xref: /openbmc/linux/arch/x86/kernel/fpu/xstate.c (revision e2f1cf25)
1 /*
2  * xsave/xrstor support.
3  *
4  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5  */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8 
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/internal.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/regset.h>
13 
14 #include <asm/tlbflush.h>
15 
16 static const char *xfeature_names[] =
17 {
18 	"x87 floating point registers"	,
19 	"SSE registers"			,
20 	"AVX registers"			,
21 	"MPX bounds registers"		,
22 	"MPX CSR"			,
23 	"AVX-512 opmask"		,
24 	"AVX-512 Hi256"			,
25 	"AVX-512 ZMM_Hi256"		,
26 	"unknown xstate feature"	,
27 };
28 
29 /*
30  * Mask of xstate features supported by the CPU and the kernel:
31  */
32 u64 xfeatures_mask __read_mostly;
33 
34 static unsigned int xstate_offsets[XFEATURES_NR_MAX] = { [ 0 ... XFEATURES_NR_MAX - 1] = -1};
35 static unsigned int xstate_sizes[XFEATURES_NR_MAX]   = { [ 0 ... XFEATURES_NR_MAX - 1] = -1};
36 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
37 
38 /* The number of supported xfeatures in xfeatures_mask: */
39 static unsigned int xfeatures_nr;
40 
41 /*
42  * Return whether the system supports a given xfeature.
43  *
44  * Also return the name of the (most advanced) feature that the caller requested:
45  */
46 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
47 {
48 	u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
49 
50 	if (unlikely(feature_name)) {
51 		long xfeature_idx, max_idx;
52 		u64 xfeatures_print;
53 		/*
54 		 * So we use FLS here to be able to print the most advanced
55 		 * feature that was requested but is missing. So if a driver
56 		 * asks about "XSTATE_SSE | XSTATE_YMM" we'll print the
57 		 * missing AVX feature - this is the most informative message
58 		 * to users:
59 		 */
60 		if (xfeatures_missing)
61 			xfeatures_print = xfeatures_missing;
62 		else
63 			xfeatures_print = xfeatures_needed;
64 
65 		xfeature_idx = fls64(xfeatures_print)-1;
66 		max_idx = ARRAY_SIZE(xfeature_names)-1;
67 		xfeature_idx = min(xfeature_idx, max_idx);
68 
69 		*feature_name = xfeature_names[xfeature_idx];
70 	}
71 
72 	if (xfeatures_missing)
73 		return 0;
74 
75 	return 1;
76 }
77 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
78 
79 /*
80  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
81  * a processor implementation detects that an FPU state component is still
82  * (or is again) in its initialized state, it may clear the corresponding
83  * bit in the header.xfeatures field, and can skip the writeout of registers
84  * to the corresponding memory layout.
85  *
86  * This means that when the bit is zero, the state component might still contain
87  * some previous - non-initialized register state.
88  *
89  * Before writing xstate information to user-space we sanitize those components,
90  * to always ensure that the memory layout of a feature will be in the init state
91  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
92  * see some stale state in the memory layout during signal handling, debugging etc.
93  */
94 void fpstate_sanitize_xstate(struct fpu *fpu)
95 {
96 	struct fxregs_state *fx = &fpu->state.fxsave;
97 	int feature_bit;
98 	u64 xfeatures;
99 
100 	if (!use_xsaveopt())
101 		return;
102 
103 	xfeatures = fpu->state.xsave.header.xfeatures;
104 
105 	/*
106 	 * None of the feature bits are in init state. So nothing else
107 	 * to do for us, as the memory layout is up to date.
108 	 */
109 	if ((xfeatures & xfeatures_mask) == xfeatures_mask)
110 		return;
111 
112 	/*
113 	 * FP is in init state
114 	 */
115 	if (!(xfeatures & XSTATE_FP)) {
116 		fx->cwd = 0x37f;
117 		fx->swd = 0;
118 		fx->twd = 0;
119 		fx->fop = 0;
120 		fx->rip = 0;
121 		fx->rdp = 0;
122 		memset(&fx->st_space[0], 0, 128);
123 	}
124 
125 	/*
126 	 * SSE is in init state
127 	 */
128 	if (!(xfeatures & XSTATE_SSE))
129 		memset(&fx->xmm_space[0], 0, 256);
130 
131 	/*
132 	 * First two features are FPU and SSE, which above we handled
133 	 * in a special way already:
134 	 */
135 	feature_bit = 0x2;
136 	xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
137 
138 	/*
139 	 * Update all the remaining memory layouts according to their
140 	 * standard xstate layout, if their header bit is in the init
141 	 * state:
142 	 */
143 	while (xfeatures) {
144 		if (xfeatures & 0x1) {
145 			int offset = xstate_offsets[feature_bit];
146 			int size = xstate_sizes[feature_bit];
147 
148 			memcpy((void *)fx + offset,
149 			       (void *)&init_fpstate.xsave + offset,
150 			       size);
151 		}
152 
153 		xfeatures >>= 1;
154 		feature_bit++;
155 	}
156 }
157 
158 /*
159  * Enable the extended processor state save/restore feature.
160  * Called once per CPU onlining.
161  */
162 void fpu__init_cpu_xstate(void)
163 {
164 	if (!cpu_has_xsave || !xfeatures_mask)
165 		return;
166 
167 	cr4_set_bits(X86_CR4_OSXSAVE);
168 	xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
169 }
170 
171 /*
172  * Record the offsets and sizes of various xstates contained
173  * in the XSAVE state memory layout.
174  *
175  * ( Note that certain features might be non-present, for them
176  *   we'll have 0 offset and 0 size. )
177  */
178 static void __init setup_xstate_features(void)
179 {
180 	u32 eax, ebx, ecx, edx, leaf;
181 
182 	xfeatures_nr = fls64(xfeatures_mask);
183 
184 	for (leaf = 2; leaf < xfeatures_nr; leaf++) {
185 		cpuid_count(XSTATE_CPUID, leaf, &eax, &ebx, &ecx, &edx);
186 
187 		xstate_offsets[leaf] = ebx;
188 		xstate_sizes[leaf] = eax;
189 
190 		printk(KERN_INFO "x86/fpu: xstate_offset[%d]: %04x, xstate_sizes[%d]: %04x\n", leaf, ebx, leaf, eax);
191 	}
192 }
193 
194 static void __init print_xstate_feature(u64 xstate_mask)
195 {
196 	const char *feature_name;
197 
198 	if (cpu_has_xfeatures(xstate_mask, &feature_name))
199 		pr_info("x86/fpu: Supporting XSAVE feature 0x%02Lx: '%s'\n", xstate_mask, feature_name);
200 }
201 
202 /*
203  * Print out all the supported xstate features:
204  */
205 static void __init print_xstate_features(void)
206 {
207 	print_xstate_feature(XSTATE_FP);
208 	print_xstate_feature(XSTATE_SSE);
209 	print_xstate_feature(XSTATE_YMM);
210 	print_xstate_feature(XSTATE_BNDREGS);
211 	print_xstate_feature(XSTATE_BNDCSR);
212 	print_xstate_feature(XSTATE_OPMASK);
213 	print_xstate_feature(XSTATE_ZMM_Hi256);
214 	print_xstate_feature(XSTATE_Hi16_ZMM);
215 }
216 
217 /*
218  * This function sets up offsets and sizes of all extended states in
219  * xsave area. This supports both standard format and compacted format
220  * of the xsave aread.
221  */
222 static void __init setup_xstate_comp(void)
223 {
224 	unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
225 	int i;
226 
227 	/*
228 	 * The FP xstates and SSE xstates are legacy states. They are always
229 	 * in the fixed offsets in the xsave area in either compacted form
230 	 * or standard form.
231 	 */
232 	xstate_comp_offsets[0] = 0;
233 	xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
234 
235 	if (!cpu_has_xsaves) {
236 		for (i = 2; i < xfeatures_nr; i++) {
237 			if (test_bit(i, (unsigned long *)&xfeatures_mask)) {
238 				xstate_comp_offsets[i] = xstate_offsets[i];
239 				xstate_comp_sizes[i] = xstate_sizes[i];
240 			}
241 		}
242 		return;
243 	}
244 
245 	xstate_comp_offsets[2] = FXSAVE_SIZE + XSAVE_HDR_SIZE;
246 
247 	for (i = 2; i < xfeatures_nr; i++) {
248 		if (test_bit(i, (unsigned long *)&xfeatures_mask))
249 			xstate_comp_sizes[i] = xstate_sizes[i];
250 		else
251 			xstate_comp_sizes[i] = 0;
252 
253 		if (i > 2)
254 			xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
255 					+ xstate_comp_sizes[i-1];
256 
257 	}
258 }
259 
260 /*
261  * setup the xstate image representing the init state
262  */
263 static void __init setup_init_fpu_buf(void)
264 {
265 	static int on_boot_cpu = 1;
266 
267 	WARN_ON_FPU(!on_boot_cpu);
268 	on_boot_cpu = 0;
269 
270 	if (!cpu_has_xsave)
271 		return;
272 
273 	setup_xstate_features();
274 	print_xstate_features();
275 
276 	if (cpu_has_xsaves) {
277 		init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
278 		init_fpstate.xsave.header.xfeatures = xfeatures_mask;
279 	}
280 
281 	/*
282 	 * Init all the features state with header_bv being 0x0
283 	 */
284 	copy_kernel_to_xregs_booting(&init_fpstate.xsave);
285 
286 	/*
287 	 * Dump the init state again. This is to identify the init state
288 	 * of any feature which is not represented by all zero's.
289 	 */
290 	copy_xregs_to_kernel_booting(&init_fpstate.xsave);
291 }
292 
293 /*
294  * Calculate total size of enabled xstates in XCR0/xfeatures_mask.
295  */
296 static void __init init_xstate_size(void)
297 {
298 	unsigned int eax, ebx, ecx, edx;
299 	int i;
300 
301 	if (!cpu_has_xsaves) {
302 		cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
303 		xstate_size = ebx;
304 		return;
305 	}
306 
307 	xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
308 	for (i = 2; i < 64; i++) {
309 		if (test_bit(i, (unsigned long *)&xfeatures_mask)) {
310 			cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
311 			xstate_size += eax;
312 		}
313 	}
314 }
315 
316 /*
317  * Enable and initialize the xsave feature.
318  * Called once per system bootup.
319  */
320 void __init fpu__init_system_xstate(void)
321 {
322 	unsigned int eax, ebx, ecx, edx;
323 	static int on_boot_cpu = 1;
324 
325 	WARN_ON_FPU(!on_boot_cpu);
326 	on_boot_cpu = 0;
327 
328 	if (!cpu_has_xsave) {
329 		pr_info("x86/fpu: Legacy x87 FPU detected.\n");
330 		return;
331 	}
332 
333 	if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
334 		WARN_ON_FPU(1);
335 		return;
336 	}
337 
338 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
339 	xfeatures_mask = eax + ((u64)edx << 32);
340 
341 	if ((xfeatures_mask & XSTATE_FPSSE) != XSTATE_FPSSE) {
342 		pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
343 		BUG();
344 	}
345 
346 	/* Support only the state known to the OS: */
347 	xfeatures_mask = xfeatures_mask & XCNTXT_MASK;
348 
349 	/* Enable xstate instructions to be able to continue with initialization: */
350 	fpu__init_cpu_xstate();
351 
352 	/* Recompute the context size for enabled features: */
353 	init_xstate_size();
354 
355 	update_regset_xstate_info(xstate_size, xfeatures_mask);
356 	fpu__init_prepare_fx_sw_frame();
357 	setup_init_fpu_buf();
358 	setup_xstate_comp();
359 
360 	pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is 0x%x bytes, using '%s' format.\n",
361 		xfeatures_mask,
362 		xstate_size,
363 		cpu_has_xsaves ? "compacted" : "standard");
364 }
365 
366 /*
367  * Restore minimal FPU state after suspend:
368  */
369 void fpu__resume_cpu(void)
370 {
371 	/*
372 	 * Restore XCR0 on xsave capable CPUs:
373 	 */
374 	if (cpu_has_xsave)
375 		xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
376 }
377 
378 /*
379  * Given the xsave area and a state inside, this function returns the
380  * address of the state.
381  *
382  * This is the API that is called to get xstate address in either
383  * standard format or compacted format of xsave area.
384  *
385  * Note that if there is no data for the field in the xsave buffer
386  * this will return NULL.
387  *
388  * Inputs:
389  *	xstate: the thread's storage area for all FPU data
390  *	xstate_feature: state which is defined in xsave.h (e.g.
391  *	XSTATE_FP, XSTATE_SSE, etc...)
392  * Output:
393  *	address of the state in the xsave area, or NULL if the
394  *	field is not present in the xsave buffer.
395  */
396 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
397 {
398 	int feature_nr = fls64(xstate_feature) - 1;
399 	/*
400 	 * Do we even *have* xsave state?
401 	 */
402 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
403 		return NULL;
404 
405 	xsave = &current->thread.fpu.state.xsave;
406 	/*
407 	 * We should not ever be requesting features that we
408 	 * have not enabled.  Remember that pcntxt_mask is
409 	 * what we write to the XCR0 register.
410 	 */
411 	WARN_ONCE(!(xfeatures_mask & xstate_feature),
412 		  "get of unsupported state");
413 	/*
414 	 * This assumes the last 'xsave*' instruction to
415 	 * have requested that 'xstate_feature' be saved.
416 	 * If it did not, we might be seeing and old value
417 	 * of the field in the buffer.
418 	 *
419 	 * This can happen because the last 'xsave' did not
420 	 * request that this feature be saved (unlikely)
421 	 * or because the "init optimization" caused it
422 	 * to not be saved.
423 	 */
424 	if (!(xsave->header.xfeatures & xstate_feature))
425 		return NULL;
426 
427 	return (void *)xsave + xstate_comp_offsets[feature_nr];
428 }
429 EXPORT_SYMBOL_GPL(get_xsave_addr);
430 
431 /*
432  * This wraps up the common operations that need to occur when retrieving
433  * data from xsave state.  It first ensures that the current task was
434  * using the FPU and retrieves the data in to a buffer.  It then calculates
435  * the offset of the requested field in the buffer.
436  *
437  * This function is safe to call whether the FPU is in use or not.
438  *
439  * Note that this only works on the current task.
440  *
441  * Inputs:
442  *	@xsave_state: state which is defined in xsave.h (e.g. XSTATE_FP,
443  *	XSTATE_SSE, etc...)
444  * Output:
445  *	address of the state in the xsave area or NULL if the state
446  *	is not present or is in its 'init state'.
447  */
448 const void *get_xsave_field_ptr(int xsave_state)
449 {
450 	struct fpu *fpu = &current->thread.fpu;
451 
452 	if (!fpu->fpstate_active)
453 		return NULL;
454 	/*
455 	 * fpu__save() takes the CPU's xstate registers
456 	 * and saves them off to the 'fpu memory buffer.
457 	 */
458 	fpu__save(fpu);
459 
460 	return get_xsave_addr(&fpu->state.xsave, xsave_state);
461 }
462