1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xsave/xrstor support. 4 * 5 * Author: Suresh Siddha <suresh.b.siddha@intel.com> 6 */ 7 #include <linux/bitops.h> 8 #include <linux/compat.h> 9 #include <linux/cpu.h> 10 #include <linux/mman.h> 11 #include <linux/nospec.h> 12 #include <linux/pkeys.h> 13 #include <linux/seq_file.h> 14 #include <linux/proc_fs.h> 15 #include <linux/vmalloc.h> 16 17 #include <asm/fpu/api.h> 18 #include <asm/fpu/regset.h> 19 #include <asm/fpu/signal.h> 20 #include <asm/fpu/xcr.h> 21 22 #include <asm/tlbflush.h> 23 #include <asm/prctl.h> 24 #include <asm/elf.h> 25 26 #include "context.h" 27 #include "internal.h" 28 #include "legacy.h" 29 #include "xstate.h" 30 31 #define for_each_extended_xfeature(bit, mask) \ 32 (bit) = FIRST_EXTENDED_XFEATURE; \ 33 for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask)) 34 35 /* 36 * Although we spell it out in here, the Processor Trace 37 * xfeature is completely unused. We use other mechanisms 38 * to save/restore PT state in Linux. 39 */ 40 static const char *xfeature_names[] = 41 { 42 "x87 floating point registers", 43 "SSE registers", 44 "AVX registers", 45 "MPX bounds registers", 46 "MPX CSR", 47 "AVX-512 opmask", 48 "AVX-512 Hi256", 49 "AVX-512 ZMM_Hi256", 50 "Processor Trace (unused)", 51 "Protection Keys User registers", 52 "PASID state", 53 "Control-flow User registers", 54 "Control-flow Kernel registers (unused)", 55 "unknown xstate feature", 56 "unknown xstate feature", 57 "unknown xstate feature", 58 "unknown xstate feature", 59 "AMX Tile config", 60 "AMX Tile data", 61 "unknown xstate feature", 62 }; 63 64 static unsigned short xsave_cpuid_features[] __initdata = { 65 [XFEATURE_FP] = X86_FEATURE_FPU, 66 [XFEATURE_SSE] = X86_FEATURE_XMM, 67 [XFEATURE_YMM] = X86_FEATURE_AVX, 68 [XFEATURE_BNDREGS] = X86_FEATURE_MPX, 69 [XFEATURE_BNDCSR] = X86_FEATURE_MPX, 70 [XFEATURE_OPMASK] = X86_FEATURE_AVX512F, 71 [XFEATURE_ZMM_Hi256] = X86_FEATURE_AVX512F, 72 [XFEATURE_Hi16_ZMM] = X86_FEATURE_AVX512F, 73 [XFEATURE_PT_UNIMPLEMENTED_SO_FAR] = X86_FEATURE_INTEL_PT, 74 [XFEATURE_PKRU] = X86_FEATURE_OSPKE, 75 [XFEATURE_PASID] = X86_FEATURE_ENQCMD, 76 [XFEATURE_CET_USER] = X86_FEATURE_SHSTK, 77 [XFEATURE_XTILE_CFG] = X86_FEATURE_AMX_TILE, 78 [XFEATURE_XTILE_DATA] = X86_FEATURE_AMX_TILE, 79 }; 80 81 static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init = 82 { [ 0 ... XFEATURE_MAX - 1] = -1}; 83 static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init = 84 { [ 0 ... XFEATURE_MAX - 1] = -1}; 85 static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init; 86 87 #define XSTATE_FLAG_SUPERVISOR BIT(0) 88 #define XSTATE_FLAG_ALIGNED64 BIT(1) 89 90 /* 91 * Return whether the system supports a given xfeature. 92 * 93 * Also return the name of the (most advanced) feature that the caller requested: 94 */ 95 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) 96 { 97 u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features; 98 99 if (unlikely(feature_name)) { 100 long xfeature_idx, max_idx; 101 u64 xfeatures_print; 102 /* 103 * So we use FLS here to be able to print the most advanced 104 * feature that was requested but is missing. So if a driver 105 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the 106 * missing AVX feature - this is the most informative message 107 * to users: 108 */ 109 if (xfeatures_missing) 110 xfeatures_print = xfeatures_missing; 111 else 112 xfeatures_print = xfeatures_needed; 113 114 xfeature_idx = fls64(xfeatures_print)-1; 115 max_idx = ARRAY_SIZE(xfeature_names)-1; 116 xfeature_idx = min(xfeature_idx, max_idx); 117 118 *feature_name = xfeature_names[xfeature_idx]; 119 } 120 121 if (xfeatures_missing) 122 return 0; 123 124 return 1; 125 } 126 EXPORT_SYMBOL_GPL(cpu_has_xfeatures); 127 128 static bool xfeature_is_aligned64(int xfeature_nr) 129 { 130 return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64; 131 } 132 133 static bool xfeature_is_supervisor(int xfeature_nr) 134 { 135 return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR; 136 } 137 138 static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature) 139 { 140 unsigned int offs, i; 141 142 /* 143 * Non-compacted format and legacy features use the cached fixed 144 * offsets. 145 */ 146 if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) || 147 xfeature <= XFEATURE_SSE) 148 return xstate_offsets[xfeature]; 149 150 /* 151 * Compacted format offsets depend on the actual content of the 152 * compacted xsave area which is determined by the xcomp_bv header 153 * field. 154 */ 155 offs = FXSAVE_SIZE + XSAVE_HDR_SIZE; 156 for_each_extended_xfeature(i, xcomp_bv) { 157 if (xfeature_is_aligned64(i)) 158 offs = ALIGN(offs, 64); 159 if (i == xfeature) 160 break; 161 offs += xstate_sizes[i]; 162 } 163 return offs; 164 } 165 166 /* 167 * Enable the extended processor state save/restore feature. 168 * Called once per CPU onlining. 169 */ 170 void fpu__init_cpu_xstate(void) 171 { 172 if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features) 173 return; 174 175 cr4_set_bits(X86_CR4_OSXSAVE); 176 177 /* 178 * Must happen after CR4 setup and before xsetbv() to allow KVM 179 * lazy passthrough. Write independent of the dynamic state static 180 * key as that does not work on the boot CPU. This also ensures 181 * that any stale state is wiped out from XFD. Reset the per CPU 182 * xfd cache too. 183 */ 184 if (cpu_feature_enabled(X86_FEATURE_XFD)) 185 xfd_set_state(init_fpstate.xfd); 186 187 /* 188 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features 189 * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user 190 * states can be set here. 191 */ 192 xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features); 193 194 /* 195 * MSR_IA32_XSS sets supervisor states managed by XSAVES. 196 */ 197 if (boot_cpu_has(X86_FEATURE_XSAVES)) { 198 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | 199 xfeatures_mask_independent()); 200 } 201 } 202 203 static bool xfeature_enabled(enum xfeature xfeature) 204 { 205 return fpu_kernel_cfg.max_features & BIT_ULL(xfeature); 206 } 207 208 /* 209 * Record the offsets and sizes of various xstates contained 210 * in the XSAVE state memory layout. 211 */ 212 static void __init setup_xstate_cache(void) 213 { 214 u32 eax, ebx, ecx, edx, i; 215 /* start at the beginning of the "extended state" */ 216 unsigned int last_good_offset = offsetof(struct xregs_state, 217 extended_state_area); 218 /* 219 * The FP xstates and SSE xstates are legacy states. They are always 220 * in the fixed offsets in the xsave area in either compacted form 221 * or standard form. 222 */ 223 xstate_offsets[XFEATURE_FP] = 0; 224 xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state, 225 xmm_space); 226 227 xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP]; 228 xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state, 229 xmm_space); 230 231 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { 232 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 233 234 xstate_sizes[i] = eax; 235 xstate_flags[i] = ecx; 236 237 /* 238 * If an xfeature is supervisor state, the offset in EBX is 239 * invalid, leave it to -1. 240 */ 241 if (xfeature_is_supervisor(i)) 242 continue; 243 244 xstate_offsets[i] = ebx; 245 246 /* 247 * In our xstate size checks, we assume that the highest-numbered 248 * xstate feature has the highest offset in the buffer. Ensure 249 * it does. 250 */ 251 WARN_ONCE(last_good_offset > xstate_offsets[i], 252 "x86/fpu: misordered xstate at %d\n", last_good_offset); 253 254 last_good_offset = xstate_offsets[i]; 255 } 256 } 257 258 static void __init print_xstate_feature(u64 xstate_mask) 259 { 260 const char *feature_name; 261 262 if (cpu_has_xfeatures(xstate_mask, &feature_name)) 263 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); 264 } 265 266 /* 267 * Print out all the supported xstate features: 268 */ 269 static void __init print_xstate_features(void) 270 { 271 print_xstate_feature(XFEATURE_MASK_FP); 272 print_xstate_feature(XFEATURE_MASK_SSE); 273 print_xstate_feature(XFEATURE_MASK_YMM); 274 print_xstate_feature(XFEATURE_MASK_BNDREGS); 275 print_xstate_feature(XFEATURE_MASK_BNDCSR); 276 print_xstate_feature(XFEATURE_MASK_OPMASK); 277 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); 278 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); 279 print_xstate_feature(XFEATURE_MASK_PKRU); 280 print_xstate_feature(XFEATURE_MASK_PASID); 281 print_xstate_feature(XFEATURE_MASK_CET_USER); 282 print_xstate_feature(XFEATURE_MASK_XTILE_CFG); 283 print_xstate_feature(XFEATURE_MASK_XTILE_DATA); 284 } 285 286 /* 287 * This check is important because it is easy to get XSTATE_* 288 * confused with XSTATE_BIT_*. 289 */ 290 #define CHECK_XFEATURE(nr) do { \ 291 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ 292 WARN_ON(nr >= XFEATURE_MAX); \ 293 } while (0) 294 295 /* 296 * Print out xstate component offsets and sizes 297 */ 298 static void __init print_xstate_offset_size(void) 299 { 300 int i; 301 302 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { 303 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", 304 i, xfeature_get_offset(fpu_kernel_cfg.max_features, i), 305 i, xstate_sizes[i]); 306 } 307 } 308 309 /* 310 * This function is called only during boot time when x86 caps are not set 311 * up and alternative can not be used yet. 312 */ 313 static __init void os_xrstor_booting(struct xregs_state *xstate) 314 { 315 u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE; 316 u32 lmask = mask; 317 u32 hmask = mask >> 32; 318 int err; 319 320 if (cpu_feature_enabled(X86_FEATURE_XSAVES)) 321 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); 322 else 323 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); 324 325 /* 326 * We should never fault when copying from a kernel buffer, and the FPU 327 * state we set at boot time should be valid. 328 */ 329 WARN_ON_FPU(err); 330 } 331 332 /* 333 * All supported features have either init state all zeros or are 334 * handled in setup_init_fpu() individually. This is an explicit 335 * feature list and does not use XFEATURE_MASK*SUPPORTED to catch 336 * newly added supported features at build time and make people 337 * actually look at the init state for the new feature. 338 */ 339 #define XFEATURES_INIT_FPSTATE_HANDLED \ 340 (XFEATURE_MASK_FP | \ 341 XFEATURE_MASK_SSE | \ 342 XFEATURE_MASK_YMM | \ 343 XFEATURE_MASK_OPMASK | \ 344 XFEATURE_MASK_ZMM_Hi256 | \ 345 XFEATURE_MASK_Hi16_ZMM | \ 346 XFEATURE_MASK_PKRU | \ 347 XFEATURE_MASK_BNDREGS | \ 348 XFEATURE_MASK_BNDCSR | \ 349 XFEATURE_MASK_PASID | \ 350 XFEATURE_MASK_CET_USER | \ 351 XFEATURE_MASK_XTILE) 352 353 /* 354 * setup the xstate image representing the init state 355 */ 356 static void __init setup_init_fpu_buf(void) 357 { 358 BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED | 359 XFEATURE_MASK_SUPERVISOR_SUPPORTED) != 360 XFEATURES_INIT_FPSTATE_HANDLED); 361 362 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 363 return; 364 365 print_xstate_features(); 366 367 xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures); 368 369 /* 370 * Init all the features state with header.xfeatures being 0x0 371 */ 372 os_xrstor_booting(&init_fpstate.regs.xsave); 373 374 /* 375 * All components are now in init state. Read the state back so 376 * that init_fpstate contains all non-zero init state. This only 377 * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because 378 * those use the init optimization which skips writing data for 379 * components in init state. 380 * 381 * XSAVE could be used, but that would require to reshuffle the 382 * data when XSAVEC/S is available because XSAVEC/S uses xstate 383 * compaction. But doing so is a pointless exercise because most 384 * components have an all zeros init state except for the legacy 385 * ones (FP and SSE). Those can be saved with FXSAVE into the 386 * legacy area. Adding new features requires to ensure that init 387 * state is all zeroes or if not to add the necessary handling 388 * here. 389 */ 390 fxsave(&init_fpstate.regs.fxsave); 391 } 392 393 int xfeature_size(int xfeature_nr) 394 { 395 u32 eax, ebx, ecx, edx; 396 397 CHECK_XFEATURE(xfeature_nr); 398 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 399 return eax; 400 } 401 402 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ 403 static int validate_user_xstate_header(const struct xstate_header *hdr, 404 struct fpstate *fpstate) 405 { 406 /* No unknown or supervisor features may be set */ 407 if (hdr->xfeatures & ~fpstate->user_xfeatures) 408 return -EINVAL; 409 410 /* Userspace must use the uncompacted format */ 411 if (hdr->xcomp_bv) 412 return -EINVAL; 413 414 /* 415 * If 'reserved' is shrunken to add a new field, make sure to validate 416 * that new field here! 417 */ 418 BUILD_BUG_ON(sizeof(hdr->reserved) != 48); 419 420 /* No reserved bits may be set */ 421 if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved))) 422 return -EINVAL; 423 424 return 0; 425 } 426 427 static void __init __xstate_dump_leaves(void) 428 { 429 int i; 430 u32 eax, ebx, ecx, edx; 431 static int should_dump = 1; 432 433 if (!should_dump) 434 return; 435 should_dump = 0; 436 /* 437 * Dump out a few leaves past the ones that we support 438 * just in case there are some goodies up there 439 */ 440 for (i = 0; i < XFEATURE_MAX + 10; i++) { 441 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 442 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", 443 XSTATE_CPUID, i, eax, ebx, ecx, edx); 444 } 445 } 446 447 #define XSTATE_WARN_ON(x, fmt, ...) do { \ 448 if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) { \ 449 __xstate_dump_leaves(); \ 450 } \ 451 } while (0) 452 453 #define XCHECK_SZ(sz, nr, __struct) ({ \ 454 if (WARN_ONCE(sz != sizeof(__struct), \ 455 "[%s]: struct is %zu bytes, cpu state %d bytes\n", \ 456 xfeature_names[nr], sizeof(__struct), sz)) { \ 457 __xstate_dump_leaves(); \ 458 } \ 459 true; \ 460 }) 461 462 463 /** 464 * check_xtile_data_against_struct - Check tile data state size. 465 * 466 * Calculate the state size by multiplying the single tile size which is 467 * recorded in a C struct, and the number of tiles that the CPU informs. 468 * Compare the provided size with the calculation. 469 * 470 * @size: The tile data state size 471 * 472 * Returns: 0 on success, -EINVAL on mismatch. 473 */ 474 static int __init check_xtile_data_against_struct(int size) 475 { 476 u32 max_palid, palid, state_size; 477 u32 eax, ebx, ecx, edx; 478 u16 max_tile; 479 480 /* 481 * Check the maximum palette id: 482 * eax: the highest numbered palette subleaf. 483 */ 484 cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx); 485 486 /* 487 * Cross-check each tile size and find the maximum number of 488 * supported tiles. 489 */ 490 for (palid = 1, max_tile = 0; palid <= max_palid; palid++) { 491 u16 tile_size, max; 492 493 /* 494 * Check the tile size info: 495 * eax[31:16]: bytes per title 496 * ebx[31:16]: the max names (or max number of tiles) 497 */ 498 cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx); 499 tile_size = eax >> 16; 500 max = ebx >> 16; 501 502 if (tile_size != sizeof(struct xtile_data)) { 503 pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n", 504 __stringify(XFEATURE_XTILE_DATA), 505 sizeof(struct xtile_data), tile_size); 506 __xstate_dump_leaves(); 507 return -EINVAL; 508 } 509 510 if (max > max_tile) 511 max_tile = max; 512 } 513 514 state_size = sizeof(struct xtile_data) * max_tile; 515 if (size != state_size) { 516 pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n", 517 __stringify(XFEATURE_XTILE_DATA), state_size, size); 518 __xstate_dump_leaves(); 519 return -EINVAL; 520 } 521 return 0; 522 } 523 524 /* 525 * We have a C struct for each 'xstate'. We need to ensure 526 * that our software representation matches what the CPU 527 * tells us about the state's size. 528 */ 529 static bool __init check_xstate_against_struct(int nr) 530 { 531 /* 532 * Ask the CPU for the size of the state. 533 */ 534 int sz = xfeature_size(nr); 535 536 /* 537 * Match each CPU state with the corresponding software 538 * structure. 539 */ 540 switch (nr) { 541 case XFEATURE_YMM: return XCHECK_SZ(sz, nr, struct ymmh_struct); 542 case XFEATURE_BNDREGS: return XCHECK_SZ(sz, nr, struct mpx_bndreg_state); 543 case XFEATURE_BNDCSR: return XCHECK_SZ(sz, nr, struct mpx_bndcsr_state); 544 case XFEATURE_OPMASK: return XCHECK_SZ(sz, nr, struct avx_512_opmask_state); 545 case XFEATURE_ZMM_Hi256: return XCHECK_SZ(sz, nr, struct avx_512_zmm_uppers_state); 546 case XFEATURE_Hi16_ZMM: return XCHECK_SZ(sz, nr, struct avx_512_hi16_state); 547 case XFEATURE_PKRU: return XCHECK_SZ(sz, nr, struct pkru_state); 548 case XFEATURE_PASID: return XCHECK_SZ(sz, nr, struct ia32_pasid_state); 549 case XFEATURE_XTILE_CFG: return XCHECK_SZ(sz, nr, struct xtile_cfg); 550 case XFEATURE_CET_USER: return XCHECK_SZ(sz, nr, struct cet_user_state); 551 case XFEATURE_XTILE_DATA: check_xtile_data_against_struct(sz); return true; 552 default: 553 XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr); 554 return false; 555 } 556 557 return true; 558 } 559 560 static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted) 561 { 562 unsigned int topmost = fls64(xfeatures) - 1; 563 unsigned int offset = xstate_offsets[topmost]; 564 565 if (topmost <= XFEATURE_SSE) 566 return sizeof(struct xregs_state); 567 568 if (compacted) 569 offset = xfeature_get_offset(xfeatures, topmost); 570 return offset + xstate_sizes[topmost]; 571 } 572 573 /* 574 * This essentially double-checks what the cpu told us about 575 * how large the XSAVE buffer needs to be. We are recalculating 576 * it to be safe. 577 * 578 * Independent XSAVE features allocate their own buffers and are not 579 * covered by these checks. Only the size of the buffer for task->fpu 580 * is checked here. 581 */ 582 static bool __init paranoid_xstate_size_valid(unsigned int kernel_size) 583 { 584 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); 585 bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES); 586 unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE; 587 int i; 588 589 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { 590 if (!check_xstate_against_struct(i)) 591 return false; 592 /* 593 * Supervisor state components can be managed only by 594 * XSAVES. 595 */ 596 if (!xsaves && xfeature_is_supervisor(i)) { 597 XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i); 598 return false; 599 } 600 } 601 size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted); 602 XSTATE_WARN_ON(size != kernel_size, 603 "size %u != kernel_size %u\n", size, kernel_size); 604 return size == kernel_size; 605 } 606 607 /* 608 * Get total size of enabled xstates in XCR0 | IA32_XSS. 609 * 610 * Note the SDM's wording here. "sub-function 0" only enumerates 611 * the size of the *user* states. If we use it to size a buffer 612 * that we use 'XSAVES' on, we could potentially overflow the 613 * buffer because 'XSAVES' saves system states too. 614 * 615 * This also takes compaction into account. So this works for 616 * XSAVEC as well. 617 */ 618 static unsigned int __init get_compacted_size(void) 619 { 620 unsigned int eax, ebx, ecx, edx; 621 /* 622 * - CPUID function 0DH, sub-function 1: 623 * EBX enumerates the size (in bytes) required by 624 * the XSAVES instruction for an XSAVE area 625 * containing all the state components 626 * corresponding to bits currently set in 627 * XCR0 | IA32_XSS. 628 * 629 * When XSAVES is not available but XSAVEC is (virt), then there 630 * are no supervisor states, but XSAVEC still uses compacted 631 * format. 632 */ 633 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 634 return ebx; 635 } 636 637 /* 638 * Get the total size of the enabled xstates without the independent supervisor 639 * features. 640 */ 641 static unsigned int __init get_xsave_compacted_size(void) 642 { 643 u64 mask = xfeatures_mask_independent(); 644 unsigned int size; 645 646 if (!mask) 647 return get_compacted_size(); 648 649 /* Disable independent features. */ 650 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); 651 652 /* 653 * Ask the hardware what size is required of the buffer. 654 * This is the size required for the task->fpu buffer. 655 */ 656 size = get_compacted_size(); 657 658 /* Re-enable independent features so XSAVES will work on them again. */ 659 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask); 660 661 return size; 662 } 663 664 static unsigned int __init get_xsave_size_user(void) 665 { 666 unsigned int eax, ebx, ecx, edx; 667 /* 668 * - CPUID function 0DH, sub-function 0: 669 * EBX enumerates the size (in bytes) required by 670 * the XSAVE instruction for an XSAVE area 671 * containing all the *user* state components 672 * corresponding to bits currently set in XCR0. 673 */ 674 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 675 return ebx; 676 } 677 678 static int __init init_xstate_size(void) 679 { 680 /* Recompute the context size for enabled features: */ 681 unsigned int user_size, kernel_size, kernel_default_size; 682 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); 683 684 /* Uncompacted user space size */ 685 user_size = get_xsave_size_user(); 686 687 /* 688 * XSAVES kernel size includes supervisor states and uses compacted 689 * format. XSAVEC uses compacted format, but does not save 690 * supervisor states. 691 * 692 * XSAVE[OPT] do not support supervisor states so kernel and user 693 * size is identical. 694 */ 695 if (compacted) 696 kernel_size = get_xsave_compacted_size(); 697 else 698 kernel_size = user_size; 699 700 kernel_default_size = 701 xstate_calculate_size(fpu_kernel_cfg.default_features, compacted); 702 703 if (!paranoid_xstate_size_valid(kernel_size)) 704 return -EINVAL; 705 706 fpu_kernel_cfg.max_size = kernel_size; 707 fpu_user_cfg.max_size = user_size; 708 709 fpu_kernel_cfg.default_size = kernel_default_size; 710 fpu_user_cfg.default_size = 711 xstate_calculate_size(fpu_user_cfg.default_features, false); 712 713 return 0; 714 } 715 716 /* 717 * We enabled the XSAVE hardware, but something went wrong and 718 * we can not use it. Disable it. 719 */ 720 static void __init fpu__init_disable_system_xstate(unsigned int legacy_size) 721 { 722 fpu_kernel_cfg.max_features = 0; 723 cr4_clear_bits(X86_CR4_OSXSAVE); 724 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 725 726 /* Restore the legacy size.*/ 727 fpu_kernel_cfg.max_size = legacy_size; 728 fpu_kernel_cfg.default_size = legacy_size; 729 fpu_user_cfg.max_size = legacy_size; 730 fpu_user_cfg.default_size = legacy_size; 731 732 /* 733 * Prevent enabling the static branch which enables writes to the 734 * XFD MSR. 735 */ 736 init_fpstate.xfd = 0; 737 738 fpstate_reset(¤t->thread.fpu); 739 } 740 741 /* 742 * Enable and initialize the xsave feature. 743 * Called once per system bootup. 744 */ 745 void __init fpu__init_system_xstate(unsigned int legacy_size) 746 { 747 unsigned int eax, ebx, ecx, edx; 748 u64 xfeatures; 749 int err; 750 int i; 751 752 if (!boot_cpu_has(X86_FEATURE_FPU)) { 753 pr_info("x86/fpu: No FPU detected\n"); 754 return; 755 } 756 757 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 758 pr_info("x86/fpu: x87 FPU will use %s\n", 759 boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE"); 760 return; 761 } 762 763 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { 764 WARN_ON_FPU(1); 765 return; 766 } 767 768 /* 769 * Find user xstates supported by the processor. 770 */ 771 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 772 fpu_kernel_cfg.max_features = eax + ((u64)edx << 32); 773 774 /* 775 * Find supervisor xstates supported by the processor. 776 */ 777 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 778 fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32); 779 780 if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { 781 /* 782 * This indicates that something really unexpected happened 783 * with the enumeration. Disable XSAVE and try to continue 784 * booting without it. This is too early to BUG(). 785 */ 786 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", 787 fpu_kernel_cfg.max_features); 788 goto out_disable; 789 } 790 791 /* 792 * Clear XSAVE features that are disabled in the normal CPUID. 793 */ 794 for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) { 795 unsigned short cid = xsave_cpuid_features[i]; 796 797 /* Careful: X86_FEATURE_FPU is 0! */ 798 if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid)) 799 fpu_kernel_cfg.max_features &= ~BIT_ULL(i); 800 } 801 802 if (!cpu_feature_enabled(X86_FEATURE_XFD)) 803 fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC; 804 805 if (!cpu_feature_enabled(X86_FEATURE_XSAVES)) 806 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED; 807 else 808 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED | 809 XFEATURE_MASK_SUPERVISOR_SUPPORTED; 810 811 fpu_user_cfg.max_features = fpu_kernel_cfg.max_features; 812 fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED; 813 814 /* Clean out dynamic features from default */ 815 fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features; 816 fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC; 817 818 fpu_user_cfg.default_features = fpu_user_cfg.max_features; 819 fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC; 820 821 /* Store it for paranoia check at the end */ 822 xfeatures = fpu_kernel_cfg.max_features; 823 824 /* 825 * Initialize the default XFD state in initfp_state and enable the 826 * dynamic sizing mechanism if dynamic states are available. The 827 * static key cannot be enabled here because this runs before 828 * jump_label_init(). This is delayed to an initcall. 829 */ 830 init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC; 831 832 /* Set up compaction feature bit */ 833 if (cpu_feature_enabled(X86_FEATURE_XSAVEC) || 834 cpu_feature_enabled(X86_FEATURE_XSAVES)) 835 setup_force_cpu_cap(X86_FEATURE_XCOMPACTED); 836 837 /* Enable xstate instructions to be able to continue with initialization: */ 838 fpu__init_cpu_xstate(); 839 840 /* Cache size, offset and flags for initialization */ 841 setup_xstate_cache(); 842 843 err = init_xstate_size(); 844 if (err) 845 goto out_disable; 846 847 /* Reset the state for the current task */ 848 fpstate_reset(¤t->thread.fpu); 849 850 /* 851 * Update info used for ptrace frames; use standard-format size and no 852 * supervisor xstates: 853 */ 854 update_regset_xstate_info(fpu_user_cfg.max_size, 855 fpu_user_cfg.max_features); 856 857 /* 858 * init_fpstate excludes dynamic states as they are large but init 859 * state is zero. 860 */ 861 init_fpstate.size = fpu_kernel_cfg.default_size; 862 init_fpstate.xfeatures = fpu_kernel_cfg.default_features; 863 864 if (init_fpstate.size > sizeof(init_fpstate.regs)) { 865 pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n", 866 sizeof(init_fpstate.regs), init_fpstate.size); 867 goto out_disable; 868 } 869 870 setup_init_fpu_buf(); 871 872 /* 873 * Paranoia check whether something in the setup modified the 874 * xfeatures mask. 875 */ 876 if (xfeatures != fpu_kernel_cfg.max_features) { 877 pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n", 878 xfeatures, fpu_kernel_cfg.max_features); 879 goto out_disable; 880 } 881 882 /* 883 * CPU capabilities initialization runs before FPU init. So 884 * X86_FEATURE_OSXSAVE is not set. Now that XSAVE is completely 885 * functional, set the feature bit so depending code works. 886 */ 887 setup_force_cpu_cap(X86_FEATURE_OSXSAVE); 888 889 print_xstate_offset_size(); 890 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", 891 fpu_kernel_cfg.max_features, 892 fpu_kernel_cfg.max_size, 893 boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard"); 894 return; 895 896 out_disable: 897 /* something went wrong, try to boot without any XSAVE support */ 898 fpu__init_disable_system_xstate(legacy_size); 899 } 900 901 /* 902 * Restore minimal FPU state after suspend: 903 */ 904 void fpu__resume_cpu(void) 905 { 906 /* 907 * Restore XCR0 on xsave capable CPUs: 908 */ 909 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) 910 xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features); 911 912 /* 913 * Restore IA32_XSS. The same CPUID bit enumerates support 914 * of XSAVES and MSR_IA32_XSS. 915 */ 916 if (cpu_feature_enabled(X86_FEATURE_XSAVES)) { 917 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | 918 xfeatures_mask_independent()); 919 } 920 921 if (fpu_state_size_dynamic()) 922 wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd); 923 } 924 925 /* 926 * Given an xstate feature nr, calculate where in the xsave 927 * buffer the state is. Callers should ensure that the buffer 928 * is valid. 929 */ 930 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 931 { 932 u64 xcomp_bv = xsave->header.xcomp_bv; 933 934 if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) 935 return NULL; 936 937 if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) { 938 if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr)))) 939 return NULL; 940 } 941 942 return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr); 943 } 944 945 /* 946 * Given the xsave area and a state inside, this function returns the 947 * address of the state. 948 * 949 * This is the API that is called to get xstate address in either 950 * standard format or compacted format of xsave area. 951 * 952 * Note that if there is no data for the field in the xsave buffer 953 * this will return NULL. 954 * 955 * Inputs: 956 * xstate: the thread's storage area for all FPU data 957 * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, 958 * XFEATURE_SSE, etc...) 959 * Output: 960 * address of the state in the xsave area, or NULL if the 961 * field is not present in the xsave buffer. 962 */ 963 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 964 { 965 /* 966 * Do we even *have* xsave state? 967 */ 968 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 969 return NULL; 970 971 /* 972 * We should not ever be requesting features that we 973 * have not enabled. 974 */ 975 if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) 976 return NULL; 977 978 /* 979 * This assumes the last 'xsave*' instruction to 980 * have requested that 'xfeature_nr' be saved. 981 * If it did not, we might be seeing and old value 982 * of the field in the buffer. 983 * 984 * This can happen because the last 'xsave' did not 985 * request that this feature be saved (unlikely) 986 * or because the "init optimization" caused it 987 * to not be saved. 988 */ 989 if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr))) 990 return NULL; 991 992 return __raw_xsave_addr(xsave, xfeature_nr); 993 } 994 995 #ifdef CONFIG_ARCH_HAS_PKEYS 996 997 /* 998 * This will go out and modify PKRU register to set the access 999 * rights for @pkey to @init_val. 1000 */ 1001 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 1002 unsigned long init_val) 1003 { 1004 u32 old_pkru, new_pkru_bits = 0; 1005 int pkey_shift; 1006 1007 /* 1008 * This check implies XSAVE support. OSPKE only gets 1009 * set if we enable XSAVE and we enable PKU in XCR0. 1010 */ 1011 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 1012 return -EINVAL; 1013 1014 /* 1015 * This code should only be called with valid 'pkey' 1016 * values originating from in-kernel users. Complain 1017 * if a bad value is observed. 1018 */ 1019 if (WARN_ON_ONCE(pkey >= arch_max_pkey())) 1020 return -EINVAL; 1021 1022 /* Set the bits we need in PKRU: */ 1023 if (init_val & PKEY_DISABLE_ACCESS) 1024 new_pkru_bits |= PKRU_AD_BIT; 1025 if (init_val & PKEY_DISABLE_WRITE) 1026 new_pkru_bits |= PKRU_WD_BIT; 1027 1028 /* Shift the bits in to the correct place in PKRU for pkey: */ 1029 pkey_shift = pkey * PKRU_BITS_PER_PKEY; 1030 new_pkru_bits <<= pkey_shift; 1031 1032 /* Get old PKRU and mask off any old bits in place: */ 1033 old_pkru = read_pkru(); 1034 old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); 1035 1036 /* Write old part along with new part: */ 1037 write_pkru(old_pkru | new_pkru_bits); 1038 1039 return 0; 1040 } 1041 #endif /* ! CONFIG_ARCH_HAS_PKEYS */ 1042 1043 static void copy_feature(bool from_xstate, struct membuf *to, void *xstate, 1044 void *init_xstate, unsigned int size) 1045 { 1046 membuf_write(to, from_xstate ? xstate : init_xstate, size); 1047 } 1048 1049 /** 1050 * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer 1051 * @to: membuf descriptor 1052 * @fpstate: The fpstate buffer from which to copy 1053 * @xfeatures: The mask of xfeatures to save (XSAVE mode only) 1054 * @pkru_val: The PKRU value to store in the PKRU component 1055 * @copy_mode: The requested copy mode 1056 * 1057 * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming 1058 * format, i.e. from the kernel internal hardware dependent storage format 1059 * to the requested @mode. UABI XSTATE is always uncompacted! 1060 * 1061 * It supports partial copy but @to.pos always starts from zero. 1062 */ 1063 void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate, 1064 u64 xfeatures, u32 pkru_val, 1065 enum xstate_copy_mode copy_mode) 1066 { 1067 const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr); 1068 struct xregs_state *xinit = &init_fpstate.regs.xsave; 1069 struct xregs_state *xsave = &fpstate->regs.xsave; 1070 struct xstate_header header; 1071 unsigned int zerofrom; 1072 u64 mask; 1073 int i; 1074 1075 memset(&header, 0, sizeof(header)); 1076 header.xfeatures = xsave->header.xfeatures; 1077 1078 /* Mask out the feature bits depending on copy mode */ 1079 switch (copy_mode) { 1080 case XSTATE_COPY_FP: 1081 header.xfeatures &= XFEATURE_MASK_FP; 1082 break; 1083 1084 case XSTATE_COPY_FX: 1085 header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE; 1086 break; 1087 1088 case XSTATE_COPY_XSAVE: 1089 header.xfeatures &= fpstate->user_xfeatures & xfeatures; 1090 break; 1091 } 1092 1093 /* Copy FP state up to MXCSR */ 1094 copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387, 1095 &xinit->i387, off_mxcsr); 1096 1097 /* Copy MXCSR when SSE or YMM are set in the feature mask */ 1098 copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM), 1099 &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr, 1100 MXCSR_AND_FLAGS_SIZE); 1101 1102 /* Copy the remaining FP state */ 1103 copy_feature(header.xfeatures & XFEATURE_MASK_FP, 1104 &to, &xsave->i387.st_space, &xinit->i387.st_space, 1105 sizeof(xsave->i387.st_space)); 1106 1107 /* Copy the SSE state - shared with YMM, but independently managed */ 1108 copy_feature(header.xfeatures & XFEATURE_MASK_SSE, 1109 &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space, 1110 sizeof(xsave->i387.xmm_space)); 1111 1112 if (copy_mode != XSTATE_COPY_XSAVE) 1113 goto out; 1114 1115 /* Zero the padding area */ 1116 membuf_zero(&to, sizeof(xsave->i387.padding)); 1117 1118 /* Copy xsave->i387.sw_reserved */ 1119 membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved)); 1120 1121 /* Copy the user space relevant state of @xsave->header */ 1122 membuf_write(&to, &header, sizeof(header)); 1123 1124 zerofrom = offsetof(struct xregs_state, extended_state_area); 1125 1126 /* 1127 * This 'mask' indicates which states to copy from fpstate. 1128 * Those extended states that are not present in fpstate are 1129 * either disabled or initialized: 1130 * 1131 * In non-compacted format, disabled features still occupy 1132 * state space but there is no state to copy from in the 1133 * compacted init_fpstate. The gap tracking will zero these 1134 * states. 1135 * 1136 * The extended features have an all zeroes init state. Thus, 1137 * remove them from 'mask' to zero those features in the user 1138 * buffer instead of retrieving them from init_fpstate. 1139 */ 1140 mask = header.xfeatures; 1141 1142 for_each_extended_xfeature(i, mask) { 1143 /* 1144 * If there was a feature or alignment gap, zero the space 1145 * in the destination buffer. 1146 */ 1147 if (zerofrom < xstate_offsets[i]) 1148 membuf_zero(&to, xstate_offsets[i] - zerofrom); 1149 1150 if (i == XFEATURE_PKRU) { 1151 struct pkru_state pkru = {0}; 1152 /* 1153 * PKRU is not necessarily up to date in the 1154 * XSAVE buffer. Use the provided value. 1155 */ 1156 pkru.pkru = pkru_val; 1157 membuf_write(&to, &pkru, sizeof(pkru)); 1158 } else { 1159 membuf_write(&to, 1160 __raw_xsave_addr(xsave, i), 1161 xstate_sizes[i]); 1162 } 1163 /* 1164 * Keep track of the last copied state in the non-compacted 1165 * target buffer for gap zeroing. 1166 */ 1167 zerofrom = xstate_offsets[i] + xstate_sizes[i]; 1168 } 1169 1170 out: 1171 if (to.left) 1172 membuf_zero(&to, to.left); 1173 } 1174 1175 /** 1176 * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer 1177 * @to: membuf descriptor 1178 * @tsk: The task from which to copy the saved xstate 1179 * @copy_mode: The requested copy mode 1180 * 1181 * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming 1182 * format, i.e. from the kernel internal hardware dependent storage format 1183 * to the requested @mode. UABI XSTATE is always uncompacted! 1184 * 1185 * It supports partial copy but @to.pos always starts from zero. 1186 */ 1187 void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk, 1188 enum xstate_copy_mode copy_mode) 1189 { 1190 __copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate, 1191 tsk->thread.fpu.fpstate->user_xfeatures, 1192 tsk->thread.pkru, copy_mode); 1193 } 1194 1195 static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size, 1196 const void *kbuf, const void __user *ubuf) 1197 { 1198 if (kbuf) { 1199 memcpy(dst, kbuf + offset, size); 1200 } else { 1201 if (copy_from_user(dst, ubuf + offset, size)) 1202 return -EFAULT; 1203 } 1204 return 0; 1205 } 1206 1207 1208 /** 1209 * copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate 1210 * @fpstate: The fpstate buffer to copy to 1211 * @kbuf: The UABI format buffer, if it comes from the kernel 1212 * @ubuf: The UABI format buffer, if it comes from userspace 1213 * @pkru: The location to write the PKRU value to 1214 * 1215 * Converts from the UABI format into the kernel internal hardware 1216 * dependent format. 1217 * 1218 * This function ultimately has three different callers with distinct PKRU 1219 * behavior. 1220 * 1. When called from sigreturn the PKRU register will be restored from 1221 * @fpstate via an XRSTOR. Correctly copying the UABI format buffer to 1222 * @fpstate is sufficient to cover this case, but the caller will also 1223 * pass a pointer to the thread_struct's pkru field in @pkru and updating 1224 * it is harmless. 1225 * 2. When called from ptrace the PKRU register will be restored from the 1226 * thread_struct's pkru field. A pointer to that is passed in @pkru. 1227 * The kernel will restore it manually, so the XRSTOR behavior that resets 1228 * the PKRU register to the hardware init value (0) if the corresponding 1229 * xfeatures bit is not set is emulated here. 1230 * 3. When called from KVM the PKRU register will be restored from the vcpu's 1231 * pkru field. A pointer to that is passed in @pkru. KVM hasn't used 1232 * XRSTOR and hasn't had the PKRU resetting behavior described above. To 1233 * preserve that KVM behavior, it passes NULL for @pkru if the xfeatures 1234 * bit is not set. 1235 */ 1236 static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf, 1237 const void __user *ubuf, u32 *pkru) 1238 { 1239 struct xregs_state *xsave = &fpstate->regs.xsave; 1240 unsigned int offset, size; 1241 struct xstate_header hdr; 1242 u64 mask; 1243 int i; 1244 1245 offset = offsetof(struct xregs_state, header); 1246 if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf)) 1247 return -EFAULT; 1248 1249 if (validate_user_xstate_header(&hdr, fpstate)) 1250 return -EINVAL; 1251 1252 /* Validate MXCSR when any of the related features is in use */ 1253 mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM; 1254 if (hdr.xfeatures & mask) { 1255 u32 mxcsr[2]; 1256 1257 offset = offsetof(struct fxregs_state, mxcsr); 1258 if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf)) 1259 return -EFAULT; 1260 1261 /* Reserved bits in MXCSR must be zero. */ 1262 if (mxcsr[0] & ~mxcsr_feature_mask) 1263 return -EINVAL; 1264 1265 /* SSE and YMM require MXCSR even when FP is not in use. */ 1266 if (!(hdr.xfeatures & XFEATURE_MASK_FP)) { 1267 xsave->i387.mxcsr = mxcsr[0]; 1268 xsave->i387.mxcsr_mask = mxcsr[1]; 1269 } 1270 } 1271 1272 for (i = 0; i < XFEATURE_MAX; i++) { 1273 mask = BIT_ULL(i); 1274 1275 if (hdr.xfeatures & mask) { 1276 void *dst = __raw_xsave_addr(xsave, i); 1277 1278 offset = xstate_offsets[i]; 1279 size = xstate_sizes[i]; 1280 1281 if (copy_from_buffer(dst, offset, size, kbuf, ubuf)) 1282 return -EFAULT; 1283 } 1284 } 1285 1286 if (hdr.xfeatures & XFEATURE_MASK_PKRU) { 1287 struct pkru_state *xpkru; 1288 1289 xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU); 1290 *pkru = xpkru->pkru; 1291 } else { 1292 /* 1293 * KVM may pass NULL here to indicate that it does not need 1294 * PKRU updated. 1295 */ 1296 if (pkru) 1297 *pkru = 0; 1298 } 1299 1300 /* 1301 * The state that came in from userspace was user-state only. 1302 * Mask all the user states out of 'xfeatures': 1303 */ 1304 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; 1305 1306 /* 1307 * Add back in the features that came in from userspace: 1308 */ 1309 xsave->header.xfeatures |= hdr.xfeatures; 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S] 1316 * format and copy to the target thread. Used by ptrace and KVM. 1317 */ 1318 int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru) 1319 { 1320 return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru); 1321 } 1322 1323 /* 1324 * Convert from a sigreturn standard-format user-space buffer to kernel 1325 * XSAVE[S] format and copy to the target thread. This is called from the 1326 * sigreturn() and rt_sigreturn() system calls. 1327 */ 1328 int copy_sigframe_from_user_to_xstate(struct task_struct *tsk, 1329 const void __user *ubuf) 1330 { 1331 return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru); 1332 } 1333 1334 static bool validate_independent_components(u64 mask) 1335 { 1336 u64 xchk; 1337 1338 if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES))) 1339 return false; 1340 1341 xchk = ~xfeatures_mask_independent(); 1342 1343 if (WARN_ON_ONCE(!mask || mask & xchk)) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 /** 1350 * xsaves - Save selected components to a kernel xstate buffer 1351 * @xstate: Pointer to the buffer 1352 * @mask: Feature mask to select the components to save 1353 * 1354 * The @xstate buffer must be 64 byte aligned and correctly initialized as 1355 * XSAVES does not write the full xstate header. Before first use the 1356 * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer 1357 * can #GP. 1358 * 1359 * The feature mask must be a subset of the independent features. 1360 */ 1361 void xsaves(struct xregs_state *xstate, u64 mask) 1362 { 1363 int err; 1364 1365 if (!validate_independent_components(mask)) 1366 return; 1367 1368 XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err); 1369 WARN_ON_ONCE(err); 1370 } 1371 1372 /** 1373 * xrstors - Restore selected components from a kernel xstate buffer 1374 * @xstate: Pointer to the buffer 1375 * @mask: Feature mask to select the components to restore 1376 * 1377 * The @xstate buffer must be 64 byte aligned and correctly initialized 1378 * otherwise XRSTORS from that buffer can #GP. 1379 * 1380 * Proper usage is to restore the state which was saved with 1381 * xsaves() into @xstate. 1382 * 1383 * The feature mask must be a subset of the independent features. 1384 */ 1385 void xrstors(struct xregs_state *xstate, u64 mask) 1386 { 1387 int err; 1388 1389 if (!validate_independent_components(mask)) 1390 return; 1391 1392 XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err); 1393 WARN_ON_ONCE(err); 1394 } 1395 1396 #if IS_ENABLED(CONFIG_KVM) 1397 void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature) 1398 { 1399 void *addr = get_xsave_addr(&fps->regs.xsave, xfeature); 1400 1401 if (addr) 1402 memset(addr, 0, xstate_sizes[xfeature]); 1403 } 1404 EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component); 1405 #endif 1406 1407 #ifdef CONFIG_X86_64 1408 1409 #ifdef CONFIG_X86_DEBUG_FPU 1410 /* 1411 * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask 1412 * can safely operate on the @fpstate buffer. 1413 */ 1414 static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor) 1415 { 1416 u64 xfd = __this_cpu_read(xfd_state); 1417 1418 if (fpstate->xfd == xfd) 1419 return true; 1420 1421 /* 1422 * The XFD MSR does not match fpstate->xfd. That's invalid when 1423 * the passed in fpstate is current's fpstate. 1424 */ 1425 if (fpstate->xfd == current->thread.fpu.fpstate->xfd) 1426 return false; 1427 1428 /* 1429 * XRSTOR(S) from init_fpstate are always correct as it will just 1430 * bring all components into init state and not read from the 1431 * buffer. XSAVE(S) raises #PF after init. 1432 */ 1433 if (fpstate == &init_fpstate) 1434 return rstor; 1435 1436 /* 1437 * XSAVE(S): clone(), fpu_swap_kvm_fpu() 1438 * XRSTORS(S): fpu_swap_kvm_fpu() 1439 */ 1440 1441 /* 1442 * No XSAVE/XRSTOR instructions (except XSAVE itself) touch 1443 * the buffer area for XFD-disabled state components. 1444 */ 1445 mask &= ~xfd; 1446 1447 /* 1448 * Remove features which are valid in fpstate. They 1449 * have space allocated in fpstate. 1450 */ 1451 mask &= ~fpstate->xfeatures; 1452 1453 /* 1454 * Any remaining state components in 'mask' might be written 1455 * by XSAVE/XRSTOR. Fail validation it found. 1456 */ 1457 return !mask; 1458 } 1459 1460 void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor) 1461 { 1462 WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor)); 1463 } 1464 #endif /* CONFIG_X86_DEBUG_FPU */ 1465 1466 static int __init xfd_update_static_branch(void) 1467 { 1468 /* 1469 * If init_fpstate.xfd has bits set then dynamic features are 1470 * available and the dynamic sizing must be enabled. 1471 */ 1472 if (init_fpstate.xfd) 1473 static_branch_enable(&__fpu_state_size_dynamic); 1474 return 0; 1475 } 1476 arch_initcall(xfd_update_static_branch) 1477 1478 void fpstate_free(struct fpu *fpu) 1479 { 1480 if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate) 1481 vfree(fpu->fpstate); 1482 } 1483 1484 /** 1485 * fpstate_realloc - Reallocate struct fpstate for the requested new features 1486 * 1487 * @xfeatures: A bitmap of xstate features which extend the enabled features 1488 * of that task 1489 * @ksize: The required size for the kernel buffer 1490 * @usize: The required size for user space buffers 1491 * @guest_fpu: Pointer to a guest FPU container. NULL for host allocations 1492 * 1493 * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer 1494 * terminates quickly, vfree()-induced IPIs may be a concern, but tasks 1495 * with large states are likely to live longer. 1496 * 1497 * Returns: 0 on success, -ENOMEM on allocation error. 1498 */ 1499 static int fpstate_realloc(u64 xfeatures, unsigned int ksize, 1500 unsigned int usize, struct fpu_guest *guest_fpu) 1501 { 1502 struct fpu *fpu = ¤t->thread.fpu; 1503 struct fpstate *curfps, *newfps = NULL; 1504 unsigned int fpsize; 1505 bool in_use; 1506 1507 fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64); 1508 1509 newfps = vzalloc(fpsize); 1510 if (!newfps) 1511 return -ENOMEM; 1512 newfps->size = ksize; 1513 newfps->user_size = usize; 1514 newfps->is_valloc = true; 1515 1516 /* 1517 * When a guest FPU is supplied, use @guest_fpu->fpstate 1518 * as reference independent whether it is in use or not. 1519 */ 1520 curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate; 1521 1522 /* Determine whether @curfps is the active fpstate */ 1523 in_use = fpu->fpstate == curfps; 1524 1525 if (guest_fpu) { 1526 newfps->is_guest = true; 1527 newfps->is_confidential = curfps->is_confidential; 1528 newfps->in_use = curfps->in_use; 1529 guest_fpu->xfeatures |= xfeatures; 1530 guest_fpu->uabi_size = usize; 1531 } 1532 1533 fpregs_lock(); 1534 /* 1535 * If @curfps is in use, ensure that the current state is in the 1536 * registers before swapping fpstate as that might invalidate it 1537 * due to layout changes. 1538 */ 1539 if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD)) 1540 fpregs_restore_userregs(); 1541 1542 newfps->xfeatures = curfps->xfeatures | xfeatures; 1543 newfps->user_xfeatures = curfps->user_xfeatures | xfeatures; 1544 newfps->xfd = curfps->xfd & ~xfeatures; 1545 1546 /* Do the final updates within the locked region */ 1547 xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures); 1548 1549 if (guest_fpu) { 1550 guest_fpu->fpstate = newfps; 1551 /* If curfps is active, update the FPU fpstate pointer */ 1552 if (in_use) 1553 fpu->fpstate = newfps; 1554 } else { 1555 fpu->fpstate = newfps; 1556 } 1557 1558 if (in_use) 1559 xfd_update_state(fpu->fpstate); 1560 fpregs_unlock(); 1561 1562 /* Only free valloc'ed state */ 1563 if (curfps && curfps->is_valloc) 1564 vfree(curfps); 1565 1566 return 0; 1567 } 1568 1569 static int validate_sigaltstack(unsigned int usize) 1570 { 1571 struct task_struct *thread, *leader = current->group_leader; 1572 unsigned long framesize = get_sigframe_size(); 1573 1574 lockdep_assert_held(¤t->sighand->siglock); 1575 1576 /* get_sigframe_size() is based on fpu_user_cfg.max_size */ 1577 framesize -= fpu_user_cfg.max_size; 1578 framesize += usize; 1579 for_each_thread(leader, thread) { 1580 if (thread->sas_ss_size && thread->sas_ss_size < framesize) 1581 return -ENOSPC; 1582 } 1583 return 0; 1584 } 1585 1586 static int __xstate_request_perm(u64 permitted, u64 requested, bool guest) 1587 { 1588 /* 1589 * This deliberately does not exclude !XSAVES as we still might 1590 * decide to optionally context switch XCR0 or talk the silicon 1591 * vendors into extending XFD for the pre AMX states, especially 1592 * AVX512. 1593 */ 1594 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); 1595 struct fpu *fpu = ¤t->group_leader->thread.fpu; 1596 struct fpu_state_perm *perm; 1597 unsigned int ksize, usize; 1598 u64 mask; 1599 int ret = 0; 1600 1601 /* Check whether fully enabled */ 1602 if ((permitted & requested) == requested) 1603 return 0; 1604 1605 /* Calculate the resulting kernel state size */ 1606 mask = permitted | requested; 1607 /* Take supervisor states into account on the host */ 1608 if (!guest) 1609 mask |= xfeatures_mask_supervisor(); 1610 ksize = xstate_calculate_size(mask, compacted); 1611 1612 /* Calculate the resulting user state size */ 1613 mask &= XFEATURE_MASK_USER_SUPPORTED; 1614 usize = xstate_calculate_size(mask, false); 1615 1616 if (!guest) { 1617 ret = validate_sigaltstack(usize); 1618 if (ret) 1619 return ret; 1620 } 1621 1622 perm = guest ? &fpu->guest_perm : &fpu->perm; 1623 /* Pairs with the READ_ONCE() in xstate_get_group_perm() */ 1624 WRITE_ONCE(perm->__state_perm, mask); 1625 /* Protected by sighand lock */ 1626 perm->__state_size = ksize; 1627 perm->__user_state_size = usize; 1628 return ret; 1629 } 1630 1631 /* 1632 * Permissions array to map facilities with more than one component 1633 */ 1634 static const u64 xstate_prctl_req[XFEATURE_MAX] = { 1635 [XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA, 1636 }; 1637 1638 static int xstate_request_perm(unsigned long idx, bool guest) 1639 { 1640 u64 permitted, requested; 1641 int ret; 1642 1643 if (idx >= XFEATURE_MAX) 1644 return -EINVAL; 1645 1646 /* 1647 * Look up the facility mask which can require more than 1648 * one xstate component. 1649 */ 1650 idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req)); 1651 requested = xstate_prctl_req[idx]; 1652 if (!requested) 1653 return -EOPNOTSUPP; 1654 1655 if ((fpu_user_cfg.max_features & requested) != requested) 1656 return -EOPNOTSUPP; 1657 1658 /* Lockless quick check */ 1659 permitted = xstate_get_group_perm(guest); 1660 if ((permitted & requested) == requested) 1661 return 0; 1662 1663 /* Protect against concurrent modifications */ 1664 spin_lock_irq(¤t->sighand->siglock); 1665 permitted = xstate_get_group_perm(guest); 1666 1667 /* First vCPU allocation locks the permissions. */ 1668 if (guest && (permitted & FPU_GUEST_PERM_LOCKED)) 1669 ret = -EBUSY; 1670 else 1671 ret = __xstate_request_perm(permitted, requested, guest); 1672 spin_unlock_irq(¤t->sighand->siglock); 1673 return ret; 1674 } 1675 1676 int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu) 1677 { 1678 u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC; 1679 struct fpu_state_perm *perm; 1680 unsigned int ksize, usize; 1681 struct fpu *fpu; 1682 1683 if (!xfd_event) { 1684 if (!guest_fpu) 1685 pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err); 1686 return 0; 1687 } 1688 1689 /* Protect against concurrent modifications */ 1690 spin_lock_irq(¤t->sighand->siglock); 1691 1692 /* If not permitted let it die */ 1693 if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) { 1694 spin_unlock_irq(¤t->sighand->siglock); 1695 return -EPERM; 1696 } 1697 1698 fpu = ¤t->group_leader->thread.fpu; 1699 perm = guest_fpu ? &fpu->guest_perm : &fpu->perm; 1700 ksize = perm->__state_size; 1701 usize = perm->__user_state_size; 1702 1703 /* 1704 * The feature is permitted. State size is sufficient. Dropping 1705 * the lock is safe here even if more features are added from 1706 * another task, the retrieved buffer sizes are valid for the 1707 * currently requested feature(s). 1708 */ 1709 spin_unlock_irq(¤t->sighand->siglock); 1710 1711 /* 1712 * Try to allocate a new fpstate. If that fails there is no way 1713 * out. 1714 */ 1715 if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu)) 1716 return -EFAULT; 1717 return 0; 1718 } 1719 1720 int xfd_enable_feature(u64 xfd_err) 1721 { 1722 return __xfd_enable_feature(xfd_err, NULL); 1723 } 1724 1725 #else /* CONFIG_X86_64 */ 1726 static inline int xstate_request_perm(unsigned long idx, bool guest) 1727 { 1728 return -EPERM; 1729 } 1730 #endif /* !CONFIG_X86_64 */ 1731 1732 u64 xstate_get_guest_group_perm(void) 1733 { 1734 return xstate_get_group_perm(true); 1735 } 1736 EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm); 1737 1738 /** 1739 * fpu_xstate_prctl - xstate permission operations 1740 * @tsk: Redundant pointer to current 1741 * @option: A subfunction of arch_prctl() 1742 * @arg2: option argument 1743 * Return: 0 if successful; otherwise, an error code 1744 * 1745 * Option arguments: 1746 * 1747 * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info 1748 * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info 1749 * ARCH_REQ_XCOMP_PERM: Facility number requested 1750 * 1751 * For facilities which require more than one XSTATE component, the request 1752 * must be the highest state component number related to that facility, 1753 * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and 1754 * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18). 1755 */ 1756 long fpu_xstate_prctl(int option, unsigned long arg2) 1757 { 1758 u64 __user *uptr = (u64 __user *)arg2; 1759 u64 permitted, supported; 1760 unsigned long idx = arg2; 1761 bool guest = false; 1762 1763 switch (option) { 1764 case ARCH_GET_XCOMP_SUPP: 1765 supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features; 1766 return put_user(supported, uptr); 1767 1768 case ARCH_GET_XCOMP_PERM: 1769 /* 1770 * Lockless snapshot as it can also change right after the 1771 * dropping the lock. 1772 */ 1773 permitted = xstate_get_host_group_perm(); 1774 permitted &= XFEATURE_MASK_USER_SUPPORTED; 1775 return put_user(permitted, uptr); 1776 1777 case ARCH_GET_XCOMP_GUEST_PERM: 1778 permitted = xstate_get_guest_group_perm(); 1779 permitted &= XFEATURE_MASK_USER_SUPPORTED; 1780 return put_user(permitted, uptr); 1781 1782 case ARCH_REQ_XCOMP_GUEST_PERM: 1783 guest = true; 1784 fallthrough; 1785 1786 case ARCH_REQ_XCOMP_PERM: 1787 if (!IS_ENABLED(CONFIG_X86_64)) 1788 return -EOPNOTSUPP; 1789 1790 return xstate_request_perm(idx, guest); 1791 1792 default: 1793 return -EINVAL; 1794 } 1795 } 1796 1797 #ifdef CONFIG_PROC_PID_ARCH_STATUS 1798 /* 1799 * Report the amount of time elapsed in millisecond since last AVX512 1800 * use in the task. 1801 */ 1802 static void avx512_status(struct seq_file *m, struct task_struct *task) 1803 { 1804 unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp); 1805 long delta; 1806 1807 if (!timestamp) { 1808 /* 1809 * Report -1 if no AVX512 usage 1810 */ 1811 delta = -1; 1812 } else { 1813 delta = (long)(jiffies - timestamp); 1814 /* 1815 * Cap to LONG_MAX if time difference > LONG_MAX 1816 */ 1817 if (delta < 0) 1818 delta = LONG_MAX; 1819 delta = jiffies_to_msecs(delta); 1820 } 1821 1822 seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta); 1823 seq_putc(m, '\n'); 1824 } 1825 1826 /* 1827 * Report architecture specific information 1828 */ 1829 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, 1830 struct pid *pid, struct task_struct *task) 1831 { 1832 /* 1833 * Report AVX512 state if the processor and build option supported. 1834 */ 1835 if (cpu_feature_enabled(X86_FEATURE_AVX512F)) 1836 avx512_status(m, task); 1837 1838 return 0; 1839 } 1840 #endif /* CONFIG_PROC_PID_ARCH_STATUS */ 1841