1 /* 2 * xsave/xrstor support. 3 * 4 * Author: Suresh Siddha <suresh.b.siddha@intel.com> 5 */ 6 #include <linux/compat.h> 7 #include <linux/cpu.h> 8 #include <linux/mman.h> 9 #include <linux/pkeys.h> 10 11 #include <asm/fpu/api.h> 12 #include <asm/fpu/internal.h> 13 #include <asm/fpu/signal.h> 14 #include <asm/fpu/regset.h> 15 #include <asm/fpu/xstate.h> 16 17 #include <asm/tlbflush.h> 18 19 /* 20 * Although we spell it out in here, the Processor Trace 21 * xfeature is completely unused. We use other mechanisms 22 * to save/restore PT state in Linux. 23 */ 24 static const char *xfeature_names[] = 25 { 26 "x87 floating point registers" , 27 "SSE registers" , 28 "AVX registers" , 29 "MPX bounds registers" , 30 "MPX CSR" , 31 "AVX-512 opmask" , 32 "AVX-512 Hi256" , 33 "AVX-512 ZMM_Hi256" , 34 "Processor Trace (unused)" , 35 "Protection Keys User registers", 36 "unknown xstate feature" , 37 }; 38 39 /* 40 * Mask of xstate features supported by the CPU and the kernel: 41 */ 42 u64 xfeatures_mask __read_mostly; 43 44 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 45 static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 46 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8]; 47 48 /* 49 * The XSAVE area of kernel can be in standard or compacted format; 50 * it is always in standard format for user mode. This is the user 51 * mode standard format size used for signal and ptrace frames. 52 */ 53 unsigned int fpu_user_xstate_size; 54 55 /* 56 * Clear all of the X86_FEATURE_* bits that are unavailable 57 * when the CPU has no XSAVE support. 58 */ 59 void fpu__xstate_clear_all_cpu_caps(void) 60 { 61 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 62 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); 63 setup_clear_cpu_cap(X86_FEATURE_XSAVEC); 64 setup_clear_cpu_cap(X86_FEATURE_XSAVES); 65 setup_clear_cpu_cap(X86_FEATURE_AVX); 66 setup_clear_cpu_cap(X86_FEATURE_AVX2); 67 setup_clear_cpu_cap(X86_FEATURE_AVX512F); 68 setup_clear_cpu_cap(X86_FEATURE_AVX512PF); 69 setup_clear_cpu_cap(X86_FEATURE_AVX512ER); 70 setup_clear_cpu_cap(X86_FEATURE_AVX512CD); 71 setup_clear_cpu_cap(X86_FEATURE_AVX512DQ); 72 setup_clear_cpu_cap(X86_FEATURE_AVX512BW); 73 setup_clear_cpu_cap(X86_FEATURE_AVX512VL); 74 setup_clear_cpu_cap(X86_FEATURE_MPX); 75 setup_clear_cpu_cap(X86_FEATURE_XGETBV1); 76 setup_clear_cpu_cap(X86_FEATURE_PKU); 77 setup_clear_cpu_cap(X86_FEATURE_AVX512_4VNNIW); 78 setup_clear_cpu_cap(X86_FEATURE_AVX512_4FMAPS); 79 } 80 81 /* 82 * Return whether the system supports a given xfeature. 83 * 84 * Also return the name of the (most advanced) feature that the caller requested: 85 */ 86 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) 87 { 88 u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask; 89 90 if (unlikely(feature_name)) { 91 long xfeature_idx, max_idx; 92 u64 xfeatures_print; 93 /* 94 * So we use FLS here to be able to print the most advanced 95 * feature that was requested but is missing. So if a driver 96 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the 97 * missing AVX feature - this is the most informative message 98 * to users: 99 */ 100 if (xfeatures_missing) 101 xfeatures_print = xfeatures_missing; 102 else 103 xfeatures_print = xfeatures_needed; 104 105 xfeature_idx = fls64(xfeatures_print)-1; 106 max_idx = ARRAY_SIZE(xfeature_names)-1; 107 xfeature_idx = min(xfeature_idx, max_idx); 108 109 *feature_name = xfeature_names[xfeature_idx]; 110 } 111 112 if (xfeatures_missing) 113 return 0; 114 115 return 1; 116 } 117 EXPORT_SYMBOL_GPL(cpu_has_xfeatures); 118 119 static int xfeature_is_supervisor(int xfeature_nr) 120 { 121 /* 122 * We currently do not support supervisor states, but if 123 * we did, we could find out like this. 124 * 125 * SDM says: If state component 'i' is a user state component, 126 * ECX[0] return 0; if state component i is a supervisor 127 * state component, ECX[0] returns 1. 128 */ 129 u32 eax, ebx, ecx, edx; 130 131 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 132 return !!(ecx & 1); 133 } 134 135 static int xfeature_is_user(int xfeature_nr) 136 { 137 return !xfeature_is_supervisor(xfeature_nr); 138 } 139 140 /* 141 * When executing XSAVEOPT (or other optimized XSAVE instructions), if 142 * a processor implementation detects that an FPU state component is still 143 * (or is again) in its initialized state, it may clear the corresponding 144 * bit in the header.xfeatures field, and can skip the writeout of registers 145 * to the corresponding memory layout. 146 * 147 * This means that when the bit is zero, the state component might still contain 148 * some previous - non-initialized register state. 149 * 150 * Before writing xstate information to user-space we sanitize those components, 151 * to always ensure that the memory layout of a feature will be in the init state 152 * if the corresponding header bit is zero. This is to ensure that user-space doesn't 153 * see some stale state in the memory layout during signal handling, debugging etc. 154 */ 155 void fpstate_sanitize_xstate(struct fpu *fpu) 156 { 157 struct fxregs_state *fx = &fpu->state.fxsave; 158 int feature_bit; 159 u64 xfeatures; 160 161 if (!use_xsaveopt()) 162 return; 163 164 xfeatures = fpu->state.xsave.header.xfeatures; 165 166 /* 167 * None of the feature bits are in init state. So nothing else 168 * to do for us, as the memory layout is up to date. 169 */ 170 if ((xfeatures & xfeatures_mask) == xfeatures_mask) 171 return; 172 173 /* 174 * FP is in init state 175 */ 176 if (!(xfeatures & XFEATURE_MASK_FP)) { 177 fx->cwd = 0x37f; 178 fx->swd = 0; 179 fx->twd = 0; 180 fx->fop = 0; 181 fx->rip = 0; 182 fx->rdp = 0; 183 memset(&fx->st_space[0], 0, 128); 184 } 185 186 /* 187 * SSE is in init state 188 */ 189 if (!(xfeatures & XFEATURE_MASK_SSE)) 190 memset(&fx->xmm_space[0], 0, 256); 191 192 /* 193 * First two features are FPU and SSE, which above we handled 194 * in a special way already: 195 */ 196 feature_bit = 0x2; 197 xfeatures = (xfeatures_mask & ~xfeatures) >> 2; 198 199 /* 200 * Update all the remaining memory layouts according to their 201 * standard xstate layout, if their header bit is in the init 202 * state: 203 */ 204 while (xfeatures) { 205 if (xfeatures & 0x1) { 206 int offset = xstate_comp_offsets[feature_bit]; 207 int size = xstate_sizes[feature_bit]; 208 209 memcpy((void *)fx + offset, 210 (void *)&init_fpstate.xsave + offset, 211 size); 212 } 213 214 xfeatures >>= 1; 215 feature_bit++; 216 } 217 } 218 219 /* 220 * Enable the extended processor state save/restore feature. 221 * Called once per CPU onlining. 222 */ 223 void fpu__init_cpu_xstate(void) 224 { 225 if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask) 226 return; 227 /* 228 * Make it clear that XSAVES supervisor states are not yet 229 * implemented should anyone expect it to work by changing 230 * bits in XFEATURE_MASK_* macros and XCR0. 231 */ 232 WARN_ONCE((xfeatures_mask & XFEATURE_MASK_SUPERVISOR), 233 "x86/fpu: XSAVES supervisor states are not yet implemented.\n"); 234 235 xfeatures_mask &= ~XFEATURE_MASK_SUPERVISOR; 236 237 cr4_set_bits(X86_CR4_OSXSAVE); 238 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask); 239 } 240 241 /* 242 * Note that in the future we will likely need a pair of 243 * functions here: one for user xstates and the other for 244 * system xstates. For now, they are the same. 245 */ 246 static int xfeature_enabled(enum xfeature xfeature) 247 { 248 return !!(xfeatures_mask & (1UL << xfeature)); 249 } 250 251 /* 252 * Record the offsets and sizes of various xstates contained 253 * in the XSAVE state memory layout. 254 */ 255 static void __init setup_xstate_features(void) 256 { 257 u32 eax, ebx, ecx, edx, i; 258 /* start at the beginnning of the "extended state" */ 259 unsigned int last_good_offset = offsetof(struct xregs_state, 260 extended_state_area); 261 /* 262 * The FP xstates and SSE xstates are legacy states. They are always 263 * in the fixed offsets in the xsave area in either compacted form 264 * or standard form. 265 */ 266 xstate_offsets[0] = 0; 267 xstate_sizes[0] = offsetof(struct fxregs_state, xmm_space); 268 xstate_offsets[1] = xstate_sizes[0]; 269 xstate_sizes[1] = FIELD_SIZEOF(struct fxregs_state, xmm_space); 270 271 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 272 if (!xfeature_enabled(i)) 273 continue; 274 275 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 276 277 /* 278 * If an xfeature is supervisor state, the offset 279 * in EBX is invalid. We leave it to -1. 280 */ 281 if (xfeature_is_user(i)) 282 xstate_offsets[i] = ebx; 283 284 xstate_sizes[i] = eax; 285 /* 286 * In our xstate size checks, we assume that the 287 * highest-numbered xstate feature has the 288 * highest offset in the buffer. Ensure it does. 289 */ 290 WARN_ONCE(last_good_offset > xstate_offsets[i], 291 "x86/fpu: misordered xstate at %d\n", last_good_offset); 292 last_good_offset = xstate_offsets[i]; 293 } 294 } 295 296 static void __init print_xstate_feature(u64 xstate_mask) 297 { 298 const char *feature_name; 299 300 if (cpu_has_xfeatures(xstate_mask, &feature_name)) 301 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); 302 } 303 304 /* 305 * Print out all the supported xstate features: 306 */ 307 static void __init print_xstate_features(void) 308 { 309 print_xstate_feature(XFEATURE_MASK_FP); 310 print_xstate_feature(XFEATURE_MASK_SSE); 311 print_xstate_feature(XFEATURE_MASK_YMM); 312 print_xstate_feature(XFEATURE_MASK_BNDREGS); 313 print_xstate_feature(XFEATURE_MASK_BNDCSR); 314 print_xstate_feature(XFEATURE_MASK_OPMASK); 315 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); 316 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); 317 print_xstate_feature(XFEATURE_MASK_PKRU); 318 } 319 320 /* 321 * This check is important because it is easy to get XSTATE_* 322 * confused with XSTATE_BIT_*. 323 */ 324 #define CHECK_XFEATURE(nr) do { \ 325 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ 326 WARN_ON(nr >= XFEATURE_MAX); \ 327 } while (0) 328 329 /* 330 * We could cache this like xstate_size[], but we only use 331 * it here, so it would be a waste of space. 332 */ 333 static int xfeature_is_aligned(int xfeature_nr) 334 { 335 u32 eax, ebx, ecx, edx; 336 337 CHECK_XFEATURE(xfeature_nr); 338 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 339 /* 340 * The value returned by ECX[1] indicates the alignment 341 * of state component 'i' when the compacted format 342 * of the extended region of an XSAVE area is used: 343 */ 344 return !!(ecx & 2); 345 } 346 347 /* 348 * This function sets up offsets and sizes of all extended states in 349 * xsave area. This supports both standard format and compacted format 350 * of the xsave aread. 351 */ 352 static void __init setup_xstate_comp(void) 353 { 354 unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8]; 355 int i; 356 357 /* 358 * The FP xstates and SSE xstates are legacy states. They are always 359 * in the fixed offsets in the xsave area in either compacted form 360 * or standard form. 361 */ 362 xstate_comp_offsets[0] = 0; 363 xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space); 364 365 if (!boot_cpu_has(X86_FEATURE_XSAVES)) { 366 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 367 if (xfeature_enabled(i)) { 368 xstate_comp_offsets[i] = xstate_offsets[i]; 369 xstate_comp_sizes[i] = xstate_sizes[i]; 370 } 371 } 372 return; 373 } 374 375 xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] = 376 FXSAVE_SIZE + XSAVE_HDR_SIZE; 377 378 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 379 if (xfeature_enabled(i)) 380 xstate_comp_sizes[i] = xstate_sizes[i]; 381 else 382 xstate_comp_sizes[i] = 0; 383 384 if (i > FIRST_EXTENDED_XFEATURE) { 385 xstate_comp_offsets[i] = xstate_comp_offsets[i-1] 386 + xstate_comp_sizes[i-1]; 387 388 if (xfeature_is_aligned(i)) 389 xstate_comp_offsets[i] = 390 ALIGN(xstate_comp_offsets[i], 64); 391 } 392 } 393 } 394 395 /* 396 * Print out xstate component offsets and sizes 397 */ 398 static void __init print_xstate_offset_size(void) 399 { 400 int i; 401 402 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 403 if (!xfeature_enabled(i)) 404 continue; 405 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", 406 i, xstate_comp_offsets[i], i, xstate_sizes[i]); 407 } 408 } 409 410 /* 411 * setup the xstate image representing the init state 412 */ 413 static void __init setup_init_fpu_buf(void) 414 { 415 static int on_boot_cpu __initdata = 1; 416 417 WARN_ON_FPU(!on_boot_cpu); 418 on_boot_cpu = 0; 419 420 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 421 return; 422 423 setup_xstate_features(); 424 print_xstate_features(); 425 426 if (boot_cpu_has(X86_FEATURE_XSAVES)) 427 init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask; 428 429 /* 430 * Init all the features state with header.xfeatures being 0x0 431 */ 432 copy_kernel_to_xregs_booting(&init_fpstate.xsave); 433 434 /* 435 * Dump the init state again. This is to identify the init state 436 * of any feature which is not represented by all zero's. 437 */ 438 copy_xregs_to_kernel_booting(&init_fpstate.xsave); 439 } 440 441 static int xfeature_uncompacted_offset(int xfeature_nr) 442 { 443 u32 eax, ebx, ecx, edx; 444 445 /* 446 * Only XSAVES supports supervisor states and it uses compacted 447 * format. Checking a supervisor state's uncompacted offset is 448 * an error. 449 */ 450 if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) { 451 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr); 452 return -1; 453 } 454 455 CHECK_XFEATURE(xfeature_nr); 456 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 457 return ebx; 458 } 459 460 static int xfeature_size(int xfeature_nr) 461 { 462 u32 eax, ebx, ecx, edx; 463 464 CHECK_XFEATURE(xfeature_nr); 465 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 466 return eax; 467 } 468 469 /* 470 * 'XSAVES' implies two different things: 471 * 1. saving of supervisor/system state 472 * 2. using the compacted format 473 * 474 * Use this function when dealing with the compacted format so 475 * that it is obvious which aspect of 'XSAVES' is being handled 476 * by the calling code. 477 */ 478 int using_compacted_format(void) 479 { 480 return boot_cpu_has(X86_FEATURE_XSAVES); 481 } 482 483 static void __xstate_dump_leaves(void) 484 { 485 int i; 486 u32 eax, ebx, ecx, edx; 487 static int should_dump = 1; 488 489 if (!should_dump) 490 return; 491 should_dump = 0; 492 /* 493 * Dump out a few leaves past the ones that we support 494 * just in case there are some goodies up there 495 */ 496 for (i = 0; i < XFEATURE_MAX + 10; i++) { 497 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 498 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", 499 XSTATE_CPUID, i, eax, ebx, ecx, edx); 500 } 501 } 502 503 #define XSTATE_WARN_ON(x) do { \ 504 if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \ 505 __xstate_dump_leaves(); \ 506 } \ 507 } while (0) 508 509 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \ 510 if ((nr == nr_macro) && \ 511 WARN_ONCE(sz != sizeof(__struct), \ 512 "%s: struct is %zu bytes, cpu state %d bytes\n", \ 513 __stringify(nr_macro), sizeof(__struct), sz)) { \ 514 __xstate_dump_leaves(); \ 515 } \ 516 } while (0) 517 518 /* 519 * We have a C struct for each 'xstate'. We need to ensure 520 * that our software representation matches what the CPU 521 * tells us about the state's size. 522 */ 523 static void check_xstate_against_struct(int nr) 524 { 525 /* 526 * Ask the CPU for the size of the state. 527 */ 528 int sz = xfeature_size(nr); 529 /* 530 * Match each CPU state with the corresponding software 531 * structure. 532 */ 533 XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct); 534 XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state); 535 XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state); 536 XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state); 537 XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state); 538 XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state); 539 XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state); 540 541 /* 542 * Make *SURE* to add any feature numbers in below if 543 * there are "holes" in the xsave state component 544 * numbers. 545 */ 546 if ((nr < XFEATURE_YMM) || 547 (nr >= XFEATURE_MAX) || 548 (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR)) { 549 WARN_ONCE(1, "no structure for xstate: %d\n", nr); 550 XSTATE_WARN_ON(1); 551 } 552 } 553 554 /* 555 * This essentially double-checks what the cpu told us about 556 * how large the XSAVE buffer needs to be. We are recalculating 557 * it to be safe. 558 */ 559 static void do_extra_xstate_size_checks(void) 560 { 561 int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE; 562 int i; 563 564 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 565 if (!xfeature_enabled(i)) 566 continue; 567 568 check_xstate_against_struct(i); 569 /* 570 * Supervisor state components can be managed only by 571 * XSAVES, which is compacted-format only. 572 */ 573 if (!using_compacted_format()) 574 XSTATE_WARN_ON(xfeature_is_supervisor(i)); 575 576 /* Align from the end of the previous feature */ 577 if (xfeature_is_aligned(i)) 578 paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64); 579 /* 580 * The offset of a given state in the non-compacted 581 * format is given to us in a CPUID leaf. We check 582 * them for being ordered (increasing offsets) in 583 * setup_xstate_features(). 584 */ 585 if (!using_compacted_format()) 586 paranoid_xstate_size = xfeature_uncompacted_offset(i); 587 /* 588 * The compacted-format offset always depends on where 589 * the previous state ended. 590 */ 591 paranoid_xstate_size += xfeature_size(i); 592 } 593 XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size); 594 } 595 596 597 /* 598 * Get total size of enabled xstates in XCR0/xfeatures_mask. 599 * 600 * Note the SDM's wording here. "sub-function 0" only enumerates 601 * the size of the *user* states. If we use it to size a buffer 602 * that we use 'XSAVES' on, we could potentially overflow the 603 * buffer because 'XSAVES' saves system states too. 604 * 605 * Note that we do not currently set any bits on IA32_XSS so 606 * 'XCR0 | IA32_XSS == XCR0' for now. 607 */ 608 static unsigned int __init get_xsaves_size(void) 609 { 610 unsigned int eax, ebx, ecx, edx; 611 /* 612 * - CPUID function 0DH, sub-function 1: 613 * EBX enumerates the size (in bytes) required by 614 * the XSAVES instruction for an XSAVE area 615 * containing all the state components 616 * corresponding to bits currently set in 617 * XCR0 | IA32_XSS. 618 */ 619 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 620 return ebx; 621 } 622 623 static unsigned int __init get_xsave_size(void) 624 { 625 unsigned int eax, ebx, ecx, edx; 626 /* 627 * - CPUID function 0DH, sub-function 0: 628 * EBX enumerates the size (in bytes) required by 629 * the XSAVE instruction for an XSAVE area 630 * containing all the *user* state components 631 * corresponding to bits currently set in XCR0. 632 */ 633 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 634 return ebx; 635 } 636 637 /* 638 * Will the runtime-enumerated 'xstate_size' fit in the init 639 * task's statically-allocated buffer? 640 */ 641 static bool is_supported_xstate_size(unsigned int test_xstate_size) 642 { 643 if (test_xstate_size <= sizeof(union fpregs_state)) 644 return true; 645 646 pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n", 647 sizeof(union fpregs_state), test_xstate_size); 648 return false; 649 } 650 651 static int init_xstate_size(void) 652 { 653 /* Recompute the context size for enabled features: */ 654 unsigned int possible_xstate_size; 655 unsigned int xsave_size; 656 657 xsave_size = get_xsave_size(); 658 659 if (boot_cpu_has(X86_FEATURE_XSAVES)) 660 possible_xstate_size = get_xsaves_size(); 661 else 662 possible_xstate_size = xsave_size; 663 664 /* Ensure we have the space to store all enabled: */ 665 if (!is_supported_xstate_size(possible_xstate_size)) 666 return -EINVAL; 667 668 /* 669 * The size is OK, we are definitely going to use xsave, 670 * make it known to the world that we need more space. 671 */ 672 fpu_kernel_xstate_size = possible_xstate_size; 673 do_extra_xstate_size_checks(); 674 675 /* 676 * User space is always in standard format. 677 */ 678 fpu_user_xstate_size = xsave_size; 679 return 0; 680 } 681 682 /* 683 * We enabled the XSAVE hardware, but something went wrong and 684 * we can not use it. Disable it. 685 */ 686 static void fpu__init_disable_system_xstate(void) 687 { 688 xfeatures_mask = 0; 689 cr4_clear_bits(X86_CR4_OSXSAVE); 690 fpu__xstate_clear_all_cpu_caps(); 691 } 692 693 /* 694 * Enable and initialize the xsave feature. 695 * Called once per system bootup. 696 */ 697 void __init fpu__init_system_xstate(void) 698 { 699 unsigned int eax, ebx, ecx, edx; 700 static int on_boot_cpu __initdata = 1; 701 int err; 702 703 WARN_ON_FPU(!on_boot_cpu); 704 on_boot_cpu = 0; 705 706 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 707 pr_info("x86/fpu: Legacy x87 FPU detected.\n"); 708 return; 709 } 710 711 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { 712 WARN_ON_FPU(1); 713 return; 714 } 715 716 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 717 xfeatures_mask = eax + ((u64)edx << 32); 718 719 if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { 720 /* 721 * This indicates that something really unexpected happened 722 * with the enumeration. Disable XSAVE and try to continue 723 * booting without it. This is too early to BUG(). 724 */ 725 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask); 726 goto out_disable; 727 } 728 729 xfeatures_mask &= fpu__get_supported_xfeatures_mask(); 730 731 /* Enable xstate instructions to be able to continue with initialization: */ 732 fpu__init_cpu_xstate(); 733 err = init_xstate_size(); 734 if (err) 735 goto out_disable; 736 737 /* 738 * Update info used for ptrace frames; use standard-format size and no 739 * supervisor xstates: 740 */ 741 update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR); 742 743 fpu__init_prepare_fx_sw_frame(); 744 setup_init_fpu_buf(); 745 setup_xstate_comp(); 746 print_xstate_offset_size(); 747 748 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", 749 xfeatures_mask, 750 fpu_kernel_xstate_size, 751 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard"); 752 return; 753 754 out_disable: 755 /* something went wrong, try to boot without any XSAVE support */ 756 fpu__init_disable_system_xstate(); 757 } 758 759 /* 760 * Restore minimal FPU state after suspend: 761 */ 762 void fpu__resume_cpu(void) 763 { 764 /* 765 * Restore XCR0 on xsave capable CPUs: 766 */ 767 if (boot_cpu_has(X86_FEATURE_XSAVE)) 768 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask); 769 } 770 771 /* 772 * Given an xstate feature mask, calculate where in the xsave 773 * buffer the state is. Callers should ensure that the buffer 774 * is valid. 775 * 776 * Note: does not work for compacted buffers. 777 */ 778 void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask) 779 { 780 int feature_nr = fls64(xstate_feature_mask) - 1; 781 782 if (!xfeature_enabled(feature_nr)) { 783 WARN_ON_FPU(1); 784 return NULL; 785 } 786 787 return (void *)xsave + xstate_comp_offsets[feature_nr]; 788 } 789 /* 790 * Given the xsave area and a state inside, this function returns the 791 * address of the state. 792 * 793 * This is the API that is called to get xstate address in either 794 * standard format or compacted format of xsave area. 795 * 796 * Note that if there is no data for the field in the xsave buffer 797 * this will return NULL. 798 * 799 * Inputs: 800 * xstate: the thread's storage area for all FPU data 801 * xstate_feature: state which is defined in xsave.h (e.g. 802 * XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...) 803 * Output: 804 * address of the state in the xsave area, or NULL if the 805 * field is not present in the xsave buffer. 806 */ 807 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature) 808 { 809 /* 810 * Do we even *have* xsave state? 811 */ 812 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 813 return NULL; 814 815 /* 816 * We should not ever be requesting features that we 817 * have not enabled. Remember that pcntxt_mask is 818 * what we write to the XCR0 register. 819 */ 820 WARN_ONCE(!(xfeatures_mask & xstate_feature), 821 "get of unsupported state"); 822 /* 823 * This assumes the last 'xsave*' instruction to 824 * have requested that 'xstate_feature' be saved. 825 * If it did not, we might be seeing and old value 826 * of the field in the buffer. 827 * 828 * This can happen because the last 'xsave' did not 829 * request that this feature be saved (unlikely) 830 * or because the "init optimization" caused it 831 * to not be saved. 832 */ 833 if (!(xsave->header.xfeatures & xstate_feature)) 834 return NULL; 835 836 return __raw_xsave_addr(xsave, xstate_feature); 837 } 838 EXPORT_SYMBOL_GPL(get_xsave_addr); 839 840 /* 841 * This wraps up the common operations that need to occur when retrieving 842 * data from xsave state. It first ensures that the current task was 843 * using the FPU and retrieves the data in to a buffer. It then calculates 844 * the offset of the requested field in the buffer. 845 * 846 * This function is safe to call whether the FPU is in use or not. 847 * 848 * Note that this only works on the current task. 849 * 850 * Inputs: 851 * @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP, 852 * XFEATURE_MASK_SSE, etc...) 853 * Output: 854 * address of the state in the xsave area or NULL if the state 855 * is not present or is in its 'init state'. 856 */ 857 const void *get_xsave_field_ptr(int xsave_state) 858 { 859 struct fpu *fpu = ¤t->thread.fpu; 860 861 if (!fpu->fpstate_active) 862 return NULL; 863 /* 864 * fpu__save() takes the CPU's xstate registers 865 * and saves them off to the 'fpu memory buffer. 866 */ 867 fpu__save(fpu); 868 869 return get_xsave_addr(&fpu->state.xsave, xsave_state); 870 } 871 872 #ifdef CONFIG_ARCH_HAS_PKEYS 873 874 #define NR_VALID_PKRU_BITS (CONFIG_NR_PROTECTION_KEYS * 2) 875 #define PKRU_VALID_MASK (NR_VALID_PKRU_BITS - 1) 876 /* 877 * This will go out and modify PKRU register to set the access 878 * rights for @pkey to @init_val. 879 */ 880 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 881 unsigned long init_val) 882 { 883 u32 old_pkru; 884 int pkey_shift = (pkey * PKRU_BITS_PER_PKEY); 885 u32 new_pkru_bits = 0; 886 887 /* 888 * This check implies XSAVE support. OSPKE only gets 889 * set if we enable XSAVE and we enable PKU in XCR0. 890 */ 891 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 892 return -EINVAL; 893 /* 894 * For most XSAVE components, this would be an arduous task: 895 * brining fpstate up to date with fpregs, updating fpstate, 896 * then re-populating fpregs. But, for components that are 897 * never lazily managed, we can just access the fpregs 898 * directly. PKRU is never managed lazily, so we can just 899 * manipulate it directly. Make sure it stays that way. 900 */ 901 WARN_ON_ONCE(!use_eager_fpu()); 902 903 /* Set the bits we need in PKRU: */ 904 if (init_val & PKEY_DISABLE_ACCESS) 905 new_pkru_bits |= PKRU_AD_BIT; 906 if (init_val & PKEY_DISABLE_WRITE) 907 new_pkru_bits |= PKRU_WD_BIT; 908 909 /* Shift the bits in to the correct place in PKRU for pkey: */ 910 new_pkru_bits <<= pkey_shift; 911 912 /* Get old PKRU and mask off any old bits in place: */ 913 old_pkru = read_pkru(); 914 old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); 915 916 /* Write old part along with new part: */ 917 write_pkru(old_pkru | new_pkru_bits); 918 919 return 0; 920 } 921 #endif /* ! CONFIG_ARCH_HAS_PKEYS */ 922 923 /* 924 * This is similar to user_regset_copyout(), but will not add offset to 925 * the source data pointer or increment pos, count, kbuf, and ubuf. 926 */ 927 static inline int xstate_copyout(unsigned int pos, unsigned int count, 928 void *kbuf, void __user *ubuf, 929 const void *data, const int start_pos, 930 const int end_pos) 931 { 932 if ((count == 0) || (pos < start_pos)) 933 return 0; 934 935 if (end_pos < 0 || pos < end_pos) { 936 unsigned int copy = (end_pos < 0 ? count : min(count, end_pos - pos)); 937 938 if (kbuf) { 939 memcpy(kbuf + pos, data, copy); 940 } else { 941 if (__copy_to_user(ubuf + pos, data, copy)) 942 return -EFAULT; 943 } 944 } 945 return 0; 946 } 947 948 /* 949 * Convert from kernel XSAVES compacted format to standard format and copy 950 * to a ptrace buffer. It supports partial copy but pos always starts from 951 * zero. This is called from xstateregs_get() and there we check the CPU 952 * has XSAVES. 953 */ 954 int copyout_from_xsaves(unsigned int pos, unsigned int count, void *kbuf, 955 void __user *ubuf, struct xregs_state *xsave) 956 { 957 unsigned int offset, size; 958 int ret, i; 959 struct xstate_header header; 960 961 /* 962 * Currently copy_regset_to_user() starts from pos 0: 963 */ 964 if (unlikely(pos != 0)) 965 return -EFAULT; 966 967 /* 968 * The destination is a ptrace buffer; we put in only user xstates: 969 */ 970 memset(&header, 0, sizeof(header)); 971 header.xfeatures = xsave->header.xfeatures; 972 header.xfeatures &= ~XFEATURE_MASK_SUPERVISOR; 973 974 /* 975 * Copy xregs_state->header: 976 */ 977 offset = offsetof(struct xregs_state, header); 978 size = sizeof(header); 979 980 ret = xstate_copyout(offset, size, kbuf, ubuf, &header, 0, count); 981 982 if (ret) 983 return ret; 984 985 for (i = 0; i < XFEATURE_MAX; i++) { 986 /* 987 * Copy only in-use xstates: 988 */ 989 if ((header.xfeatures >> i) & 1) { 990 void *src = __raw_xsave_addr(xsave, 1 << i); 991 992 offset = xstate_offsets[i]; 993 size = xstate_sizes[i]; 994 995 ret = xstate_copyout(offset, size, kbuf, ubuf, src, 0, count); 996 997 if (ret) 998 return ret; 999 1000 if (offset + size >= count) 1001 break; 1002 } 1003 1004 } 1005 1006 /* 1007 * Fill xsave->i387.sw_reserved value for ptrace frame: 1008 */ 1009 offset = offsetof(struct fxregs_state, sw_reserved); 1010 size = sizeof(xstate_fx_sw_bytes); 1011 1012 ret = xstate_copyout(offset, size, kbuf, ubuf, xstate_fx_sw_bytes, 0, count); 1013 1014 if (ret) 1015 return ret; 1016 1017 return 0; 1018 } 1019 1020 /* 1021 * Convert from a ptrace standard-format buffer to kernel XSAVES format 1022 * and copy to the target thread. This is called from xstateregs_set() and 1023 * there we check the CPU has XSAVES and a whole standard-sized buffer 1024 * exists. 1025 */ 1026 int copyin_to_xsaves(const void *kbuf, const void __user *ubuf, 1027 struct xregs_state *xsave) 1028 { 1029 unsigned int offset, size; 1030 int i; 1031 u64 xfeatures; 1032 u64 allowed_features; 1033 1034 offset = offsetof(struct xregs_state, header); 1035 size = sizeof(xfeatures); 1036 1037 if (kbuf) { 1038 memcpy(&xfeatures, kbuf + offset, size); 1039 } else { 1040 if (__copy_from_user(&xfeatures, ubuf + offset, size)) 1041 return -EFAULT; 1042 } 1043 1044 /* 1045 * Reject if the user sets any disabled or supervisor features: 1046 */ 1047 allowed_features = xfeatures_mask & ~XFEATURE_MASK_SUPERVISOR; 1048 1049 if (xfeatures & ~allowed_features) 1050 return -EINVAL; 1051 1052 for (i = 0; i < XFEATURE_MAX; i++) { 1053 u64 mask = ((u64)1 << i); 1054 1055 if (xfeatures & mask) { 1056 void *dst = __raw_xsave_addr(xsave, 1 << i); 1057 1058 offset = xstate_offsets[i]; 1059 size = xstate_sizes[i]; 1060 1061 if (kbuf) { 1062 memcpy(dst, kbuf + offset, size); 1063 } else { 1064 if (__copy_from_user(dst, ubuf + offset, size)) 1065 return -EFAULT; 1066 } 1067 } 1068 } 1069 1070 /* 1071 * The state that came in from userspace was user-state only. 1072 * Mask all the user states out of 'xfeatures': 1073 */ 1074 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR; 1075 1076 /* 1077 * Add back in the features that came in from userspace: 1078 */ 1079 xsave->header.xfeatures |= xfeatures; 1080 1081 return 0; 1082 } 1083