eax, ebx, ecx, edx; 661 /* 662 * - CPUID function 0DH, sub-function 1: 663 * EBX enumerates the size (in bytes) required by 664 * the XSAVES instruction for an XSAVE area 665 * containing all the state components 666 * corresponding to bits currently set in 667 * XCR0 | IA32_XSS. 668 */ 669 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 670 return ebx; 671 } 672 673 static unsigned int __init get_xsave_size(void) 674 { 675 unsigned int eax, ebx, ecx, edx; 676 /* 677 * - CPUID function 0DH, sub-function 0: 678 * EBX enumerates the size (in bytes) required by 679 * the XSAVE instruction for an XSAVE area 680 * containing all the *user* state components 681 * corresponding to bits currently set in XCR0. 682 */ 683 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 684 return ebx; 685 } 686 687 /* 688 * Will the runtime-enumerated 'xstate_size' fit in the init 689 * task's statically-allocated buffer? 690 */ 691 static bool is_supported_xstate_size(unsigned int test_xstate_size) 692 { 693 if (test_xstate_size <= sizeof(union fpregs_state)) 694 return true; 695 696 pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n", 697 sizeof(union fpregs_state), test_xstate_size); 698 return false; 699 } 700 701 static int __init init_xstate_size(void) 702 { 703 /* Recompute the context size for enabled features: */ 704 unsigned int possible_xstate_size; 705 unsigned int xsave_size; 706 707 xsave_size = get_xsave_size(); 708 709 if (boot_cpu_has(X86_FEATURE_XSAVES)) 710 possible_xstate_size = get_xsaves_size(); 711 else 712 possible_xstate_size = xsave_size; 713 714 /* Ensure we have the space to store all enabled: */ 715 if (!is_supported_xstate_size(possible_xstate_size)) 716 return -EINVAL; 717 718 /* 719 * The size is OK, we are definitely going to use xsave, 720 * make it known to the world that we need more space. 721 */ 722 fpu_kernel_xstate_size = possible_xstate_size; 723 do_extra_xstate_size_checks(); 724 725 /* 726 * User space is always in standard format. 727 */ 728 fpu_user_xstate_size = xsave_size; 729 return 0; 730 } 731 732 /* 733 * We enabled the XSAVE hardware, but something went wrong and 734 * we can not use it. Disable it. 735 */ 736 static void fpu__init_disable_system_xstate(void) 737 { 738 xfeatures_mask_all = 0; 739 cr4_clear_bits(X86_CR4_OSXSAVE); 740 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 741 } 742 743 /* 744 * Enable and initialize the xsave feature. 745 * Called once per system bootup. 746 */ 747 void __init fpu__init_system_xstate(void) 748 { 749 unsigned int eax, ebx, ecx, edx; 750 static int on_boot_cpu __initdata = 1; 751 int err; 752 int i; 753 754 WARN_ON_FPU(!on_boot_cpu); 755 on_boot_cpu = 0; 756 757 if (!boot_cpu_has(X86_FEATURE_FPU)) { 758 pr_info("x86/fpu: No FPU detected\n"); 759 return; 760 } 761 762 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 763 pr_info("x86/fpu: x87 FPU will use %s\n", 764 boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE"); 765 return; 766 } 767 768 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { 769 WARN_ON_FPU(1); 770 return; 771 } 772 773 /* 774 * Find user xstates supported by the processor. 775 */ 776 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 777 xfeatures_mask_all = eax + ((u64)edx << 32); 778 779 /* 780 * Find supervisor xstates supported by the processor. 781 */ 782 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 783 xfeatures_mask_all |= ecx + ((u64)edx << 32); 784 785 if ((xfeatures_mask_user() & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { 786 /* 787 * This indicates that something really unexpected happened 788 * with the enumeration. Disable XSAVE and try to continue 789 * booting without it. This is too early to BUG(). 790 */ 791 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", 792 xfeatures_mask_all); 793 goto out_disable; 794 } 795 796 /* 797 * Clear XSAVE features that are disabled in the normal CPUID. 798 */ 799 for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) { 800 if (!boot_cpu_has(xsave_cpuid_features[i])) 801 xfeatures_mask_all &= ~BIT_ULL(i); 802 } 803 804 xfeatures_mask_all &= fpu__get_supported_xfeatures_mask(); 805 806 /* Enable xstate instructions to be able to continue with initialization: */ 807 fpu__init_cpu_xstate(); 808 err = init_xstate_size(); 809 if (err) 810 goto out_disable; 811 812 /* 813 * Update info used for ptrace frames; use standard-format size and no 814 * supervisor xstates: 815 */ 816 update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask_user()); 817 818 fpu__init_prepare_fx_sw_frame(); 819 setup_init_fpu_buf(); 820 setup_xstate_comp_offsets(); 821 setup_supervisor_only_offsets(); 822 print_xstate_offset_size(); 823 824 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", 825 xfeatures_mask_all, 826 fpu_kernel_xstate_size, 827 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard"); 828 return; 829 830 out_disable: 831 /* something went wrong, try to boot without any XSAVE support */ 832 fpu__init_disable_system_xstate(); 833 } 834 835 /* 836 * Restore minimal FPU state after suspend: 837 */ 838 void fpu__resume_cpu(void) 839 { 840 /* 841 * Restore XCR0 on xsave capable CPUs: 842 */ 843 if (boot_cpu_has(X86_FEATURE_XSAVE)) 844 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user()); 845 846 /* 847 * Restore IA32_XSS. The same CPUID bit enumerates support 848 * of XSAVES and MSR_IA32_XSS. 849 */ 850 if (boot_cpu_has(X86_FEATURE_XSAVES)) 851 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); 852 } 853 854 /* 855 * Given an xstate feature nr, calculate where in the xsave 856 * buffer the state is. Callers should ensure that the buffer 857 * is valid. 858 */ 859 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 860 { 861 if (!xfeature_enabled(xfeature_nr)) { 862 WARN_ON_FPU(1); 863 return NULL; 864 } 865 866 return (void *)xsave + xstate_comp_offsets[xfeature_nr]; 867 } 868 /* 869 * Given the xsave area and a state inside, this function returns the 870 * address of the state. 871 * 872 * This is the API that is called to get xstate address in either 873 * standard format or compacted format of xsave area. 874 * 875 * Note that if there is no data for the field in the xsave buffer 876 * this will return NULL. 877 * 878 * Inputs: 879 * xstate: the thread's storage area for all FPU data 880 * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, 881 * XFEATURE_SSE, etc...) 882 * Output: 883 * address of the state in the xsave area, or NULL if the 884 * field is not present in the xsave buffer. 885 */ 886 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 887 { 888 /* 889 * Do we even *have* xsave state? 890 */ 891 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 892 return NULL; 893 894 /* 895 * We should not ever be requesting features that we 896 * have not enabled. 897 */ 898 WARN_ONCE(!(xfeatures_mask_all & BIT_ULL(xfeature_nr)), 899 "get of unsupported state"); 900 /* 901 * This assumes the last 'xsave*' instruction to 902 * have requested that 'xfeature_nr' be saved. 903 * If it did not, we might be seeing and old value 904 * of the field in the buffer. 905 * 906 * This can happen because the last 'xsave' did not 907 * request that this feature be saved (unlikely) 908 * or because the "init optimization" caused it 909 * to not be saved. 910 */ 911 if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr))) 912 return NULL; 913 914 return __raw_xsave_addr(xsave, xfeature_nr); 915 } 916 EXPORT_SYMBOL_GPL(get_xsave_addr); 917 918 /* 919 * This wraps up the common operations that need to occur when retrieving 920 * data from xsave state. It first ensures that the current task was 921 * using the FPU and retrieves the data in to a buffer. It then calculates 922 * the offset of the requested field in the buffer. 923 * 924 * This function is safe to call whether the FPU is in use or not. 925 * 926 * Note that this only works on the current task. 927 * 928 * Inputs: 929 * @xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, 930 * XFEATURE_SSE, etc...) 931 * Output: 932 * address of the state in the xsave area or NULL if the state 933 * is not present or is in its 'init state'. 934 */ 935 const void *get_xsave_field_ptr(int xfeature_nr) 936 { 937 struct fpu *fpu = ¤t->thread.fpu; 938 939 /* 940 * fpu__save() takes the CPU's xstate registers 941 * and saves them off to the 'fpu memory buffer. 942 */ 943 fpu__save(fpu); 944 945 return get_xsave_addr(&fpu->state.xsave, xfeature_nr); 946 } 947 948 #ifdef CONFIG_ARCH_HAS_PKEYS 949 950 /* 951 * This will go out and modify PKRU register to set the access 952 * rights for @pkey to @init_val. 953 */ 954 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 955 unsigned long init_val) 956 { 957 u32 old_pkru; 958 int pkey_shift = (pkey * PKRU_BITS_PER_PKEY); 959 u32 new_pkru_bits = 0; 960 961 /* 962 * This check implies XSAVE support. OSPKE only gets 963 * set if we enable XSAVE and we enable PKU in XCR0. 964 */ 965 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 966 return -EINVAL; 967 968 /* 969 * This code should only be called with valid 'pkey' 970 * values originating from in-kernel users. Complain 971 * if a bad value is observed. 972 */ 973 WARN_ON_ONCE(pkey >= arch_max_pkey()); 974 975 /* Set the bits we need in PKRU: */ 976 if (init_val & PKEY_DISABLE_ACCESS) 977 new_pkru_bits |= PKRU_AD_BIT; 978 if (init_val & PKEY_DISABLE_WRITE) 979 new_pkru_bits |= PKRU_WD_BIT; 980 981 /* Shift the bits in to the correct place in PKRU for pkey: */ 982 new_pkru_bits <<= pkey_shift; 983 984 /* Get old PKRU and mask off any old bits in place: */ 985 old_pkru = read_pkru(); 986 old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); 987 988 /* Write old part along with new part: */ 989 write_pkru(old_pkru | new_pkru_bits); 990 991 return 0; 992 } 993 #endif /* ! CONFIG_ARCH_HAS_PKEYS */ 994 995 /* 996 * Weird legacy quirk: SSE and YMM states store information in the 997 * MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP 998 * area is marked as unused in the xfeatures header, we need to copy 999 * MXCSR and MXCSR_FLAGS if either SSE or YMM are in use. 1000 */ 1001 static inline bool xfeatures_mxcsr_quirk(u64 xfeatures) 1002 { 1003 if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM))) 1004 return false; 1005 1006 if (xfeatures & XFEATURE_MASK_FP) 1007 return false; 1008 1009 return true; 1010 } 1011 1012 static void fill_gap(unsigned to, void **kbuf, unsigned *pos, unsigned *count) 1013 { 1014 if (*pos < to) { 1015 unsigned size = to - *pos; 1016 1017 if (size > *count) 1018 size = *count; 1019 memcpy(*kbuf, (void *)&init_fpstate.xsave + *pos, size); 1020 *kbuf += size; 1021 *pos += size; 1022 *count -= size; 1023 } 1024 } 1025 1026 static void copy_part(unsigned offset, unsigned size, void *from, 1027 void **kbuf, unsigned *pos, unsigned *count) 1028 { 1029 fill_gap(offset, kbuf, pos, count); 1030 if (size > *count) 1031 size = *count; 1032 if (size) { 1033 memcpy(*kbuf, from, size); 1034 *kbuf += size; 1035 *pos += size; 1036 *count -= size; 1037 } 1038 } 1039 1040 /* 1041 * Convert from kernel XSAVES compacted format to standard format and copy 1042 * to a kernel-space ptrace buffer. 1043 * 1044 * It supports partial copy but pos always starts from zero. This is called 1045 * from xstateregs_get() and there we check the CPU has XSAVES. 1046 */ 1047 int copy_xstate_to_kernel(void *kbuf, struct xregs_state *xsave, unsigned int offset_start, unsigned int size_total) 1048 { 1049 struct xstate_header header; 1050 const unsigned off_mxcsr = offsetof(struct fxregs_state, mxcsr); 1051 unsigned count = size_total; 1052 int i; 1053 1054 /* 1055 * Currently copy_regset_to_user() starts from pos 0: 1056 */ 1057 if (unlikely(offset_start != 0)) 1058 return -EFAULT; 1059 1060 /* 1061 * The destination is a ptrace buffer; we put in only user xstates: 1062 */ 1063 memset(&header, 0, sizeof(header)); 1064 header.xfeatures = xsave->header.xfeatures; 1065 header.xfeatures &= xfeatures_mask_user(); 1066 1067 if (header.xfeatures & XFEATURE_MASK_FP) 1068 copy_part(0, off_mxcsr, 1069 &xsave->i387, &kbuf, &offset_start, &count); 1070 if (header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM)) 1071 copy_part(off_mxcsr, MXCSR_AND_FLAGS_SIZE, 1072 &xsave->i387.mxcsr, &kbuf, &offset_start, &count); 1073 if (header.xfeatures & XFEATURE_MASK_FP) 1074 copy_part(offsetof(struct fxregs_state, st_space), 128, 1075 &xsave->i387.st_space, &kbuf, &offset_start, &count); 1076 if (header.xfeatures & XFEATURE_MASK_SSE) 1077 copy_part(xstate_offsets[XFEATURE_MASK_SSE], 256, 1078 &xsave->i387.xmm_space, &kbuf, &offset_start, &count); 1079 /* 1080 * Fill xsave->i387.sw_reserved value for ptrace frame: 1081 */ 1082 copy_part(offsetof(struct fxregs_state, sw_reserved), 48, 1083 xstate_fx_sw_bytes, &kbuf, &offset_start, &count); 1084 /* 1085 * Copy xregs_state->header: 1086 */ 1087 copy_part(offsetof(struct xregs_state, header), sizeof(header), 1088 &header, &kbuf, &offset_start, &count); 1089 1090 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 1091 /* 1092 * Copy only in-use xstates: 1093 */ 1094 if ((header.xfeatures >> i) & 1) { 1095 void *src = __raw_xsave_addr(xsave, i); 1096 1097 copy_part(xstate_offsets[i], xstate_sizes[i], 1098 src, &kbuf, &offset_start, &count); 1099 } 1100 1101 } 1102 fill_gap(size_total, &kbuf, &offset_start, &count); 1103 1104 return 0; 1105 } 1106 1107 static inline int 1108 __copy_xstate_to_user(void __user *ubuf, const void *data, unsigned int offset, unsigned int size, unsigned int size_total) 1109 { 1110 if (!size) 1111 return 0; 1112 1113 if (offset < size_total) { 1114 unsigned int copy = min(size, size_total - offset); 1115 1116 if (__copy_to_user(ubuf + offset, data, copy)) 1117 return -EFAULT; 1118 } 1119 return 0; 1120 } 1121 1122 /* 1123 * Convert from kernel XSAVES compacted format to standard format and copy 1124 * to a user-space buffer. It supports partial copy but pos always starts from 1125 * zero. This is called from xstateregs_get() and there we check the CPU 1126 * has XSAVES. 1127 */ 1128 int copy_xstate_to_user(void __user *ubuf, struct xregs_state *xsave, unsigned int offset_start, unsigned int size_total) 1129 { 1130 unsigned int offset, size; 1131 int ret, i; 1132 struct xstate_header header; 1133 1134 /* 1135 * Currently copy_regset_to_user() starts from pos 0: 1136 */ 1137 if (unlikely(offset_start != 0)) 1138 return -EFAULT; 1139 1140 /* 1141 * The destination is a ptrace buffer; we put in only user xstates: 1142 */ 1143 memset(&header, 0, sizeof(header)); 1144 header.xfeatures = xsave->header.xfeatures; 1145 header.xfeatures &= xfeatures_mask_user(); 1146 1147 /* 1148 * Copy xregs_state->header: 1149 */ 1150 offset = offsetof(struct xregs_state, header); 1151 size = sizeof(header); 1152 1153 ret = __copy_xstate_to_user(ubuf, &header, offset, size, size_total); 1154 if (ret) 1155 return ret; 1156 1157 for (i = 0; i < XFEATURE_MAX; i++) { 1158 /* 1159 * Copy only in-use xstates: 1160 */ 1161 if ((header.xfeatures >> i) & 1) { 1162 void *src = __raw_xsave_addr(xsave, i); 1163 1164 offset = xstate_offsets[i]; 1165 size = xstate_sizes[i]; 1166 1167 /* The next component has to fit fully into the output buffer: */ 1168 if (offset + size > size_total) 1169 break; 1170 1171 ret = __copy_xstate_to_user(ubuf, src, offset, size, size_total); 1172 if (ret) 1173 return ret; 1174 } 1175 1176 } 1177 1178 if (xfeatures_mxcsr_quirk(header.xfeatures)) { 1179 offset = offsetof(struct fxregs_state, mxcsr); 1180 size = MXCSR_AND_FLAGS_SIZE; 1181 __copy_xstate_to_user(ubuf, &xsave->i387.mxcsr, offset, size, size_total); 1182 } 1183 1184 /* 1185 * Fill xsave->i387.sw_reserved value for ptrace frame: 1186 */ 1187 offset = offsetof(struct fxregs_state, sw_reserved); 1188 size = sizeof(xstate_fx_sw_bytes); 1189 1190 ret = __copy_xstate_to_user(ubuf, xstate_fx_sw_bytes, offset, size, size_total); 1191 if (ret) 1192 return ret; 1193 1194 return 0; 1195 } 1196 1197 /* 1198 * Convert from a ptrace standard-format kernel buffer to kernel XSAVES format 1199 * and copy to the target thread. This is called from xstateregs_set(). 1200 */ 1201 int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf) 1202 { 1203 unsigned int offset, size; 1204 int i; 1205 struct xstate_header hdr; 1206 1207 offset = offsetof(struct xregs_state, header); 1208 size = sizeof(hdr); 1209 1210 memcpy(&hdr, kbuf + offset, size); 1211 1212 if (validate_user_xstate_header(&hdr)) 1213 return -EINVAL; 1214 1215 for (i = 0; i < XFEATURE_MAX; i++) { 1216 u64 mask = ((u64)1 << i); 1217 1218 if (hdr.xfeatures & mask) { 1219 void *dst = __raw_xsave_addr(xsave, i); 1220 1221 offset = xstate_offsets[i]; 1222 size = xstate_sizes[i]; 1223 1224 memcpy(dst, kbuf + offset, size); 1225 } 1226 } 1227 1228 if (xfeatures_mxcsr_quirk(hdr.xfeatures)) { 1229 offset = offsetof(struct fxregs_state, mxcsr); 1230 size = MXCSR_AND_FLAGS_SIZE; 1231 memcpy(&xsave->i387.mxcsr, kbuf + offset, size); 1232 } 1233 1234 /* 1235 * The state that came in from userspace was user-state only. 1236 * Mask all the user states out of 'xfeatures': 1237 */ 1238 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; 1239 1240 /* 1241 * Add back in the features that came in from userspace: 1242 */ 1243 xsave->header.xfeatures |= hdr.xfeatures; 1244 1245 return 0; 1246 } 1247 1248 /* 1249 * Convert from a ptrace or sigreturn standard-format user-space buffer to 1250 * kernel XSAVES format and copy to the target thread. This is called from 1251 * xstateregs_set(), as well as potentially from the sigreturn() and 1252 * rt_sigreturn() system calls. 1253 */ 1254 int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf) 1255 { 1256 unsigned int offset, size; 1257 int i; 1258 struct xstate_header hdr; 1259 1260 offset = offsetof(struct xregs_state, header); 1261 size = sizeof(hdr); 1262 1263 if (__copy_from_user(&hdr, ubuf + offset, size)) 1264 return -EFAULT; 1265 1266 if (validate_user_xstate_header(&hdr)) 1267 return -EINVAL; 1268 1269 for (i = 0; i < XFEATURE_MAX; i++) { 1270 u64 mask = ((u64)1 << i); 1271 1272 if (hdr.xfeatures & mask) { 1273 void *dst = __raw_xsave_addr(xsave, i); 1274 1275 offset = xstate_offsets[i]; 1276 size = xstate_sizes[i]; 1277 1278 if (__copy_from_user(dst, ubuf + offset, size)) 1279 return -EFAULT; 1280 } 1281 } 1282 1283 if (xfeatures_mxcsr_quirk(hdr.xfeatures)) { 1284 offset = offsetof(struct fxregs_state, mxcsr); 1285 size = MXCSR_AND_FLAGS_SIZE; 1286 if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size)) 1287 return -EFAULT; 1288 } 1289 1290 /* 1291 * The state that came in from userspace was user-state only. 1292 * Mask all the user states out of 'xfeatures': 1293 */ 1294 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; 1295 1296 /* 1297 * Add back in the features that came in from userspace: 1298 */ 1299 xsave->header.xfeatures |= hdr.xfeatures; 1300 1301 return 0; 1302 } 1303 1304 /* 1305 * Save only supervisor states to the kernel buffer. This blows away all 1306 * old states, and is intended to be used only in __fpu__restore_sig(), where 1307 * user states are restored from the user buffer. 1308 */ 1309 void copy_supervisor_to_kernel(struct xregs_state *xstate) 1310 { 1311 struct xstate_header *header; 1312 u64 max_bit, min_bit; 1313 u32 lmask, hmask; 1314 int err, i; 1315 1316 if (WARN_ON(!boot_cpu_has(X86_FEATURE_XSAVES))) 1317 return; 1318 1319 if (!xfeatures_mask_supervisor()) 1320 return; 1321 1322 max_bit = __fls(xfeatures_mask_supervisor()); 1323 min_bit = __ffs(xfeatures_mask_supervisor()); 1324 1325 lmask = xfeatures_mask_supervisor(); 1326 hmask = xfeatures_mask_supervisor() >> 32; 1327 XSTATE_OP(XSAVES, xstate, lmask, hmask, err); 1328 1329 /* We should never fault when copying to a kernel buffer: */ 1330 if (WARN_ON_FPU(err)) 1331 return; 1332 1333 /* 1334 * At this point, the buffer has only supervisor states and must be 1335 * converted back to normal kernel format. 1336 */ 1337 header = &xstate->header; 1338 header->xcomp_bv |= xfeatures_mask_all; 1339 1340 /* 1341 * This only moves states up in the buffer. Start with 1342 * the last state and move backwards so that states are 1343 * not overwritten until after they are moved. Note: 1344 * memmove() allows overlapping src/dst buffers. 1345 */ 1346 for (i = max_bit; i >= min_bit; i--) { 1347 u8 *xbuf = (u8 *)xstate; 1348 1349 if (!((header->xfeatures >> i) & 1)) 1350 continue; 1351 1352 /* Move xfeature 'i' into its normal location */ 1353 memmove(xbuf + xstate_comp_offsets[i], 1354 xbuf + xstate_supervisor_only_offsets[i], 1355 xstate_sizes[i]); 1356 } 1357 } 1358 1359 #ifdef CONFIG_PROC_PID_ARCH_STATUS 1360 /* 1361 * Report the amount of time elapsed in millisecond since last AVX512 1362 * use in the task. 1363 */ 1364 static void avx512_status(struct seq_file *m, struct task_struct *task) 1365 { 1366 unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp); 1367 long delta; 1368 1369 if (!timestamp) { 1370 /* 1371 * Report -1 if no AVX512 usage 1372 */ 1373 delta = -1; 1374 } else { 1375 delta = (long)(jiffies - timestamp); 1376 /* 1377 * Cap to LONG_MAX if time difference > LONG_MAX 1378 */ 1379 if (delta < 0) 1380 delta = LONG_MAX; 1381 delta = jiffies_to_msecs(delta); 1382 } 1383 1384 seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta); 1385 seq_putc(m, '\n'); 1386 } 1387 1388 /* 1389 * Report architecture specific information 1390 */ 1391 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, 1392 struct pid *pid, struct task_struct *task) 1393 { 1394 /* 1395 * Report AVX512 state if the processor and build option supported. 1396 */ 1397 if (cpu_feature_enabled(X86_FEATURE_AVX512F)) 1398 avx512_status(m, task); 1399 1400 return 0; 1401 } 1402 #endif /* CONFIG_PROC_PID_ARCH_STATUS */ 1403