xref: /openbmc/linux/arch/x86/kernel/fpu/xstate.c (revision 2d091155)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xsave/xrstor support.
4  *
5  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
6  */
7 #include <linux/bitops.h>
8 #include <linux/compat.h>
9 #include <linux/cpu.h>
10 #include <linux/mman.h>
11 #include <linux/nospec.h>
12 #include <linux/pkeys.h>
13 #include <linux/seq_file.h>
14 #include <linux/proc_fs.h>
15 #include <linux/vmalloc.h>
16 
17 #include <asm/fpu/api.h>
18 #include <asm/fpu/regset.h>
19 #include <asm/fpu/signal.h>
20 #include <asm/fpu/xcr.h>
21 
22 #include <asm/tlbflush.h>
23 #include <asm/prctl.h>
24 #include <asm/elf.h>
25 
26 #include "context.h"
27 #include "internal.h"
28 #include "legacy.h"
29 #include "xstate.h"
30 
31 #define for_each_extended_xfeature(bit, mask)				\
32 	(bit) = FIRST_EXTENDED_XFEATURE;				\
33 	for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask))
34 
35 /*
36  * Although we spell it out in here, the Processor Trace
37  * xfeature is completely unused.  We use other mechanisms
38  * to save/restore PT state in Linux.
39  */
40 static const char *xfeature_names[] =
41 {
42 	"x87 floating point registers"	,
43 	"SSE registers"			,
44 	"AVX registers"			,
45 	"MPX bounds registers"		,
46 	"MPX CSR"			,
47 	"AVX-512 opmask"		,
48 	"AVX-512 Hi256"			,
49 	"AVX-512 ZMM_Hi256"		,
50 	"Processor Trace (unused)"	,
51 	"Protection Keys User registers",
52 	"PASID state",
53 	"unknown xstate feature"	,
54 	"unknown xstate feature"	,
55 	"unknown xstate feature"	,
56 	"unknown xstate feature"	,
57 	"unknown xstate feature"	,
58 	"unknown xstate feature"	,
59 	"AMX Tile config"		,
60 	"AMX Tile data"			,
61 	"unknown xstate feature"	,
62 };
63 
64 static unsigned short xsave_cpuid_features[] __initdata = {
65 	[XFEATURE_FP]				= X86_FEATURE_FPU,
66 	[XFEATURE_SSE]				= X86_FEATURE_XMM,
67 	[XFEATURE_YMM]				= X86_FEATURE_AVX,
68 	[XFEATURE_BNDREGS]			= X86_FEATURE_MPX,
69 	[XFEATURE_BNDCSR]			= X86_FEATURE_MPX,
70 	[XFEATURE_OPMASK]			= X86_FEATURE_AVX512F,
71 	[XFEATURE_ZMM_Hi256]			= X86_FEATURE_AVX512F,
72 	[XFEATURE_Hi16_ZMM]			= X86_FEATURE_AVX512F,
73 	[XFEATURE_PT_UNIMPLEMENTED_SO_FAR]	= X86_FEATURE_INTEL_PT,
74 	[XFEATURE_PKRU]				= X86_FEATURE_PKU,
75 	[XFEATURE_PASID]			= X86_FEATURE_ENQCMD,
76 	[XFEATURE_XTILE_CFG]			= X86_FEATURE_AMX_TILE,
77 	[XFEATURE_XTILE_DATA]			= X86_FEATURE_AMX_TILE,
78 };
79 
80 static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init =
81 	{ [ 0 ... XFEATURE_MAX - 1] = -1};
82 static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init =
83 	{ [ 0 ... XFEATURE_MAX - 1] = -1};
84 static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init;
85 
86 #define XSTATE_FLAG_SUPERVISOR	BIT(0)
87 #define XSTATE_FLAG_ALIGNED64	BIT(1)
88 
89 /*
90  * Return whether the system supports a given xfeature.
91  *
92  * Also return the name of the (most advanced) feature that the caller requested:
93  */
94 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
95 {
96 	u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features;
97 
98 	if (unlikely(feature_name)) {
99 		long xfeature_idx, max_idx;
100 		u64 xfeatures_print;
101 		/*
102 		 * So we use FLS here to be able to print the most advanced
103 		 * feature that was requested but is missing. So if a driver
104 		 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
105 		 * missing AVX feature - this is the most informative message
106 		 * to users:
107 		 */
108 		if (xfeatures_missing)
109 			xfeatures_print = xfeatures_missing;
110 		else
111 			xfeatures_print = xfeatures_needed;
112 
113 		xfeature_idx = fls64(xfeatures_print)-1;
114 		max_idx = ARRAY_SIZE(xfeature_names)-1;
115 		xfeature_idx = min(xfeature_idx, max_idx);
116 
117 		*feature_name = xfeature_names[xfeature_idx];
118 	}
119 
120 	if (xfeatures_missing)
121 		return 0;
122 
123 	return 1;
124 }
125 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
126 
127 static bool xfeature_is_aligned64(int xfeature_nr)
128 {
129 	return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64;
130 }
131 
132 static bool xfeature_is_supervisor(int xfeature_nr)
133 {
134 	return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR;
135 }
136 
137 static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature)
138 {
139 	unsigned int offs, i;
140 
141 	/*
142 	 * Non-compacted format and legacy features use the cached fixed
143 	 * offsets.
144 	 */
145 	if (!cpu_feature_enabled(X86_FEATURE_XSAVES) || xfeature <= XFEATURE_SSE)
146 		return xstate_offsets[xfeature];
147 
148 	/*
149 	 * Compacted format offsets depend on the actual content of the
150 	 * compacted xsave area which is determined by the xcomp_bv header
151 	 * field.
152 	 */
153 	offs = FXSAVE_SIZE + XSAVE_HDR_SIZE;
154 	for_each_extended_xfeature(i, xcomp_bv) {
155 		if (xfeature_is_aligned64(i))
156 			offs = ALIGN(offs, 64);
157 		if (i == xfeature)
158 			break;
159 		offs += xstate_sizes[i];
160 	}
161 	return offs;
162 }
163 
164 /*
165  * Enable the extended processor state save/restore feature.
166  * Called once per CPU onlining.
167  */
168 void fpu__init_cpu_xstate(void)
169 {
170 	if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features)
171 		return;
172 
173 	cr4_set_bits(X86_CR4_OSXSAVE);
174 
175 	/*
176 	 * Must happen after CR4 setup and before xsetbv() to allow KVM
177 	 * lazy passthrough.  Write independent of the dynamic state static
178 	 * key as that does not work on the boot CPU. This also ensures
179 	 * that any stale state is wiped out from XFD.
180 	 */
181 	if (cpu_feature_enabled(X86_FEATURE_XFD))
182 		wrmsrl(MSR_IA32_XFD, init_fpstate.xfd);
183 
184 	/*
185 	 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
186 	 * managed by XSAVE{C, OPT, S} and XRSTOR{S}.  Only XSAVE user
187 	 * states can be set here.
188 	 */
189 	xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
190 
191 	/*
192 	 * MSR_IA32_XSS sets supervisor states managed by XSAVES.
193 	 */
194 	if (boot_cpu_has(X86_FEATURE_XSAVES)) {
195 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
196 				     xfeatures_mask_independent());
197 	}
198 }
199 
200 static bool xfeature_enabled(enum xfeature xfeature)
201 {
202 	return fpu_kernel_cfg.max_features & BIT_ULL(xfeature);
203 }
204 
205 /*
206  * Record the offsets and sizes of various xstates contained
207  * in the XSAVE state memory layout.
208  */
209 static void __init setup_xstate_cache(void)
210 {
211 	u32 eax, ebx, ecx, edx, i;
212 	/* start at the beginning of the "extended state" */
213 	unsigned int last_good_offset = offsetof(struct xregs_state,
214 						 extended_state_area);
215 	/*
216 	 * The FP xstates and SSE xstates are legacy states. They are always
217 	 * in the fixed offsets in the xsave area in either compacted form
218 	 * or standard form.
219 	 */
220 	xstate_offsets[XFEATURE_FP]	= 0;
221 	xstate_sizes[XFEATURE_FP]	= offsetof(struct fxregs_state,
222 						   xmm_space);
223 
224 	xstate_offsets[XFEATURE_SSE]	= xstate_sizes[XFEATURE_FP];
225 	xstate_sizes[XFEATURE_SSE]	= sizeof_field(struct fxregs_state,
226 						       xmm_space);
227 
228 	for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
229 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
230 
231 		xstate_sizes[i] = eax;
232 		xstate_flags[i] = ecx;
233 
234 		/*
235 		 * If an xfeature is supervisor state, the offset in EBX is
236 		 * invalid, leave it to -1.
237 		 */
238 		if (xfeature_is_supervisor(i))
239 			continue;
240 
241 		xstate_offsets[i] = ebx;
242 
243 		/*
244 		 * In our xstate size checks, we assume that the highest-numbered
245 		 * xstate feature has the highest offset in the buffer.  Ensure
246 		 * it does.
247 		 */
248 		WARN_ONCE(last_good_offset > xstate_offsets[i],
249 			  "x86/fpu: misordered xstate at %d\n", last_good_offset);
250 
251 		last_good_offset = xstate_offsets[i];
252 	}
253 }
254 
255 static void __init print_xstate_feature(u64 xstate_mask)
256 {
257 	const char *feature_name;
258 
259 	if (cpu_has_xfeatures(xstate_mask, &feature_name))
260 		pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
261 }
262 
263 /*
264  * Print out all the supported xstate features:
265  */
266 static void __init print_xstate_features(void)
267 {
268 	print_xstate_feature(XFEATURE_MASK_FP);
269 	print_xstate_feature(XFEATURE_MASK_SSE);
270 	print_xstate_feature(XFEATURE_MASK_YMM);
271 	print_xstate_feature(XFEATURE_MASK_BNDREGS);
272 	print_xstate_feature(XFEATURE_MASK_BNDCSR);
273 	print_xstate_feature(XFEATURE_MASK_OPMASK);
274 	print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
275 	print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
276 	print_xstate_feature(XFEATURE_MASK_PKRU);
277 	print_xstate_feature(XFEATURE_MASK_PASID);
278 	print_xstate_feature(XFEATURE_MASK_XTILE_CFG);
279 	print_xstate_feature(XFEATURE_MASK_XTILE_DATA);
280 }
281 
282 /*
283  * This check is important because it is easy to get XSTATE_*
284  * confused with XSTATE_BIT_*.
285  */
286 #define CHECK_XFEATURE(nr) do {		\
287 	WARN_ON(nr < FIRST_EXTENDED_XFEATURE);	\
288 	WARN_ON(nr >= XFEATURE_MAX);	\
289 } while (0)
290 
291 /*
292  * Print out xstate component offsets and sizes
293  */
294 static void __init print_xstate_offset_size(void)
295 {
296 	int i;
297 
298 	for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
299 		pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
300 			i, xfeature_get_offset(fpu_kernel_cfg.max_features, i),
301 			i, xstate_sizes[i]);
302 	}
303 }
304 
305 /*
306  * This function is called only during boot time when x86 caps are not set
307  * up and alternative can not be used yet.
308  */
309 static __init void os_xrstor_booting(struct xregs_state *xstate)
310 {
311 	u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE;
312 	u32 lmask = mask;
313 	u32 hmask = mask >> 32;
314 	int err;
315 
316 	if (cpu_feature_enabled(X86_FEATURE_XSAVES))
317 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
318 	else
319 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
320 
321 	/*
322 	 * We should never fault when copying from a kernel buffer, and the FPU
323 	 * state we set at boot time should be valid.
324 	 */
325 	WARN_ON_FPU(err);
326 }
327 
328 /*
329  * All supported features have either init state all zeros or are
330  * handled in setup_init_fpu() individually. This is an explicit
331  * feature list and does not use XFEATURE_MASK*SUPPORTED to catch
332  * newly added supported features at build time and make people
333  * actually look at the init state for the new feature.
334  */
335 #define XFEATURES_INIT_FPSTATE_HANDLED		\
336 	(XFEATURE_MASK_FP |			\
337 	 XFEATURE_MASK_SSE |			\
338 	 XFEATURE_MASK_YMM |			\
339 	 XFEATURE_MASK_OPMASK |			\
340 	 XFEATURE_MASK_ZMM_Hi256 |		\
341 	 XFEATURE_MASK_Hi16_ZMM	 |		\
342 	 XFEATURE_MASK_PKRU |			\
343 	 XFEATURE_MASK_BNDREGS |		\
344 	 XFEATURE_MASK_BNDCSR |			\
345 	 XFEATURE_MASK_PASID |			\
346 	 XFEATURE_MASK_XTILE)
347 
348 /*
349  * setup the xstate image representing the init state
350  */
351 static void __init setup_init_fpu_buf(void)
352 {
353 	BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
354 		      XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
355 		     XFEATURES_INIT_FPSTATE_HANDLED);
356 
357 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
358 		return;
359 
360 	print_xstate_features();
361 
362 	xstate_init_xcomp_bv(&init_fpstate.regs.xsave, fpu_kernel_cfg.max_features);
363 
364 	/*
365 	 * Init all the features state with header.xfeatures being 0x0
366 	 */
367 	os_xrstor_booting(&init_fpstate.regs.xsave);
368 
369 	/*
370 	 * All components are now in init state. Read the state back so
371 	 * that init_fpstate contains all non-zero init state. This only
372 	 * works with XSAVE, but not with XSAVEOPT and XSAVES because
373 	 * those use the init optimization which skips writing data for
374 	 * components in init state.
375 	 *
376 	 * XSAVE could be used, but that would require to reshuffle the
377 	 * data when XSAVES is available because XSAVES uses xstate
378 	 * compaction. But doing so is a pointless exercise because most
379 	 * components have an all zeros init state except for the legacy
380 	 * ones (FP and SSE). Those can be saved with FXSAVE into the
381 	 * legacy area. Adding new features requires to ensure that init
382 	 * state is all zeroes or if not to add the necessary handling
383 	 * here.
384 	 */
385 	fxsave(&init_fpstate.regs.fxsave);
386 }
387 
388 int xfeature_size(int xfeature_nr)
389 {
390 	u32 eax, ebx, ecx, edx;
391 
392 	CHECK_XFEATURE(xfeature_nr);
393 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
394 	return eax;
395 }
396 
397 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
398 static int validate_user_xstate_header(const struct xstate_header *hdr,
399 				       struct fpstate *fpstate)
400 {
401 	/* No unknown or supervisor features may be set */
402 	if (hdr->xfeatures & ~fpstate->user_xfeatures)
403 		return -EINVAL;
404 
405 	/* Userspace must use the uncompacted format */
406 	if (hdr->xcomp_bv)
407 		return -EINVAL;
408 
409 	/*
410 	 * If 'reserved' is shrunken to add a new field, make sure to validate
411 	 * that new field here!
412 	 */
413 	BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
414 
415 	/* No reserved bits may be set */
416 	if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
417 		return -EINVAL;
418 
419 	return 0;
420 }
421 
422 static void __init __xstate_dump_leaves(void)
423 {
424 	int i;
425 	u32 eax, ebx, ecx, edx;
426 	static int should_dump = 1;
427 
428 	if (!should_dump)
429 		return;
430 	should_dump = 0;
431 	/*
432 	 * Dump out a few leaves past the ones that we support
433 	 * just in case there are some goodies up there
434 	 */
435 	for (i = 0; i < XFEATURE_MAX + 10; i++) {
436 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
437 		pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
438 			XSTATE_CPUID, i, eax, ebx, ecx, edx);
439 	}
440 }
441 
442 #define XSTATE_WARN_ON(x) do {							\
443 	if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) {	\
444 		__xstate_dump_leaves();						\
445 	}									\
446 } while (0)
447 
448 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do {			\
449 	if ((nr == nr_macro) &&						\
450 	    WARN_ONCE(sz != sizeof(__struct),				\
451 		"%s: struct is %zu bytes, cpu state %d bytes\n",	\
452 		__stringify(nr_macro), sizeof(__struct), sz)) {		\
453 		__xstate_dump_leaves();					\
454 	}								\
455 } while (0)
456 
457 /**
458  * check_xtile_data_against_struct - Check tile data state size.
459  *
460  * Calculate the state size by multiplying the single tile size which is
461  * recorded in a C struct, and the number of tiles that the CPU informs.
462  * Compare the provided size with the calculation.
463  *
464  * @size:	The tile data state size
465  *
466  * Returns:	0 on success, -EINVAL on mismatch.
467  */
468 static int __init check_xtile_data_against_struct(int size)
469 {
470 	u32 max_palid, palid, state_size;
471 	u32 eax, ebx, ecx, edx;
472 	u16 max_tile;
473 
474 	/*
475 	 * Check the maximum palette id:
476 	 *   eax: the highest numbered palette subleaf.
477 	 */
478 	cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx);
479 
480 	/*
481 	 * Cross-check each tile size and find the maximum number of
482 	 * supported tiles.
483 	 */
484 	for (palid = 1, max_tile = 0; palid <= max_palid; palid++) {
485 		u16 tile_size, max;
486 
487 		/*
488 		 * Check the tile size info:
489 		 *   eax[31:16]:  bytes per title
490 		 *   ebx[31:16]:  the max names (or max number of tiles)
491 		 */
492 		cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx);
493 		tile_size = eax >> 16;
494 		max = ebx >> 16;
495 
496 		if (tile_size != sizeof(struct xtile_data)) {
497 			pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n",
498 			       __stringify(XFEATURE_XTILE_DATA),
499 			       sizeof(struct xtile_data), tile_size);
500 			__xstate_dump_leaves();
501 			return -EINVAL;
502 		}
503 
504 		if (max > max_tile)
505 			max_tile = max;
506 	}
507 
508 	state_size = sizeof(struct xtile_data) * max_tile;
509 	if (size != state_size) {
510 		pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n",
511 		       __stringify(XFEATURE_XTILE_DATA), state_size, size);
512 		__xstate_dump_leaves();
513 		return -EINVAL;
514 	}
515 	return 0;
516 }
517 
518 /*
519  * We have a C struct for each 'xstate'.  We need to ensure
520  * that our software representation matches what the CPU
521  * tells us about the state's size.
522  */
523 static bool __init check_xstate_against_struct(int nr)
524 {
525 	/*
526 	 * Ask the CPU for the size of the state.
527 	 */
528 	int sz = xfeature_size(nr);
529 	/*
530 	 * Match each CPU state with the corresponding software
531 	 * structure.
532 	 */
533 	XCHECK_SZ(sz, nr, XFEATURE_YMM,       struct ymmh_struct);
534 	XCHECK_SZ(sz, nr, XFEATURE_BNDREGS,   struct mpx_bndreg_state);
535 	XCHECK_SZ(sz, nr, XFEATURE_BNDCSR,    struct mpx_bndcsr_state);
536 	XCHECK_SZ(sz, nr, XFEATURE_OPMASK,    struct avx_512_opmask_state);
537 	XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
538 	XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM,  struct avx_512_hi16_state);
539 	XCHECK_SZ(sz, nr, XFEATURE_PKRU,      struct pkru_state);
540 	XCHECK_SZ(sz, nr, XFEATURE_PASID,     struct ia32_pasid_state);
541 	XCHECK_SZ(sz, nr, XFEATURE_XTILE_CFG, struct xtile_cfg);
542 
543 	/* The tile data size varies between implementations. */
544 	if (nr == XFEATURE_XTILE_DATA)
545 		check_xtile_data_against_struct(sz);
546 
547 	/*
548 	 * Make *SURE* to add any feature numbers in below if
549 	 * there are "holes" in the xsave state component
550 	 * numbers.
551 	 */
552 	if ((nr < XFEATURE_YMM) ||
553 	    (nr >= XFEATURE_MAX) ||
554 	    (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) ||
555 	    ((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_RSRVD_COMP_16))) {
556 		WARN_ONCE(1, "no structure for xstate: %d\n", nr);
557 		XSTATE_WARN_ON(1);
558 		return false;
559 	}
560 	return true;
561 }
562 
563 static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted)
564 {
565 	unsigned int topmost = fls64(xfeatures) -  1;
566 	unsigned int offset = xstate_offsets[topmost];
567 
568 	if (topmost <= XFEATURE_SSE)
569 		return sizeof(struct xregs_state);
570 
571 	if (compacted)
572 		offset = xfeature_get_offset(xfeatures, topmost);
573 	return offset + xstate_sizes[topmost];
574 }
575 
576 /*
577  * This essentially double-checks what the cpu told us about
578  * how large the XSAVE buffer needs to be.  We are recalculating
579  * it to be safe.
580  *
581  * Independent XSAVE features allocate their own buffers and are not
582  * covered by these checks. Only the size of the buffer for task->fpu
583  * is checked here.
584  */
585 static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
586 {
587 	bool compacted = cpu_feature_enabled(X86_FEATURE_XSAVES);
588 	unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
589 	int i;
590 
591 	for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
592 		if (!check_xstate_against_struct(i))
593 			return false;
594 		/*
595 		 * Supervisor state components can be managed only by
596 		 * XSAVES.
597 		 */
598 		if (!compacted && xfeature_is_supervisor(i)) {
599 			XSTATE_WARN_ON(1);
600 			return false;
601 		}
602 	}
603 	size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted);
604 	XSTATE_WARN_ON(size != kernel_size);
605 	return size == kernel_size;
606 }
607 
608 /*
609  * Get total size of enabled xstates in XCR0 | IA32_XSS.
610  *
611  * Note the SDM's wording here.  "sub-function 0" only enumerates
612  * the size of the *user* states.  If we use it to size a buffer
613  * that we use 'XSAVES' on, we could potentially overflow the
614  * buffer because 'XSAVES' saves system states too.
615  */
616 static unsigned int __init get_xsaves_size(void)
617 {
618 	unsigned int eax, ebx, ecx, edx;
619 	/*
620 	 * - CPUID function 0DH, sub-function 1:
621 	 *    EBX enumerates the size (in bytes) required by
622 	 *    the XSAVES instruction for an XSAVE area
623 	 *    containing all the state components
624 	 *    corresponding to bits currently set in
625 	 *    XCR0 | IA32_XSS.
626 	 */
627 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
628 	return ebx;
629 }
630 
631 /*
632  * Get the total size of the enabled xstates without the independent supervisor
633  * features.
634  */
635 static unsigned int __init get_xsaves_size_no_independent(void)
636 {
637 	u64 mask = xfeatures_mask_independent();
638 	unsigned int size;
639 
640 	if (!mask)
641 		return get_xsaves_size();
642 
643 	/* Disable independent features. */
644 	wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
645 
646 	/*
647 	 * Ask the hardware what size is required of the buffer.
648 	 * This is the size required for the task->fpu buffer.
649 	 */
650 	size = get_xsaves_size();
651 
652 	/* Re-enable independent features so XSAVES will work on them again. */
653 	wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
654 
655 	return size;
656 }
657 
658 static unsigned int __init get_xsave_size_user(void)
659 {
660 	unsigned int eax, ebx, ecx, edx;
661 	/*
662 	 * - CPUID function 0DH, sub-function 0:
663 	 *    EBX enumerates the size (in bytes) required by
664 	 *    the XSAVE instruction for an XSAVE area
665 	 *    containing all the *user* state components
666 	 *    corresponding to bits currently set in XCR0.
667 	 */
668 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
669 	return ebx;
670 }
671 
672 /*
673  * Will the runtime-enumerated 'xstate_size' fit in the init
674  * task's statically-allocated buffer?
675  */
676 static bool __init is_supported_xstate_size(unsigned int test_xstate_size)
677 {
678 	if (test_xstate_size <= sizeof(init_fpstate.regs))
679 		return true;
680 
681 	pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
682 			sizeof(init_fpstate.regs), test_xstate_size);
683 	return false;
684 }
685 
686 static int __init init_xstate_size(void)
687 {
688 	/* Recompute the context size for enabled features: */
689 	unsigned int user_size, kernel_size, kernel_default_size;
690 	bool compacted = cpu_feature_enabled(X86_FEATURE_XSAVES);
691 
692 	/* Uncompacted user space size */
693 	user_size = get_xsave_size_user();
694 
695 	/*
696 	 * XSAVES kernel size includes supervisor states and
697 	 * uses compacted format when available.
698 	 *
699 	 * XSAVE does not support supervisor states so
700 	 * kernel and user size is identical.
701 	 */
702 	if (compacted)
703 		kernel_size = get_xsaves_size_no_independent();
704 	else
705 		kernel_size = user_size;
706 
707 	kernel_default_size =
708 		xstate_calculate_size(fpu_kernel_cfg.default_features, compacted);
709 
710 	/* Ensure we have the space to store all default enabled features. */
711 	if (!is_supported_xstate_size(kernel_default_size))
712 		return -EINVAL;
713 
714 	if (!paranoid_xstate_size_valid(kernel_size))
715 		return -EINVAL;
716 
717 	fpu_kernel_cfg.max_size = kernel_size;
718 	fpu_user_cfg.max_size = user_size;
719 
720 	fpu_kernel_cfg.default_size = kernel_default_size;
721 	fpu_user_cfg.default_size =
722 		xstate_calculate_size(fpu_user_cfg.default_features, false);
723 
724 	return 0;
725 }
726 
727 /*
728  * We enabled the XSAVE hardware, but something went wrong and
729  * we can not use it.  Disable it.
730  */
731 static void __init fpu__init_disable_system_xstate(unsigned int legacy_size)
732 {
733 	fpu_kernel_cfg.max_features = 0;
734 	cr4_clear_bits(X86_CR4_OSXSAVE);
735 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
736 
737 	/* Restore the legacy size.*/
738 	fpu_kernel_cfg.max_size = legacy_size;
739 	fpu_kernel_cfg.default_size = legacy_size;
740 	fpu_user_cfg.max_size = legacy_size;
741 	fpu_user_cfg.default_size = legacy_size;
742 
743 	/*
744 	 * Prevent enabling the static branch which enables writes to the
745 	 * XFD MSR.
746 	 */
747 	init_fpstate.xfd = 0;
748 
749 	fpstate_reset(&current->thread.fpu);
750 }
751 
752 /*
753  * Enable and initialize the xsave feature.
754  * Called once per system bootup.
755  */
756 void __init fpu__init_system_xstate(unsigned int legacy_size)
757 {
758 	unsigned int eax, ebx, ecx, edx;
759 	u64 xfeatures;
760 	int err;
761 	int i;
762 
763 	if (!boot_cpu_has(X86_FEATURE_FPU)) {
764 		pr_info("x86/fpu: No FPU detected\n");
765 		return;
766 	}
767 
768 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
769 		pr_info("x86/fpu: x87 FPU will use %s\n",
770 			boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
771 		return;
772 	}
773 
774 	if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
775 		WARN_ON_FPU(1);
776 		return;
777 	}
778 
779 	/*
780 	 * Find user xstates supported by the processor.
781 	 */
782 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
783 	fpu_kernel_cfg.max_features = eax + ((u64)edx << 32);
784 
785 	/*
786 	 * Find supervisor xstates supported by the processor.
787 	 */
788 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
789 	fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32);
790 
791 	if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
792 		/*
793 		 * This indicates that something really unexpected happened
794 		 * with the enumeration.  Disable XSAVE and try to continue
795 		 * booting without it.  This is too early to BUG().
796 		 */
797 		pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
798 		       fpu_kernel_cfg.max_features);
799 		goto out_disable;
800 	}
801 
802 	/*
803 	 * Clear XSAVE features that are disabled in the normal CPUID.
804 	 */
805 	for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
806 		unsigned short cid = xsave_cpuid_features[i];
807 
808 		/* Careful: X86_FEATURE_FPU is 0! */
809 		if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid))
810 			fpu_kernel_cfg.max_features &= ~BIT_ULL(i);
811 	}
812 
813 	if (!cpu_feature_enabled(X86_FEATURE_XFD))
814 		fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
815 
816 	fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
817 			      XFEATURE_MASK_SUPERVISOR_SUPPORTED;
818 
819 	fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
820 	fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
821 
822 	/* Clean out dynamic features from default */
823 	fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features;
824 	fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
825 
826 	fpu_user_cfg.default_features = fpu_user_cfg.max_features;
827 	fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
828 
829 	/* Store it for paranoia check at the end */
830 	xfeatures = fpu_kernel_cfg.max_features;
831 
832 	/*
833 	 * Initialize the default XFD state in initfp_state and enable the
834 	 * dynamic sizing mechanism if dynamic states are available.  The
835 	 * static key cannot be enabled here because this runs before
836 	 * jump_label_init(). This is delayed to an initcall.
837 	 */
838 	init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
839 
840 	/* Enable xstate instructions to be able to continue with initialization: */
841 	fpu__init_cpu_xstate();
842 
843 	/* Cache size, offset and flags for initialization */
844 	setup_xstate_cache();
845 
846 	err = init_xstate_size();
847 	if (err)
848 		goto out_disable;
849 
850 	/* Reset the state for the current task */
851 	fpstate_reset(&current->thread.fpu);
852 
853 	/*
854 	 * Update info used for ptrace frames; use standard-format size and no
855 	 * supervisor xstates:
856 	 */
857 	update_regset_xstate_info(fpu_user_cfg.max_size,
858 				  fpu_user_cfg.max_features);
859 
860 	setup_init_fpu_buf();
861 
862 	/*
863 	 * Paranoia check whether something in the setup modified the
864 	 * xfeatures mask.
865 	 */
866 	if (xfeatures != fpu_kernel_cfg.max_features) {
867 		pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n",
868 		       xfeatures, fpu_kernel_cfg.max_features);
869 		goto out_disable;
870 	}
871 
872 	print_xstate_offset_size();
873 	pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
874 		fpu_kernel_cfg.max_features,
875 		fpu_kernel_cfg.max_size,
876 		boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard");
877 	return;
878 
879 out_disable:
880 	/* something went wrong, try to boot without any XSAVE support */
881 	fpu__init_disable_system_xstate(legacy_size);
882 }
883 
884 /*
885  * Restore minimal FPU state after suspend:
886  */
887 void fpu__resume_cpu(void)
888 {
889 	/*
890 	 * Restore XCR0 on xsave capable CPUs:
891 	 */
892 	if (cpu_feature_enabled(X86_FEATURE_XSAVE))
893 		xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
894 
895 	/*
896 	 * Restore IA32_XSS. The same CPUID bit enumerates support
897 	 * of XSAVES and MSR_IA32_XSS.
898 	 */
899 	if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
900 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()  |
901 				     xfeatures_mask_independent());
902 	}
903 
904 	if (fpu_state_size_dynamic())
905 		wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd);
906 }
907 
908 /*
909  * Given an xstate feature nr, calculate where in the xsave
910  * buffer the state is.  Callers should ensure that the buffer
911  * is valid.
912  */
913 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
914 {
915 	u64 xcomp_bv = xsave->header.xcomp_bv;
916 
917 	if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
918 		return NULL;
919 
920 	if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
921 		if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
922 			return NULL;
923 	}
924 
925 	return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr);
926 }
927 
928 /*
929  * Given the xsave area and a state inside, this function returns the
930  * address of the state.
931  *
932  * This is the API that is called to get xstate address in either
933  * standard format or compacted format of xsave area.
934  *
935  * Note that if there is no data for the field in the xsave buffer
936  * this will return NULL.
937  *
938  * Inputs:
939  *	xstate: the thread's storage area for all FPU data
940  *	xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
941  *	XFEATURE_SSE, etc...)
942  * Output:
943  *	address of the state in the xsave area, or NULL if the
944  *	field is not present in the xsave buffer.
945  */
946 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
947 {
948 	/*
949 	 * Do we even *have* xsave state?
950 	 */
951 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
952 		return NULL;
953 
954 	/*
955 	 * We should not ever be requesting features that we
956 	 * have not enabled.
957 	 */
958 	if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
959 		return NULL;
960 
961 	/*
962 	 * This assumes the last 'xsave*' instruction to
963 	 * have requested that 'xfeature_nr' be saved.
964 	 * If it did not, we might be seeing and old value
965 	 * of the field in the buffer.
966 	 *
967 	 * This can happen because the last 'xsave' did not
968 	 * request that this feature be saved (unlikely)
969 	 * or because the "init optimization" caused it
970 	 * to not be saved.
971 	 */
972 	if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
973 		return NULL;
974 
975 	return __raw_xsave_addr(xsave, xfeature_nr);
976 }
977 
978 #ifdef CONFIG_ARCH_HAS_PKEYS
979 
980 /*
981  * This will go out and modify PKRU register to set the access
982  * rights for @pkey to @init_val.
983  */
984 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
985 			      unsigned long init_val)
986 {
987 	u32 old_pkru, new_pkru_bits = 0;
988 	int pkey_shift;
989 
990 	/*
991 	 * This check implies XSAVE support.  OSPKE only gets
992 	 * set if we enable XSAVE and we enable PKU in XCR0.
993 	 */
994 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
995 		return -EINVAL;
996 
997 	/*
998 	 * This code should only be called with valid 'pkey'
999 	 * values originating from in-kernel users.  Complain
1000 	 * if a bad value is observed.
1001 	 */
1002 	if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
1003 		return -EINVAL;
1004 
1005 	/* Set the bits we need in PKRU:  */
1006 	if (init_val & PKEY_DISABLE_ACCESS)
1007 		new_pkru_bits |= PKRU_AD_BIT;
1008 	if (init_val & PKEY_DISABLE_WRITE)
1009 		new_pkru_bits |= PKRU_WD_BIT;
1010 
1011 	/* Shift the bits in to the correct place in PKRU for pkey: */
1012 	pkey_shift = pkey * PKRU_BITS_PER_PKEY;
1013 	new_pkru_bits <<= pkey_shift;
1014 
1015 	/* Get old PKRU and mask off any old bits in place: */
1016 	old_pkru = read_pkru();
1017 	old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
1018 
1019 	/* Write old part along with new part: */
1020 	write_pkru(old_pkru | new_pkru_bits);
1021 
1022 	return 0;
1023 }
1024 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
1025 
1026 static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
1027 			 void *init_xstate, unsigned int size)
1028 {
1029 	membuf_write(to, from_xstate ? xstate : init_xstate, size);
1030 }
1031 
1032 /**
1033  * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1034  * @to:		membuf descriptor
1035  * @fpstate:	The fpstate buffer from which to copy
1036  * @pkru_val:	The PKRU value to store in the PKRU component
1037  * @copy_mode:	The requested copy mode
1038  *
1039  * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1040  * format, i.e. from the kernel internal hardware dependent storage format
1041  * to the requested @mode. UABI XSTATE is always uncompacted!
1042  *
1043  * It supports partial copy but @to.pos always starts from zero.
1044  */
1045 void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate,
1046 			       u32 pkru_val, enum xstate_copy_mode copy_mode)
1047 {
1048 	const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
1049 	struct xregs_state *xinit = &init_fpstate.regs.xsave;
1050 	struct xregs_state *xsave = &fpstate->regs.xsave;
1051 	struct xstate_header header;
1052 	unsigned int zerofrom;
1053 	u64 mask;
1054 	int i;
1055 
1056 	memset(&header, 0, sizeof(header));
1057 	header.xfeatures = xsave->header.xfeatures;
1058 
1059 	/* Mask out the feature bits depending on copy mode */
1060 	switch (copy_mode) {
1061 	case XSTATE_COPY_FP:
1062 		header.xfeatures &= XFEATURE_MASK_FP;
1063 		break;
1064 
1065 	case XSTATE_COPY_FX:
1066 		header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE;
1067 		break;
1068 
1069 	case XSTATE_COPY_XSAVE:
1070 		header.xfeatures &= fpstate->user_xfeatures;
1071 		break;
1072 	}
1073 
1074 	/* Copy FP state up to MXCSR */
1075 	copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387,
1076 		     &xinit->i387, off_mxcsr);
1077 
1078 	/* Copy MXCSR when SSE or YMM are set in the feature mask */
1079 	copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
1080 		     &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr,
1081 		     MXCSR_AND_FLAGS_SIZE);
1082 
1083 	/* Copy the remaining FP state */
1084 	copy_feature(header.xfeatures & XFEATURE_MASK_FP,
1085 		     &to, &xsave->i387.st_space, &xinit->i387.st_space,
1086 		     sizeof(xsave->i387.st_space));
1087 
1088 	/* Copy the SSE state - shared with YMM, but independently managed */
1089 	copy_feature(header.xfeatures & XFEATURE_MASK_SSE,
1090 		     &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space,
1091 		     sizeof(xsave->i387.xmm_space));
1092 
1093 	if (copy_mode != XSTATE_COPY_XSAVE)
1094 		goto out;
1095 
1096 	/* Zero the padding area */
1097 	membuf_zero(&to, sizeof(xsave->i387.padding));
1098 
1099 	/* Copy xsave->i387.sw_reserved */
1100 	membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved));
1101 
1102 	/* Copy the user space relevant state of @xsave->header */
1103 	membuf_write(&to, &header, sizeof(header));
1104 
1105 	zerofrom = offsetof(struct xregs_state, extended_state_area);
1106 
1107 	/*
1108 	 * The ptrace buffer is in non-compacted XSAVE format.  In
1109 	 * non-compacted format disabled features still occupy state space,
1110 	 * but there is no state to copy from in the compacted
1111 	 * init_fpstate. The gap tracking will zero these states.
1112 	 */
1113 	mask = fpstate->user_xfeatures;
1114 
1115 	for_each_extended_xfeature(i, mask) {
1116 		/*
1117 		 * If there was a feature or alignment gap, zero the space
1118 		 * in the destination buffer.
1119 		 */
1120 		if (zerofrom < xstate_offsets[i])
1121 			membuf_zero(&to, xstate_offsets[i] - zerofrom);
1122 
1123 		if (i == XFEATURE_PKRU) {
1124 			struct pkru_state pkru = {0};
1125 			/*
1126 			 * PKRU is not necessarily up to date in the
1127 			 * XSAVE buffer. Use the provided value.
1128 			 */
1129 			pkru.pkru = pkru_val;
1130 			membuf_write(&to, &pkru, sizeof(pkru));
1131 		} else {
1132 			copy_feature(header.xfeatures & BIT_ULL(i), &to,
1133 				     __raw_xsave_addr(xsave, i),
1134 				     __raw_xsave_addr(xinit, i),
1135 				     xstate_sizes[i]);
1136 		}
1137 		/*
1138 		 * Keep track of the last copied state in the non-compacted
1139 		 * target buffer for gap zeroing.
1140 		 */
1141 		zerofrom = xstate_offsets[i] + xstate_sizes[i];
1142 	}
1143 
1144 out:
1145 	if (to.left)
1146 		membuf_zero(&to, to.left);
1147 }
1148 
1149 /**
1150  * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1151  * @to:		membuf descriptor
1152  * @tsk:	The task from which to copy the saved xstate
1153  * @copy_mode:	The requested copy mode
1154  *
1155  * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1156  * format, i.e. from the kernel internal hardware dependent storage format
1157  * to the requested @mode. UABI XSTATE is always uncompacted!
1158  *
1159  * It supports partial copy but @to.pos always starts from zero.
1160  */
1161 void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk,
1162 			     enum xstate_copy_mode copy_mode)
1163 {
1164 	__copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate,
1165 				  tsk->thread.pkru, copy_mode);
1166 }
1167 
1168 static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size,
1169 			    const void *kbuf, const void __user *ubuf)
1170 {
1171 	if (kbuf) {
1172 		memcpy(dst, kbuf + offset, size);
1173 	} else {
1174 		if (copy_from_user(dst, ubuf + offset, size))
1175 			return -EFAULT;
1176 	}
1177 	return 0;
1178 }
1179 
1180 
1181 static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf,
1182 			       const void __user *ubuf)
1183 {
1184 	struct xregs_state *xsave = &fpstate->regs.xsave;
1185 	unsigned int offset, size;
1186 	struct xstate_header hdr;
1187 	u64 mask;
1188 	int i;
1189 
1190 	offset = offsetof(struct xregs_state, header);
1191 	if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf))
1192 		return -EFAULT;
1193 
1194 	if (validate_user_xstate_header(&hdr, fpstate))
1195 		return -EINVAL;
1196 
1197 	/* Validate MXCSR when any of the related features is in use */
1198 	mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM;
1199 	if (hdr.xfeatures & mask) {
1200 		u32 mxcsr[2];
1201 
1202 		offset = offsetof(struct fxregs_state, mxcsr);
1203 		if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf))
1204 			return -EFAULT;
1205 
1206 		/* Reserved bits in MXCSR must be zero. */
1207 		if (mxcsr[0] & ~mxcsr_feature_mask)
1208 			return -EINVAL;
1209 
1210 		/* SSE and YMM require MXCSR even when FP is not in use. */
1211 		if (!(hdr.xfeatures & XFEATURE_MASK_FP)) {
1212 			xsave->i387.mxcsr = mxcsr[0];
1213 			xsave->i387.mxcsr_mask = mxcsr[1];
1214 		}
1215 	}
1216 
1217 	for (i = 0; i < XFEATURE_MAX; i++) {
1218 		u64 mask = ((u64)1 << i);
1219 
1220 		if (hdr.xfeatures & mask) {
1221 			void *dst = __raw_xsave_addr(xsave, i);
1222 
1223 			offset = xstate_offsets[i];
1224 			size = xstate_sizes[i];
1225 
1226 			if (copy_from_buffer(dst, offset, size, kbuf, ubuf))
1227 				return -EFAULT;
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * The state that came in from userspace was user-state only.
1233 	 * Mask all the user states out of 'xfeatures':
1234 	 */
1235 	xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1236 
1237 	/*
1238 	 * Add back in the features that came in from userspace:
1239 	 */
1240 	xsave->header.xfeatures |= hdr.xfeatures;
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S]
1247  * format and copy to the target thread. Used by ptrace and KVM.
1248  */
1249 int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf)
1250 {
1251 	return copy_uabi_to_xstate(fpstate, kbuf, NULL);
1252 }
1253 
1254 /*
1255  * Convert from a sigreturn standard-format user-space buffer to kernel
1256  * XSAVE[S] format and copy to the target thread. This is called from the
1257  * sigreturn() and rt_sigreturn() system calls.
1258  */
1259 int copy_sigframe_from_user_to_xstate(struct fpstate *fpstate,
1260 				      const void __user *ubuf)
1261 {
1262 	return copy_uabi_to_xstate(fpstate, NULL, ubuf);
1263 }
1264 
1265 static bool validate_independent_components(u64 mask)
1266 {
1267 	u64 xchk;
1268 
1269 	if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES)))
1270 		return false;
1271 
1272 	xchk = ~xfeatures_mask_independent();
1273 
1274 	if (WARN_ON_ONCE(!mask || mask & xchk))
1275 		return false;
1276 
1277 	return true;
1278 }
1279 
1280 /**
1281  * xsaves - Save selected components to a kernel xstate buffer
1282  * @xstate:	Pointer to the buffer
1283  * @mask:	Feature mask to select the components to save
1284  *
1285  * The @xstate buffer must be 64 byte aligned and correctly initialized as
1286  * XSAVES does not write the full xstate header. Before first use the
1287  * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer
1288  * can #GP.
1289  *
1290  * The feature mask must be a subset of the independent features.
1291  */
1292 void xsaves(struct xregs_state *xstate, u64 mask)
1293 {
1294 	int err;
1295 
1296 	if (!validate_independent_components(mask))
1297 		return;
1298 
1299 	XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err);
1300 	WARN_ON_ONCE(err);
1301 }
1302 
1303 /**
1304  * xrstors - Restore selected components from a kernel xstate buffer
1305  * @xstate:	Pointer to the buffer
1306  * @mask:	Feature mask to select the components to restore
1307  *
1308  * The @xstate buffer must be 64 byte aligned and correctly initialized
1309  * otherwise XRSTORS from that buffer can #GP.
1310  *
1311  * Proper usage is to restore the state which was saved with
1312  * xsaves() into @xstate.
1313  *
1314  * The feature mask must be a subset of the independent features.
1315  */
1316 void xrstors(struct xregs_state *xstate, u64 mask)
1317 {
1318 	int err;
1319 
1320 	if (!validate_independent_components(mask))
1321 		return;
1322 
1323 	XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err);
1324 	WARN_ON_ONCE(err);
1325 }
1326 
1327 #if IS_ENABLED(CONFIG_KVM)
1328 void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature)
1329 {
1330 	void *addr = get_xsave_addr(&fps->regs.xsave, xfeature);
1331 
1332 	if (addr)
1333 		memset(addr, 0, xstate_sizes[xfeature]);
1334 }
1335 EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component);
1336 #endif
1337 
1338 #ifdef CONFIG_X86_64
1339 
1340 #ifdef CONFIG_X86_DEBUG_FPU
1341 /*
1342  * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask
1343  * can safely operate on the @fpstate buffer.
1344  */
1345 static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor)
1346 {
1347 	u64 xfd = __this_cpu_read(xfd_state);
1348 
1349 	if (fpstate->xfd == xfd)
1350 		return true;
1351 
1352 	 /*
1353 	  * The XFD MSR does not match fpstate->xfd. That's invalid when
1354 	  * the passed in fpstate is current's fpstate.
1355 	  */
1356 	if (fpstate->xfd == current->thread.fpu.fpstate->xfd)
1357 		return false;
1358 
1359 	/*
1360 	 * XRSTOR(S) from init_fpstate are always correct as it will just
1361 	 * bring all components into init state and not read from the
1362 	 * buffer. XSAVE(S) raises #PF after init.
1363 	 */
1364 	if (fpstate == &init_fpstate)
1365 		return rstor;
1366 
1367 	/*
1368 	 * XSAVE(S): clone(), fpu_swap_kvm_fpu()
1369 	 * XRSTORS(S): fpu_swap_kvm_fpu()
1370 	 */
1371 
1372 	/*
1373 	 * No XSAVE/XRSTOR instructions (except XSAVE itself) touch
1374 	 * the buffer area for XFD-disabled state components.
1375 	 */
1376 	mask &= ~xfd;
1377 
1378 	/*
1379 	 * Remove features which are valid in fpstate. They
1380 	 * have space allocated in fpstate.
1381 	 */
1382 	mask &= ~fpstate->xfeatures;
1383 
1384 	/*
1385 	 * Any remaining state components in 'mask' might be written
1386 	 * by XSAVE/XRSTOR. Fail validation it found.
1387 	 */
1388 	return !mask;
1389 }
1390 
1391 void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor)
1392 {
1393 	WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor));
1394 }
1395 #endif /* CONFIG_X86_DEBUG_FPU */
1396 
1397 static int __init xfd_update_static_branch(void)
1398 {
1399 	/*
1400 	 * If init_fpstate.xfd has bits set then dynamic features are
1401 	 * available and the dynamic sizing must be enabled.
1402 	 */
1403 	if (init_fpstate.xfd)
1404 		static_branch_enable(&__fpu_state_size_dynamic);
1405 	return 0;
1406 }
1407 arch_initcall(xfd_update_static_branch)
1408 
1409 void fpstate_free(struct fpu *fpu)
1410 {
1411 	if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate)
1412 		vfree(fpu->fpstate);
1413 }
1414 
1415 /**
1416  * fpstate_realloc - Reallocate struct fpstate for the requested new features
1417  *
1418  * @xfeatures:	A bitmap of xstate features which extend the enabled features
1419  *		of that task
1420  * @ksize:	The required size for the kernel buffer
1421  * @usize:	The required size for user space buffers
1422  * @guest_fpu:	Pointer to a guest FPU container. NULL for host allocations
1423  *
1424  * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer
1425  * terminates quickly, vfree()-induced IPIs may be a concern, but tasks
1426  * with large states are likely to live longer.
1427  *
1428  * Returns: 0 on success, -ENOMEM on allocation error.
1429  */
1430 static int fpstate_realloc(u64 xfeatures, unsigned int ksize,
1431 			   unsigned int usize, struct fpu_guest *guest_fpu)
1432 {
1433 	struct fpu *fpu = &current->thread.fpu;
1434 	struct fpstate *curfps, *newfps = NULL;
1435 	unsigned int fpsize;
1436 	bool in_use;
1437 
1438 	fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64);
1439 
1440 	newfps = vzalloc(fpsize);
1441 	if (!newfps)
1442 		return -ENOMEM;
1443 	newfps->size = ksize;
1444 	newfps->user_size = usize;
1445 	newfps->is_valloc = true;
1446 
1447 	/*
1448 	 * When a guest FPU is supplied, use @guest_fpu->fpstate
1449 	 * as reference independent whether it is in use or not.
1450 	 */
1451 	curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate;
1452 
1453 	/* Determine whether @curfps is the active fpstate */
1454 	in_use = fpu->fpstate == curfps;
1455 
1456 	if (guest_fpu) {
1457 		newfps->is_guest = true;
1458 		newfps->is_confidential = curfps->is_confidential;
1459 		newfps->in_use = curfps->in_use;
1460 		guest_fpu->xfeatures |= xfeatures;
1461 		guest_fpu->uabi_size = usize;
1462 	}
1463 
1464 	fpregs_lock();
1465 	/*
1466 	 * If @curfps is in use, ensure that the current state is in the
1467 	 * registers before swapping fpstate as that might invalidate it
1468 	 * due to layout changes.
1469 	 */
1470 	if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD))
1471 		fpregs_restore_userregs();
1472 
1473 	newfps->xfeatures = curfps->xfeatures | xfeatures;
1474 
1475 	if (!guest_fpu)
1476 		newfps->user_xfeatures = curfps->user_xfeatures | xfeatures;
1477 
1478 	newfps->xfd = curfps->xfd & ~xfeatures;
1479 
1480 	/* Do the final updates within the locked region */
1481 	xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures);
1482 
1483 	if (guest_fpu) {
1484 		guest_fpu->fpstate = newfps;
1485 		/* If curfps is active, update the FPU fpstate pointer */
1486 		if (in_use)
1487 			fpu->fpstate = newfps;
1488 	} else {
1489 		fpu->fpstate = newfps;
1490 	}
1491 
1492 	if (in_use)
1493 		xfd_update_state(fpu->fpstate);
1494 	fpregs_unlock();
1495 
1496 	/* Only free valloc'ed state */
1497 	if (curfps && curfps->is_valloc)
1498 		vfree(curfps);
1499 
1500 	return 0;
1501 }
1502 
1503 static int validate_sigaltstack(unsigned int usize)
1504 {
1505 	struct task_struct *thread, *leader = current->group_leader;
1506 	unsigned long framesize = get_sigframe_size();
1507 
1508 	lockdep_assert_held(&current->sighand->siglock);
1509 
1510 	/* get_sigframe_size() is based on fpu_user_cfg.max_size */
1511 	framesize -= fpu_user_cfg.max_size;
1512 	framesize += usize;
1513 	for_each_thread(leader, thread) {
1514 		if (thread->sas_ss_size && thread->sas_ss_size < framesize)
1515 			return -ENOSPC;
1516 	}
1517 	return 0;
1518 }
1519 
1520 static int __xstate_request_perm(u64 permitted, u64 requested, bool guest)
1521 {
1522 	/*
1523 	 * This deliberately does not exclude !XSAVES as we still might
1524 	 * decide to optionally context switch XCR0 or talk the silicon
1525 	 * vendors into extending XFD for the pre AMX states, especially
1526 	 * AVX512.
1527 	 */
1528 	bool compacted = cpu_feature_enabled(X86_FEATURE_XSAVES);
1529 	struct fpu *fpu = &current->group_leader->thread.fpu;
1530 	struct fpu_state_perm *perm;
1531 	unsigned int ksize, usize;
1532 	u64 mask;
1533 	int ret = 0;
1534 
1535 	/* Check whether fully enabled */
1536 	if ((permitted & requested) == requested)
1537 		return 0;
1538 
1539 	/* Calculate the resulting kernel state size */
1540 	mask = permitted | requested;
1541 	/* Take supervisor states into account on the host */
1542 	if (!guest)
1543 		mask |= xfeatures_mask_supervisor();
1544 	ksize = xstate_calculate_size(mask, compacted);
1545 
1546 	/* Calculate the resulting user state size */
1547 	mask &= XFEATURE_MASK_USER_SUPPORTED;
1548 	usize = xstate_calculate_size(mask, false);
1549 
1550 	if (!guest) {
1551 		ret = validate_sigaltstack(usize);
1552 		if (ret)
1553 			return ret;
1554 	}
1555 
1556 	perm = guest ? &fpu->guest_perm : &fpu->perm;
1557 	/* Pairs with the READ_ONCE() in xstate_get_group_perm() */
1558 	WRITE_ONCE(perm->__state_perm, mask);
1559 	/* Protected by sighand lock */
1560 	perm->__state_size = ksize;
1561 	perm->__user_state_size = usize;
1562 	return ret;
1563 }
1564 
1565 /*
1566  * Permissions array to map facilities with more than one component
1567  */
1568 static const u64 xstate_prctl_req[XFEATURE_MAX] = {
1569 	[XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA,
1570 };
1571 
1572 static int xstate_request_perm(unsigned long idx, bool guest)
1573 {
1574 	u64 permitted, requested;
1575 	int ret;
1576 
1577 	if (idx >= XFEATURE_MAX)
1578 		return -EINVAL;
1579 
1580 	/*
1581 	 * Look up the facility mask which can require more than
1582 	 * one xstate component.
1583 	 */
1584 	idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req));
1585 	requested = xstate_prctl_req[idx];
1586 	if (!requested)
1587 		return -EOPNOTSUPP;
1588 
1589 	if ((fpu_user_cfg.max_features & requested) != requested)
1590 		return -EOPNOTSUPP;
1591 
1592 	/* Lockless quick check */
1593 	permitted = xstate_get_group_perm(guest);
1594 	if ((permitted & requested) == requested)
1595 		return 0;
1596 
1597 	/* Protect against concurrent modifications */
1598 	spin_lock_irq(&current->sighand->siglock);
1599 	permitted = xstate_get_group_perm(guest);
1600 
1601 	/* First vCPU allocation locks the permissions. */
1602 	if (guest && (permitted & FPU_GUEST_PERM_LOCKED))
1603 		ret = -EBUSY;
1604 	else
1605 		ret = __xstate_request_perm(permitted, requested, guest);
1606 	spin_unlock_irq(&current->sighand->siglock);
1607 	return ret;
1608 }
1609 
1610 int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu)
1611 {
1612 	u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC;
1613 	struct fpu_state_perm *perm;
1614 	unsigned int ksize, usize;
1615 	struct fpu *fpu;
1616 
1617 	if (!xfd_event) {
1618 		if (!guest_fpu)
1619 			pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err);
1620 		return 0;
1621 	}
1622 
1623 	/* Protect against concurrent modifications */
1624 	spin_lock_irq(&current->sighand->siglock);
1625 
1626 	/* If not permitted let it die */
1627 	if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) {
1628 		spin_unlock_irq(&current->sighand->siglock);
1629 		return -EPERM;
1630 	}
1631 
1632 	fpu = &current->group_leader->thread.fpu;
1633 	perm = guest_fpu ? &fpu->guest_perm : &fpu->perm;
1634 	ksize = perm->__state_size;
1635 	usize = perm->__user_state_size;
1636 
1637 	/*
1638 	 * The feature is permitted. State size is sufficient.  Dropping
1639 	 * the lock is safe here even if more features are added from
1640 	 * another task, the retrieved buffer sizes are valid for the
1641 	 * currently requested feature(s).
1642 	 */
1643 	spin_unlock_irq(&current->sighand->siglock);
1644 
1645 	/*
1646 	 * Try to allocate a new fpstate. If that fails there is no way
1647 	 * out.
1648 	 */
1649 	if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu))
1650 		return -EFAULT;
1651 	return 0;
1652 }
1653 
1654 int xfd_enable_feature(u64 xfd_err)
1655 {
1656 	return __xfd_enable_feature(xfd_err, NULL);
1657 }
1658 
1659 #else /* CONFIG_X86_64 */
1660 static inline int xstate_request_perm(unsigned long idx, bool guest)
1661 {
1662 	return -EPERM;
1663 }
1664 #endif  /* !CONFIG_X86_64 */
1665 
1666 u64 xstate_get_guest_group_perm(void)
1667 {
1668 	return xstate_get_group_perm(true);
1669 }
1670 EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm);
1671 
1672 /**
1673  * fpu_xstate_prctl - xstate permission operations
1674  * @tsk:	Redundant pointer to current
1675  * @option:	A subfunction of arch_prctl()
1676  * @arg2:	option argument
1677  * Return:	0 if successful; otherwise, an error code
1678  *
1679  * Option arguments:
1680  *
1681  * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info
1682  * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info
1683  * ARCH_REQ_XCOMP_PERM: Facility number requested
1684  *
1685  * For facilities which require more than one XSTATE component, the request
1686  * must be the highest state component number related to that facility,
1687  * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and
1688  * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18).
1689  */
1690 long fpu_xstate_prctl(struct task_struct *tsk, int option, unsigned long arg2)
1691 {
1692 	u64 __user *uptr = (u64 __user *)arg2;
1693 	u64 permitted, supported;
1694 	unsigned long idx = arg2;
1695 	bool guest = false;
1696 
1697 	if (tsk != current)
1698 		return -EPERM;
1699 
1700 	switch (option) {
1701 	case ARCH_GET_XCOMP_SUPP:
1702 		supported = fpu_user_cfg.max_features |	fpu_user_cfg.legacy_features;
1703 		return put_user(supported, uptr);
1704 
1705 	case ARCH_GET_XCOMP_PERM:
1706 		/*
1707 		 * Lockless snapshot as it can also change right after the
1708 		 * dropping the lock.
1709 		 */
1710 		permitted = xstate_get_host_group_perm();
1711 		permitted &= XFEATURE_MASK_USER_SUPPORTED;
1712 		return put_user(permitted, uptr);
1713 
1714 	case ARCH_GET_XCOMP_GUEST_PERM:
1715 		permitted = xstate_get_guest_group_perm();
1716 		permitted &= XFEATURE_MASK_USER_SUPPORTED;
1717 		return put_user(permitted, uptr);
1718 
1719 	case ARCH_REQ_XCOMP_GUEST_PERM:
1720 		guest = true;
1721 		fallthrough;
1722 
1723 	case ARCH_REQ_XCOMP_PERM:
1724 		if (!IS_ENABLED(CONFIG_X86_64))
1725 			return -EOPNOTSUPP;
1726 
1727 		return xstate_request_perm(idx, guest);
1728 
1729 	default:
1730 		return -EINVAL;
1731 	}
1732 }
1733 
1734 #ifdef CONFIG_PROC_PID_ARCH_STATUS
1735 /*
1736  * Report the amount of time elapsed in millisecond since last AVX512
1737  * use in the task.
1738  */
1739 static void avx512_status(struct seq_file *m, struct task_struct *task)
1740 {
1741 	unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
1742 	long delta;
1743 
1744 	if (!timestamp) {
1745 		/*
1746 		 * Report -1 if no AVX512 usage
1747 		 */
1748 		delta = -1;
1749 	} else {
1750 		delta = (long)(jiffies - timestamp);
1751 		/*
1752 		 * Cap to LONG_MAX if time difference > LONG_MAX
1753 		 */
1754 		if (delta < 0)
1755 			delta = LONG_MAX;
1756 		delta = jiffies_to_msecs(delta);
1757 	}
1758 
1759 	seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
1760 	seq_putc(m, '\n');
1761 }
1762 
1763 /*
1764  * Report architecture specific information
1765  */
1766 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
1767 			struct pid *pid, struct task_struct *task)
1768 {
1769 	/*
1770 	 * Report AVX512 state if the processor and build option supported.
1771 	 */
1772 	if (cpu_feature_enabled(X86_FEATURE_AVX512F))
1773 		avx512_status(m, task);
1774 
1775 	return 0;
1776 }
1777 #endif /* CONFIG_PROC_PID_ARCH_STATUS */
1778