xref: /openbmc/linux/arch/x86/kernel/fpu/xstate.c (revision 3a83e4e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xsave/xrstor support.
4  *
5  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
6  */
7 #include <linux/compat.h>
8 #include <linux/cpu.h>
9 #include <linux/mman.h>
10 #include <linux/pkeys.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 
14 #include <asm/fpu/api.h>
15 #include <asm/fpu/internal.h>
16 #include <asm/fpu/signal.h>
17 #include <asm/fpu/regset.h>
18 #include <asm/fpu/xstate.h>
19 
20 #include <asm/tlbflush.h>
21 #include <asm/cpufeature.h>
22 
23 /*
24  * Although we spell it out in here, the Processor Trace
25  * xfeature is completely unused.  We use other mechanisms
26  * to save/restore PT state in Linux.
27  */
28 static const char *xfeature_names[] =
29 {
30 	"x87 floating point registers"	,
31 	"SSE registers"			,
32 	"AVX registers"			,
33 	"MPX bounds registers"		,
34 	"MPX CSR"			,
35 	"AVX-512 opmask"		,
36 	"AVX-512 Hi256"			,
37 	"AVX-512 ZMM_Hi256"		,
38 	"Processor Trace (unused)"	,
39 	"Protection Keys User registers",
40 	"unknown xstate feature"	,
41 };
42 
43 static short xsave_cpuid_features[] __initdata = {
44 	X86_FEATURE_FPU,
45 	X86_FEATURE_XMM,
46 	X86_FEATURE_AVX,
47 	X86_FEATURE_MPX,
48 	X86_FEATURE_MPX,
49 	X86_FEATURE_AVX512F,
50 	X86_FEATURE_AVX512F,
51 	X86_FEATURE_AVX512F,
52 	X86_FEATURE_INTEL_PT,
53 	X86_FEATURE_PKU,
54 };
55 
56 /*
57  * This represents the full set of bits that should ever be set in a kernel
58  * XSAVE buffer, both supervisor and user xstates.
59  */
60 u64 xfeatures_mask_all __read_mostly;
61 
62 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
63 static unsigned int xstate_sizes[XFEATURE_MAX]   = { [ 0 ... XFEATURE_MAX - 1] = -1};
64 static unsigned int xstate_comp_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
65 static unsigned int xstate_supervisor_only_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
66 
67 /*
68  * The XSAVE area of kernel can be in standard or compacted format;
69  * it is always in standard format for user mode. This is the user
70  * mode standard format size used for signal and ptrace frames.
71  */
72 unsigned int fpu_user_xstate_size;
73 
74 /*
75  * Return whether the system supports a given xfeature.
76  *
77  * Also return the name of the (most advanced) feature that the caller requested:
78  */
79 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
80 {
81 	u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask_all;
82 
83 	if (unlikely(feature_name)) {
84 		long xfeature_idx, max_idx;
85 		u64 xfeatures_print;
86 		/*
87 		 * So we use FLS here to be able to print the most advanced
88 		 * feature that was requested but is missing. So if a driver
89 		 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
90 		 * missing AVX feature - this is the most informative message
91 		 * to users:
92 		 */
93 		if (xfeatures_missing)
94 			xfeatures_print = xfeatures_missing;
95 		else
96 			xfeatures_print = xfeatures_needed;
97 
98 		xfeature_idx = fls64(xfeatures_print)-1;
99 		max_idx = ARRAY_SIZE(xfeature_names)-1;
100 		xfeature_idx = min(xfeature_idx, max_idx);
101 
102 		*feature_name = xfeature_names[xfeature_idx];
103 	}
104 
105 	if (xfeatures_missing)
106 		return 0;
107 
108 	return 1;
109 }
110 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
111 
112 static bool xfeature_is_supervisor(int xfeature_nr)
113 {
114 	/*
115 	 * Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)
116 	 * returns ECX[0] set to (1) for a supervisor state, and cleared (0)
117 	 * for a user state.
118 	 */
119 	u32 eax, ebx, ecx, edx;
120 
121 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
122 	return ecx & 1;
123 }
124 
125 /*
126  * When executing XSAVEOPT (or other optimized XSAVE instructions), if
127  * a processor implementation detects that an FPU state component is still
128  * (or is again) in its initialized state, it may clear the corresponding
129  * bit in the header.xfeatures field, and can skip the writeout of registers
130  * to the corresponding memory layout.
131  *
132  * This means that when the bit is zero, the state component might still contain
133  * some previous - non-initialized register state.
134  *
135  * Before writing xstate information to user-space we sanitize those components,
136  * to always ensure that the memory layout of a feature will be in the init state
137  * if the corresponding header bit is zero. This is to ensure that user-space doesn't
138  * see some stale state in the memory layout during signal handling, debugging etc.
139  */
140 void fpstate_sanitize_xstate(struct fpu *fpu)
141 {
142 	struct fxregs_state *fx = &fpu->state.fxsave;
143 	int feature_bit;
144 	u64 xfeatures;
145 
146 	if (!use_xsaveopt())
147 		return;
148 
149 	xfeatures = fpu->state.xsave.header.xfeatures;
150 
151 	/*
152 	 * None of the feature bits are in init state. So nothing else
153 	 * to do for us, as the memory layout is up to date.
154 	 */
155 	if ((xfeatures & xfeatures_mask_all) == xfeatures_mask_all)
156 		return;
157 
158 	/*
159 	 * FP is in init state
160 	 */
161 	if (!(xfeatures & XFEATURE_MASK_FP)) {
162 		fx->cwd = 0x37f;
163 		fx->swd = 0;
164 		fx->twd = 0;
165 		fx->fop = 0;
166 		fx->rip = 0;
167 		fx->rdp = 0;
168 		memset(&fx->st_space[0], 0, 128);
169 	}
170 
171 	/*
172 	 * SSE is in init state
173 	 */
174 	if (!(xfeatures & XFEATURE_MASK_SSE))
175 		memset(&fx->xmm_space[0], 0, 256);
176 
177 	/*
178 	 * First two features are FPU and SSE, which above we handled
179 	 * in a special way already:
180 	 */
181 	feature_bit = 0x2;
182 	xfeatures = (xfeatures_mask_user() & ~xfeatures) >> 2;
183 
184 	/*
185 	 * Update all the remaining memory layouts according to their
186 	 * standard xstate layout, if their header bit is in the init
187 	 * state:
188 	 */
189 	while (xfeatures) {
190 		if (xfeatures & 0x1) {
191 			int offset = xstate_comp_offsets[feature_bit];
192 			int size = xstate_sizes[feature_bit];
193 
194 			memcpy((void *)fx + offset,
195 			       (void *)&init_fpstate.xsave + offset,
196 			       size);
197 		}
198 
199 		xfeatures >>= 1;
200 		feature_bit++;
201 	}
202 }
203 
204 /*
205  * Enable the extended processor state save/restore feature.
206  * Called once per CPU onlining.
207  */
208 void fpu__init_cpu_xstate(void)
209 {
210 	u64 unsup_bits;
211 
212 	if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask_all)
213 		return;
214 	/*
215 	 * Unsupported supervisor xstates should not be found in
216 	 * the xfeatures mask.
217 	 */
218 	unsup_bits = xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_UNSUPPORTED;
219 	WARN_ONCE(unsup_bits, "x86/fpu: Found unsupported supervisor xstates: 0x%llx\n",
220 		  unsup_bits);
221 
222 	xfeatures_mask_all &= ~XFEATURE_MASK_SUPERVISOR_UNSUPPORTED;
223 
224 	cr4_set_bits(X86_CR4_OSXSAVE);
225 
226 	/*
227 	 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
228 	 * managed by XSAVE{C, OPT, S} and XRSTOR{S}.  Only XSAVE user
229 	 * states can be set here.
230 	 */
231 	xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user());
232 
233 	/*
234 	 * MSR_IA32_XSS sets supervisor states managed by XSAVES.
235 	 */
236 	if (boot_cpu_has(X86_FEATURE_XSAVES)) {
237 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
238 				     xfeatures_mask_dynamic());
239 	}
240 }
241 
242 static bool xfeature_enabled(enum xfeature xfeature)
243 {
244 	return xfeatures_mask_all & BIT_ULL(xfeature);
245 }
246 
247 /*
248  * Record the offsets and sizes of various xstates contained
249  * in the XSAVE state memory layout.
250  */
251 static void __init setup_xstate_features(void)
252 {
253 	u32 eax, ebx, ecx, edx, i;
254 	/* start at the beginnning of the "extended state" */
255 	unsigned int last_good_offset = offsetof(struct xregs_state,
256 						 extended_state_area);
257 	/*
258 	 * The FP xstates and SSE xstates are legacy states. They are always
259 	 * in the fixed offsets in the xsave area in either compacted form
260 	 * or standard form.
261 	 */
262 	xstate_offsets[XFEATURE_FP]	= 0;
263 	xstate_sizes[XFEATURE_FP]	= offsetof(struct fxregs_state,
264 						   xmm_space);
265 
266 	xstate_offsets[XFEATURE_SSE]	= xstate_sizes[XFEATURE_FP];
267 	xstate_sizes[XFEATURE_SSE]	= sizeof_field(struct fxregs_state,
268 						       xmm_space);
269 
270 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
271 		if (!xfeature_enabled(i))
272 			continue;
273 
274 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
275 
276 		xstate_sizes[i] = eax;
277 
278 		/*
279 		 * If an xfeature is supervisor state, the offset in EBX is
280 		 * invalid, leave it to -1.
281 		 */
282 		if (xfeature_is_supervisor(i))
283 			continue;
284 
285 		xstate_offsets[i] = ebx;
286 
287 		/*
288 		 * In our xstate size checks, we assume that the highest-numbered
289 		 * xstate feature has the highest offset in the buffer.  Ensure
290 		 * it does.
291 		 */
292 		WARN_ONCE(last_good_offset > xstate_offsets[i],
293 			  "x86/fpu: misordered xstate at %d\n", last_good_offset);
294 
295 		last_good_offset = xstate_offsets[i];
296 	}
297 }
298 
299 static void __init print_xstate_feature(u64 xstate_mask)
300 {
301 	const char *feature_name;
302 
303 	if (cpu_has_xfeatures(xstate_mask, &feature_name))
304 		pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
305 }
306 
307 /*
308  * Print out all the supported xstate features:
309  */
310 static void __init print_xstate_features(void)
311 {
312 	print_xstate_feature(XFEATURE_MASK_FP);
313 	print_xstate_feature(XFEATURE_MASK_SSE);
314 	print_xstate_feature(XFEATURE_MASK_YMM);
315 	print_xstate_feature(XFEATURE_MASK_BNDREGS);
316 	print_xstate_feature(XFEATURE_MASK_BNDCSR);
317 	print_xstate_feature(XFEATURE_MASK_OPMASK);
318 	print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
319 	print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
320 	print_xstate_feature(XFEATURE_MASK_PKRU);
321 }
322 
323 /*
324  * This check is important because it is easy to get XSTATE_*
325  * confused with XSTATE_BIT_*.
326  */
327 #define CHECK_XFEATURE(nr) do {		\
328 	WARN_ON(nr < FIRST_EXTENDED_XFEATURE);	\
329 	WARN_ON(nr >= XFEATURE_MAX);	\
330 } while (0)
331 
332 /*
333  * We could cache this like xstate_size[], but we only use
334  * it here, so it would be a waste of space.
335  */
336 static int xfeature_is_aligned(int xfeature_nr)
337 {
338 	u32 eax, ebx, ecx, edx;
339 
340 	CHECK_XFEATURE(xfeature_nr);
341 
342 	if (!xfeature_enabled(xfeature_nr)) {
343 		WARN_ONCE(1, "Checking alignment of disabled xfeature %d\n",
344 			  xfeature_nr);
345 		return 0;
346 	}
347 
348 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
349 	/*
350 	 * The value returned by ECX[1] indicates the alignment
351 	 * of state component 'i' when the compacted format
352 	 * of the extended region of an XSAVE area is used:
353 	 */
354 	return !!(ecx & 2);
355 }
356 
357 /*
358  * This function sets up offsets and sizes of all extended states in
359  * xsave area. This supports both standard format and compacted format
360  * of the xsave area.
361  */
362 static void __init setup_xstate_comp_offsets(void)
363 {
364 	unsigned int next_offset;
365 	int i;
366 
367 	/*
368 	 * The FP xstates and SSE xstates are legacy states. They are always
369 	 * in the fixed offsets in the xsave area in either compacted form
370 	 * or standard form.
371 	 */
372 	xstate_comp_offsets[XFEATURE_FP] = 0;
373 	xstate_comp_offsets[XFEATURE_SSE] = offsetof(struct fxregs_state,
374 						     xmm_space);
375 
376 	if (!boot_cpu_has(X86_FEATURE_XSAVES)) {
377 		for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
378 			if (xfeature_enabled(i))
379 				xstate_comp_offsets[i] = xstate_offsets[i];
380 		}
381 		return;
382 	}
383 
384 	next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE;
385 
386 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
387 		if (!xfeature_enabled(i))
388 			continue;
389 
390 		if (xfeature_is_aligned(i))
391 			next_offset = ALIGN(next_offset, 64);
392 
393 		xstate_comp_offsets[i] = next_offset;
394 		next_offset += xstate_sizes[i];
395 	}
396 }
397 
398 /*
399  * Setup offsets of a supervisor-state-only XSAVES buffer:
400  *
401  * The offsets stored in xstate_comp_offsets[] only work for one specific
402  * value of the Requested Feature BitMap (RFBM).  In cases where a different
403  * RFBM value is used, a different set of offsets is required.  This set of
404  * offsets is for when RFBM=xfeatures_mask_supervisor().
405  */
406 static void __init setup_supervisor_only_offsets(void)
407 {
408 	unsigned int next_offset;
409 	int i;
410 
411 	next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE;
412 
413 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
414 		if (!xfeature_enabled(i) || !xfeature_is_supervisor(i))
415 			continue;
416 
417 		if (xfeature_is_aligned(i))
418 			next_offset = ALIGN(next_offset, 64);
419 
420 		xstate_supervisor_only_offsets[i] = next_offset;
421 		next_offset += xstate_sizes[i];
422 	}
423 }
424 
425 /*
426  * Print out xstate component offsets and sizes
427  */
428 static void __init print_xstate_offset_size(void)
429 {
430 	int i;
431 
432 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
433 		if (!xfeature_enabled(i))
434 			continue;
435 		pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
436 			 i, xstate_comp_offsets[i], i, xstate_sizes[i]);
437 	}
438 }
439 
440 /*
441  * setup the xstate image representing the init state
442  */
443 static void __init setup_init_fpu_buf(void)
444 {
445 	static int on_boot_cpu __initdata = 1;
446 
447 	WARN_ON_FPU(!on_boot_cpu);
448 	on_boot_cpu = 0;
449 
450 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
451 		return;
452 
453 	setup_xstate_features();
454 	print_xstate_features();
455 
456 	if (boot_cpu_has(X86_FEATURE_XSAVES))
457 		init_fpstate.xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT |
458 						     xfeatures_mask_all;
459 
460 	/*
461 	 * Init all the features state with header.xfeatures being 0x0
462 	 */
463 	copy_kernel_to_xregs_booting(&init_fpstate.xsave);
464 
465 	/*
466 	 * Dump the init state again. This is to identify the init state
467 	 * of any feature which is not represented by all zero's.
468 	 */
469 	copy_xregs_to_kernel_booting(&init_fpstate.xsave);
470 }
471 
472 static int xfeature_uncompacted_offset(int xfeature_nr)
473 {
474 	u32 eax, ebx, ecx, edx;
475 
476 	/*
477 	 * Only XSAVES supports supervisor states and it uses compacted
478 	 * format. Checking a supervisor state's uncompacted offset is
479 	 * an error.
480 	 */
481 	if (XFEATURE_MASK_SUPERVISOR_ALL & BIT_ULL(xfeature_nr)) {
482 		WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
483 		return -1;
484 	}
485 
486 	CHECK_XFEATURE(xfeature_nr);
487 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
488 	return ebx;
489 }
490 
491 int xfeature_size(int xfeature_nr)
492 {
493 	u32 eax, ebx, ecx, edx;
494 
495 	CHECK_XFEATURE(xfeature_nr);
496 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
497 	return eax;
498 }
499 
500 /*
501  * 'XSAVES' implies two different things:
502  * 1. saving of supervisor/system state
503  * 2. using the compacted format
504  *
505  * Use this function when dealing with the compacted format so
506  * that it is obvious which aspect of 'XSAVES' is being handled
507  * by the calling code.
508  */
509 int using_compacted_format(void)
510 {
511 	return boot_cpu_has(X86_FEATURE_XSAVES);
512 }
513 
514 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
515 int validate_user_xstate_header(const struct xstate_header *hdr)
516 {
517 	/* No unknown or supervisor features may be set */
518 	if (hdr->xfeatures & ~xfeatures_mask_user())
519 		return -EINVAL;
520 
521 	/* Userspace must use the uncompacted format */
522 	if (hdr->xcomp_bv)
523 		return -EINVAL;
524 
525 	/*
526 	 * If 'reserved' is shrunken to add a new field, make sure to validate
527 	 * that new field here!
528 	 */
529 	BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
530 
531 	/* No reserved bits may be set */
532 	if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
533 		return -EINVAL;
534 
535 	return 0;
536 }
537 
538 static void __xstate_dump_leaves(void)
539 {
540 	int i;
541 	u32 eax, ebx, ecx, edx;
542 	static int should_dump = 1;
543 
544 	if (!should_dump)
545 		return;
546 	should_dump = 0;
547 	/*
548 	 * Dump out a few leaves past the ones that we support
549 	 * just in case there are some goodies up there
550 	 */
551 	for (i = 0; i < XFEATURE_MAX + 10; i++) {
552 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
553 		pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
554 			XSTATE_CPUID, i, eax, ebx, ecx, edx);
555 	}
556 }
557 
558 #define XSTATE_WARN_ON(x) do {							\
559 	if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {	\
560 		__xstate_dump_leaves();						\
561 	}									\
562 } while (0)
563 
564 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {			\
565 	if ((nr == nr_macro) &&						\
566 	    WARN_ONCE(sz != sizeof(__struct),				\
567 		"%s: struct is %zu bytes, cpu state %d bytes\n",	\
568 		__stringify(nr_macro), sizeof(__struct), sz)) {		\
569 		__xstate_dump_leaves();					\
570 	}								\
571 } while (0)
572 
573 /*
574  * We have a C struct for each 'xstate'.  We need to ensure
575  * that our software representation matches what the CPU
576  * tells us about the state's size.
577  */
578 static void check_xstate_against_struct(int nr)
579 {
580 	/*
581 	 * Ask the CPU for the size of the state.
582 	 */
583 	int sz = xfeature_size(nr);
584 	/*
585 	 * Match each CPU state with the corresponding software
586 	 * structure.
587 	 */
588 	XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
589 	XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
590 	XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
591 	XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
592 	XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
593 	XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
594 	XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
595 
596 	/*
597 	 * Make *SURE* to add any feature numbers in below if
598 	 * there are "holes" in the xsave state component
599 	 * numbers.
600 	 */
601 	if ((nr < XFEATURE_YMM) ||
602 	    (nr >= XFEATURE_MAX) ||
603 	    (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) ||
604 	    ((nr >= XFEATURE_RSRVD_COMP_10) && (nr <= XFEATURE_LBR))) {
605 		WARN_ONCE(1, "no structure for xstate: %d\n", nr);
606 		XSTATE_WARN_ON(1);
607 	}
608 }
609 
610 /*
611  * This essentially double-checks what the cpu told us about
612  * how large the XSAVE buffer needs to be.  We are recalculating
613  * it to be safe.
614  *
615  * Dynamic XSAVE features allocate their own buffers and are not
616  * covered by these checks. Only the size of the buffer for task->fpu
617  * is checked here.
618  */
619 static void do_extra_xstate_size_checks(void)
620 {
621 	int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
622 	int i;
623 
624 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
625 		if (!xfeature_enabled(i))
626 			continue;
627 
628 		check_xstate_against_struct(i);
629 		/*
630 		 * Supervisor state components can be managed only by
631 		 * XSAVES, which is compacted-format only.
632 		 */
633 		if (!using_compacted_format())
634 			XSTATE_WARN_ON(xfeature_is_supervisor(i));
635 
636 		/* Align from the end of the previous feature */
637 		if (xfeature_is_aligned(i))
638 			paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
639 		/*
640 		 * The offset of a given state in the non-compacted
641 		 * format is given to us in a CPUID leaf.  We check
642 		 * them for being ordered (increasing offsets) in
643 		 * setup_xstate_features().
644 		 */
645 		if (!using_compacted_format())
646 			paranoid_xstate_size = xfeature_uncompacted_offset(i);
647 		/*
648 		 * The compacted-format offset always depends on where
649 		 * the previous state ended.
650 		 */
651 		paranoid_xstate_size += xfeature_size(i);
652 	}
653 	XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size);
654 }
655 
656 
657 /*
658  * Get total size of enabled xstates in XCR0 | IA32_XSS.
659  *
660  * Note the SDM's wording here.  "sub-function 0" only enumerates
661  * the size of the *user* states.  If we use it to size a buffer
662  * that we use 'XSAVES' on, we could potentially overflow the
663  * buffer because 'XSAVES' saves system states too.
664  */
665 static unsigned int __init get_xsaves_size(void)
666 {
667 	unsigned int eax, ebx, ecx, edx;
668 	/*
669 	 * - CPUID function 0DH, sub-function 1:
670 	 *    EBX enumerates the size (in bytes) required by
671 	 *    the XSAVES instruction for an XSAVE area
672 	 *    containing all the state components
673 	 *    corresponding to bits currently set in
674 	 *    XCR0 | IA32_XSS.
675 	 */
676 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
677 	return ebx;
678 }
679 
680 /*
681  * Get the total size of the enabled xstates without the dynamic supervisor
682  * features.
683  */
684 static unsigned int __init get_xsaves_size_no_dynamic(void)
685 {
686 	u64 mask = xfeatures_mask_dynamic();
687 	unsigned int size;
688 
689 	if (!mask)
690 		return get_xsaves_size();
691 
692 	/* Disable dynamic features. */
693 	wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
694 
695 	/*
696 	 * Ask the hardware what size is required of the buffer.
697 	 * This is the size required for the task->fpu buffer.
698 	 */
699 	size = get_xsaves_size();
700 
701 	/* Re-enable dynamic features so XSAVES will work on them again. */
702 	wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
703 
704 	return size;
705 }
706 
707 static unsigned int __init get_xsave_size(void)
708 {
709 	unsigned int eax, ebx, ecx, edx;
710 	/*
711 	 * - CPUID function 0DH, sub-function 0:
712 	 *    EBX enumerates the size (in bytes) required by
713 	 *    the XSAVE instruction for an XSAVE area
714 	 *    containing all the *user* state components
715 	 *    corresponding to bits currently set in XCR0.
716 	 */
717 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
718 	return ebx;
719 }
720 
721 /*
722  * Will the runtime-enumerated 'xstate_size' fit in the init
723  * task's statically-allocated buffer?
724  */
725 static bool is_supported_xstate_size(unsigned int test_xstate_size)
726 {
727 	if (test_xstate_size <= sizeof(union fpregs_state))
728 		return true;
729 
730 	pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
731 			sizeof(union fpregs_state), test_xstate_size);
732 	return false;
733 }
734 
735 static int __init init_xstate_size(void)
736 {
737 	/* Recompute the context size for enabled features: */
738 	unsigned int possible_xstate_size;
739 	unsigned int xsave_size;
740 
741 	xsave_size = get_xsave_size();
742 
743 	if (boot_cpu_has(X86_FEATURE_XSAVES))
744 		possible_xstate_size = get_xsaves_size_no_dynamic();
745 	else
746 		possible_xstate_size = xsave_size;
747 
748 	/* Ensure we have the space to store all enabled: */
749 	if (!is_supported_xstate_size(possible_xstate_size))
750 		return -EINVAL;
751 
752 	/*
753 	 * The size is OK, we are definitely going to use xsave,
754 	 * make it known to the world that we need more space.
755 	 */
756 	fpu_kernel_xstate_size = possible_xstate_size;
757 	do_extra_xstate_size_checks();
758 
759 	/*
760 	 * User space is always in standard format.
761 	 */
762 	fpu_user_xstate_size = xsave_size;
763 	return 0;
764 }
765 
766 /*
767  * We enabled the XSAVE hardware, but something went wrong and
768  * we can not use it.  Disable it.
769  */
770 static void fpu__init_disable_system_xstate(void)
771 {
772 	xfeatures_mask_all = 0;
773 	cr4_clear_bits(X86_CR4_OSXSAVE);
774 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
775 }
776 
777 /*
778  * Enable and initialize the xsave feature.
779  * Called once per system bootup.
780  */
781 void __init fpu__init_system_xstate(void)
782 {
783 	unsigned int eax, ebx, ecx, edx;
784 	static int on_boot_cpu __initdata = 1;
785 	int err;
786 	int i;
787 
788 	WARN_ON_FPU(!on_boot_cpu);
789 	on_boot_cpu = 0;
790 
791 	if (!boot_cpu_has(X86_FEATURE_FPU)) {
792 		pr_info("x86/fpu: No FPU detected\n");
793 		return;
794 	}
795 
796 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
797 		pr_info("x86/fpu: x87 FPU will use %s\n",
798 			boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
799 		return;
800 	}
801 
802 	if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
803 		WARN_ON_FPU(1);
804 		return;
805 	}
806 
807 	/*
808 	 * Find user xstates supported by the processor.
809 	 */
810 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
811 	xfeatures_mask_all = eax + ((u64)edx << 32);
812 
813 	/*
814 	 * Find supervisor xstates supported by the processor.
815 	 */
816 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
817 	xfeatures_mask_all |= ecx + ((u64)edx << 32);
818 
819 	if ((xfeatures_mask_user() & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
820 		/*
821 		 * This indicates that something really unexpected happened
822 		 * with the enumeration.  Disable XSAVE and try to continue
823 		 * booting without it.  This is too early to BUG().
824 		 */
825 		pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
826 		       xfeatures_mask_all);
827 		goto out_disable;
828 	}
829 
830 	/*
831 	 * Clear XSAVE features that are disabled in the normal CPUID.
832 	 */
833 	for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
834 		if (!boot_cpu_has(xsave_cpuid_features[i]))
835 			xfeatures_mask_all &= ~BIT_ULL(i);
836 	}
837 
838 	xfeatures_mask_all &= fpu__get_supported_xfeatures_mask();
839 
840 	/* Enable xstate instructions to be able to continue with initialization: */
841 	fpu__init_cpu_xstate();
842 	err = init_xstate_size();
843 	if (err)
844 		goto out_disable;
845 
846 	/*
847 	 * Update info used for ptrace frames; use standard-format size and no
848 	 * supervisor xstates:
849 	 */
850 	update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask_user());
851 
852 	fpu__init_prepare_fx_sw_frame();
853 	setup_init_fpu_buf();
854 	setup_xstate_comp_offsets();
855 	setup_supervisor_only_offsets();
856 	print_xstate_offset_size();
857 
858 	pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
859 		xfeatures_mask_all,
860 		fpu_kernel_xstate_size,
861 		boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
862 	return;
863 
864 out_disable:
865 	/* something went wrong, try to boot without any XSAVE support */
866 	fpu__init_disable_system_xstate();
867 }
868 
869 /*
870  * Restore minimal FPU state after suspend:
871  */
872 void fpu__resume_cpu(void)
873 {
874 	/*
875 	 * Restore XCR0 on xsave capable CPUs:
876 	 */
877 	if (boot_cpu_has(X86_FEATURE_XSAVE))
878 		xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user());
879 
880 	/*
881 	 * Restore IA32_XSS. The same CPUID bit enumerates support
882 	 * of XSAVES and MSR_IA32_XSS.
883 	 */
884 	if (boot_cpu_has(X86_FEATURE_XSAVES)) {
885 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()  |
886 				     xfeatures_mask_dynamic());
887 	}
888 }
889 
890 /*
891  * Given an xstate feature nr, calculate where in the xsave
892  * buffer the state is.  Callers should ensure that the buffer
893  * is valid.
894  */
895 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
896 {
897 	if (!xfeature_enabled(xfeature_nr)) {
898 		WARN_ON_FPU(1);
899 		return NULL;
900 	}
901 
902 	return (void *)xsave + xstate_comp_offsets[xfeature_nr];
903 }
904 /*
905  * Given the xsave area and a state inside, this function returns the
906  * address of the state.
907  *
908  * This is the API that is called to get xstate address in either
909  * standard format or compacted format of xsave area.
910  *
911  * Note that if there is no data for the field in the xsave buffer
912  * this will return NULL.
913  *
914  * Inputs:
915  *	xstate: the thread's storage area for all FPU data
916  *	xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
917  *	XFEATURE_SSE, etc...)
918  * Output:
919  *	address of the state in the xsave area, or NULL if the
920  *	field is not present in the xsave buffer.
921  */
922 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
923 {
924 	/*
925 	 * Do we even *have* xsave state?
926 	 */
927 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
928 		return NULL;
929 
930 	/*
931 	 * We should not ever be requesting features that we
932 	 * have not enabled.
933 	 */
934 	WARN_ONCE(!(xfeatures_mask_all & BIT_ULL(xfeature_nr)),
935 		  "get of unsupported state");
936 	/*
937 	 * This assumes the last 'xsave*' instruction to
938 	 * have requested that 'xfeature_nr' be saved.
939 	 * If it did not, we might be seeing and old value
940 	 * of the field in the buffer.
941 	 *
942 	 * This can happen because the last 'xsave' did not
943 	 * request that this feature be saved (unlikely)
944 	 * or because the "init optimization" caused it
945 	 * to not be saved.
946 	 */
947 	if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
948 		return NULL;
949 
950 	return __raw_xsave_addr(xsave, xfeature_nr);
951 }
952 EXPORT_SYMBOL_GPL(get_xsave_addr);
953 
954 /*
955  * This wraps up the common operations that need to occur when retrieving
956  * data from xsave state.  It first ensures that the current task was
957  * using the FPU and retrieves the data in to a buffer.  It then calculates
958  * the offset of the requested field in the buffer.
959  *
960  * This function is safe to call whether the FPU is in use or not.
961  *
962  * Note that this only works on the current task.
963  *
964  * Inputs:
965  *	@xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
966  *	XFEATURE_SSE, etc...)
967  * Output:
968  *	address of the state in the xsave area or NULL if the state
969  *	is not present or is in its 'init state'.
970  */
971 const void *get_xsave_field_ptr(int xfeature_nr)
972 {
973 	struct fpu *fpu = &current->thread.fpu;
974 
975 	/*
976 	 * fpu__save() takes the CPU's xstate registers
977 	 * and saves them off to the 'fpu memory buffer.
978 	 */
979 	fpu__save(fpu);
980 
981 	return get_xsave_addr(&fpu->state.xsave, xfeature_nr);
982 }
983 
984 #ifdef CONFIG_ARCH_HAS_PKEYS
985 
986 /*
987  * This will go out and modify PKRU register to set the access
988  * rights for @pkey to @init_val.
989  */
990 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
991 		unsigned long init_val)
992 {
993 	u32 old_pkru;
994 	int pkey_shift = (pkey * PKRU_BITS_PER_PKEY);
995 	u32 new_pkru_bits = 0;
996 
997 	/*
998 	 * This check implies XSAVE support.  OSPKE only gets
999 	 * set if we enable XSAVE and we enable PKU in XCR0.
1000 	 */
1001 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1002 		return -EINVAL;
1003 
1004 	/*
1005 	 * This code should only be called with valid 'pkey'
1006 	 * values originating from in-kernel users.  Complain
1007 	 * if a bad value is observed.
1008 	 */
1009 	WARN_ON_ONCE(pkey >= arch_max_pkey());
1010 
1011 	/* Set the bits we need in PKRU:  */
1012 	if (init_val & PKEY_DISABLE_ACCESS)
1013 		new_pkru_bits |= PKRU_AD_BIT;
1014 	if (init_val & PKEY_DISABLE_WRITE)
1015 		new_pkru_bits |= PKRU_WD_BIT;
1016 
1017 	/* Shift the bits in to the correct place in PKRU for pkey: */
1018 	new_pkru_bits <<= pkey_shift;
1019 
1020 	/* Get old PKRU and mask off any old bits in place: */
1021 	old_pkru = read_pkru();
1022 	old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
1023 
1024 	/* Write old part along with new part: */
1025 	write_pkru(old_pkru | new_pkru_bits);
1026 
1027 	return 0;
1028 }
1029 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
1030 
1031 /*
1032  * Weird legacy quirk: SSE and YMM states store information in the
1033  * MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP
1034  * area is marked as unused in the xfeatures header, we need to copy
1035  * MXCSR and MXCSR_FLAGS if either SSE or YMM are in use.
1036  */
1037 static inline bool xfeatures_mxcsr_quirk(u64 xfeatures)
1038 {
1039 	if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM)))
1040 		return false;
1041 
1042 	if (xfeatures & XFEATURE_MASK_FP)
1043 		return false;
1044 
1045 	return true;
1046 }
1047 
1048 static void fill_gap(struct membuf *to, unsigned *last, unsigned offset)
1049 {
1050 	if (*last >= offset)
1051 		return;
1052 	membuf_write(to, (void *)&init_fpstate.xsave + *last, offset - *last);
1053 	*last = offset;
1054 }
1055 
1056 static void copy_part(struct membuf *to, unsigned *last, unsigned offset,
1057 		      unsigned size, void *from)
1058 {
1059 	fill_gap(to, last, offset);
1060 	membuf_write(to, from, size);
1061 	*last = offset + size;
1062 }
1063 
1064 /*
1065  * Convert from kernel XSAVES compacted format to standard format and copy
1066  * to a kernel-space ptrace buffer.
1067  *
1068  * It supports partial copy but pos always starts from zero. This is called
1069  * from xstateregs_get() and there we check the CPU has XSAVES.
1070  */
1071 void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave)
1072 {
1073 	struct xstate_header header;
1074 	const unsigned off_mxcsr = offsetof(struct fxregs_state, mxcsr);
1075 	unsigned size = to.left;
1076 	unsigned last = 0;
1077 	int i;
1078 
1079 	/*
1080 	 * The destination is a ptrace buffer; we put in only user xstates:
1081 	 */
1082 	memset(&header, 0, sizeof(header));
1083 	header.xfeatures = xsave->header.xfeatures;
1084 	header.xfeatures &= xfeatures_mask_user();
1085 
1086 	if (header.xfeatures & XFEATURE_MASK_FP)
1087 		copy_part(&to, &last, 0, off_mxcsr, &xsave->i387);
1088 	if (header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM))
1089 		copy_part(&to, &last, off_mxcsr,
1090 			  MXCSR_AND_FLAGS_SIZE, &xsave->i387.mxcsr);
1091 	if (header.xfeatures & XFEATURE_MASK_FP)
1092 		copy_part(&to, &last, offsetof(struct fxregs_state, st_space),
1093 			  128, &xsave->i387.st_space);
1094 	if (header.xfeatures & XFEATURE_MASK_SSE)
1095 		copy_part(&to, &last, xstate_offsets[XFEATURE_SSE],
1096 			  256, &xsave->i387.xmm_space);
1097 	/*
1098 	 * Fill xsave->i387.sw_reserved value for ptrace frame:
1099 	 */
1100 	copy_part(&to, &last, offsetof(struct fxregs_state, sw_reserved),
1101 		  48, xstate_fx_sw_bytes);
1102 	/*
1103 	 * Copy xregs_state->header:
1104 	 */
1105 	copy_part(&to, &last, offsetof(struct xregs_state, header),
1106 		  sizeof(header), &header);
1107 
1108 	for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
1109 		/*
1110 		 * Copy only in-use xstates:
1111 		 */
1112 		if ((header.xfeatures >> i) & 1) {
1113 			void *src = __raw_xsave_addr(xsave, i);
1114 
1115 			copy_part(&to, &last, xstate_offsets[i],
1116 				  xstate_sizes[i], src);
1117 		}
1118 
1119 	}
1120 	fill_gap(&to, &last, size);
1121 }
1122 
1123 /*
1124  * Convert from a ptrace standard-format kernel buffer to kernel XSAVES format
1125  * and copy to the target thread. This is called from xstateregs_set().
1126  */
1127 int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf)
1128 {
1129 	unsigned int offset, size;
1130 	int i;
1131 	struct xstate_header hdr;
1132 
1133 	offset = offsetof(struct xregs_state, header);
1134 	size = sizeof(hdr);
1135 
1136 	memcpy(&hdr, kbuf + offset, size);
1137 
1138 	if (validate_user_xstate_header(&hdr))
1139 		return -EINVAL;
1140 
1141 	for (i = 0; i < XFEATURE_MAX; i++) {
1142 		u64 mask = ((u64)1 << i);
1143 
1144 		if (hdr.xfeatures & mask) {
1145 			void *dst = __raw_xsave_addr(xsave, i);
1146 
1147 			offset = xstate_offsets[i];
1148 			size = xstate_sizes[i];
1149 
1150 			memcpy(dst, kbuf + offset, size);
1151 		}
1152 	}
1153 
1154 	if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
1155 		offset = offsetof(struct fxregs_state, mxcsr);
1156 		size = MXCSR_AND_FLAGS_SIZE;
1157 		memcpy(&xsave->i387.mxcsr, kbuf + offset, size);
1158 	}
1159 
1160 	/*
1161 	 * The state that came in from userspace was user-state only.
1162 	 * Mask all the user states out of 'xfeatures':
1163 	 */
1164 	xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1165 
1166 	/*
1167 	 * Add back in the features that came in from userspace:
1168 	 */
1169 	xsave->header.xfeatures |= hdr.xfeatures;
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Convert from a ptrace or sigreturn standard-format user-space buffer to
1176  * kernel XSAVES format and copy to the target thread. This is called from
1177  * xstateregs_set(), as well as potentially from the sigreturn() and
1178  * rt_sigreturn() system calls.
1179  */
1180 int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf)
1181 {
1182 	unsigned int offset, size;
1183 	int i;
1184 	struct xstate_header hdr;
1185 
1186 	offset = offsetof(struct xregs_state, header);
1187 	size = sizeof(hdr);
1188 
1189 	if (__copy_from_user(&hdr, ubuf + offset, size))
1190 		return -EFAULT;
1191 
1192 	if (validate_user_xstate_header(&hdr))
1193 		return -EINVAL;
1194 
1195 	for (i = 0; i < XFEATURE_MAX; i++) {
1196 		u64 mask = ((u64)1 << i);
1197 
1198 		if (hdr.xfeatures & mask) {
1199 			void *dst = __raw_xsave_addr(xsave, i);
1200 
1201 			offset = xstate_offsets[i];
1202 			size = xstate_sizes[i];
1203 
1204 			if (__copy_from_user(dst, ubuf + offset, size))
1205 				return -EFAULT;
1206 		}
1207 	}
1208 
1209 	if (xfeatures_mxcsr_quirk(hdr.xfeatures)) {
1210 		offset = offsetof(struct fxregs_state, mxcsr);
1211 		size = MXCSR_AND_FLAGS_SIZE;
1212 		if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size))
1213 			return -EFAULT;
1214 	}
1215 
1216 	/*
1217 	 * The state that came in from userspace was user-state only.
1218 	 * Mask all the user states out of 'xfeatures':
1219 	 */
1220 	xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1221 
1222 	/*
1223 	 * Add back in the features that came in from userspace:
1224 	 */
1225 	xsave->header.xfeatures |= hdr.xfeatures;
1226 
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Save only supervisor states to the kernel buffer.  This blows away all
1232  * old states, and is intended to be used only in __fpu__restore_sig(), where
1233  * user states are restored from the user buffer.
1234  */
1235 void copy_supervisor_to_kernel(struct xregs_state *xstate)
1236 {
1237 	struct xstate_header *header;
1238 	u64 max_bit, min_bit;
1239 	u32 lmask, hmask;
1240 	int err, i;
1241 
1242 	if (WARN_ON(!boot_cpu_has(X86_FEATURE_XSAVES)))
1243 		return;
1244 
1245 	if (!xfeatures_mask_supervisor())
1246 		return;
1247 
1248 	max_bit = __fls(xfeatures_mask_supervisor());
1249 	min_bit = __ffs(xfeatures_mask_supervisor());
1250 
1251 	lmask = xfeatures_mask_supervisor();
1252 	hmask = xfeatures_mask_supervisor() >> 32;
1253 	XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
1254 
1255 	/* We should never fault when copying to a kernel buffer: */
1256 	if (WARN_ON_FPU(err))
1257 		return;
1258 
1259 	/*
1260 	 * At this point, the buffer has only supervisor states and must be
1261 	 * converted back to normal kernel format.
1262 	 */
1263 	header = &xstate->header;
1264 	header->xcomp_bv |= xfeatures_mask_all;
1265 
1266 	/*
1267 	 * This only moves states up in the buffer.  Start with
1268 	 * the last state and move backwards so that states are
1269 	 * not overwritten until after they are moved.  Note:
1270 	 * memmove() allows overlapping src/dst buffers.
1271 	 */
1272 	for (i = max_bit; i >= min_bit; i--) {
1273 		u8 *xbuf = (u8 *)xstate;
1274 
1275 		if (!((header->xfeatures >> i) & 1))
1276 			continue;
1277 
1278 		/* Move xfeature 'i' into its normal location */
1279 		memmove(xbuf + xstate_comp_offsets[i],
1280 			xbuf + xstate_supervisor_only_offsets[i],
1281 			xstate_sizes[i]);
1282 	}
1283 }
1284 
1285 /**
1286  * copy_dynamic_supervisor_to_kernel() - Save dynamic supervisor states to
1287  *                                       an xsave area
1288  * @xstate: A pointer to an xsave area
1289  * @mask: Represent the dynamic supervisor features saved into the xsave area
1290  *
1291  * Only the dynamic supervisor states sets in the mask are saved into the xsave
1292  * area (See the comment in XFEATURE_MASK_DYNAMIC for the details of dynamic
1293  * supervisor feature). Besides the dynamic supervisor states, the legacy
1294  * region and XSAVE header are also saved into the xsave area. The supervisor
1295  * features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and
1296  * XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not saved.
1297  *
1298  * The xsave area must be 64-bytes aligned.
1299  */
1300 void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask)
1301 {
1302 	u64 dynamic_mask = xfeatures_mask_dynamic() & mask;
1303 	u32 lmask, hmask;
1304 	int err;
1305 
1306 	if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES)))
1307 		return;
1308 
1309 	if (WARN_ON_FPU(!dynamic_mask))
1310 		return;
1311 
1312 	lmask = dynamic_mask;
1313 	hmask = dynamic_mask >> 32;
1314 
1315 	XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
1316 
1317 	/* Should never fault when copying to a kernel buffer */
1318 	WARN_ON_FPU(err);
1319 }
1320 
1321 /**
1322  * copy_kernel_to_dynamic_supervisor() - Restore dynamic supervisor states from
1323  *                                       an xsave area
1324  * @xstate: A pointer to an xsave area
1325  * @mask: Represent the dynamic supervisor features restored from the xsave area
1326  *
1327  * Only the dynamic supervisor states sets in the mask are restored from the
1328  * xsave area (See the comment in XFEATURE_MASK_DYNAMIC for the details of
1329  * dynamic supervisor feature). Besides the dynamic supervisor states, the
1330  * legacy region and XSAVE header are also restored from the xsave area. The
1331  * supervisor features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and
1332  * XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not restored.
1333  *
1334  * The xsave area must be 64-bytes aligned.
1335  */
1336 void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask)
1337 {
1338 	u64 dynamic_mask = xfeatures_mask_dynamic() & mask;
1339 	u32 lmask, hmask;
1340 	int err;
1341 
1342 	if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES)))
1343 		return;
1344 
1345 	if (WARN_ON_FPU(!dynamic_mask))
1346 		return;
1347 
1348 	lmask = dynamic_mask;
1349 	hmask = dynamic_mask >> 32;
1350 
1351 	XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
1352 
1353 	/* Should never fault when copying from a kernel buffer */
1354 	WARN_ON_FPU(err);
1355 }
1356 
1357 #ifdef CONFIG_PROC_PID_ARCH_STATUS
1358 /*
1359  * Report the amount of time elapsed in millisecond since last AVX512
1360  * use in the task.
1361  */
1362 static void avx512_status(struct seq_file *m, struct task_struct *task)
1363 {
1364 	unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
1365 	long delta;
1366 
1367 	if (!timestamp) {
1368 		/*
1369 		 * Report -1 if no AVX512 usage
1370 		 */
1371 		delta = -1;
1372 	} else {
1373 		delta = (long)(jiffies - timestamp);
1374 		/*
1375 		 * Cap to LONG_MAX if time difference > LONG_MAX
1376 		 */
1377 		if (delta < 0)
1378 			delta = LONG_MAX;
1379 		delta = jiffies_to_msecs(delta);
1380 	}
1381 
1382 	seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
1383 	seq_putc(m, '\n');
1384 }
1385 
1386 /*
1387  * Report architecture specific information
1388  */
1389 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
1390 			struct pid *pid, struct task_struct *task)
1391 {
1392 	/*
1393 	 * Report AVX512 state if the processor and build option supported.
1394 	 */
1395 	if (cpu_feature_enabled(X86_FEATURE_AVX512F))
1396 		avx512_status(m, task);
1397 
1398 	return 0;
1399 }
1400 #endif /* CONFIG_PROC_PID_ARCH_STATUS */
1401