1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * xsave/xrstor support. 4 * 5 * Author: Suresh Siddha <suresh.b.siddha@intel.com> 6 */ 7 #include <linux/compat.h> 8 #include <linux/cpu.h> 9 #include <linux/mman.h> 10 #include <linux/pkeys.h> 11 #include <linux/seq_file.h> 12 #include <linux/proc_fs.h> 13 14 #include <asm/fpu/api.h> 15 #include <asm/fpu/internal.h> 16 #include <asm/fpu/signal.h> 17 #include <asm/fpu/regset.h> 18 #include <asm/fpu/xstate.h> 19 20 #include <asm/tlbflush.h> 21 #include <asm/cpufeature.h> 22 23 /* 24 * Although we spell it out in here, the Processor Trace 25 * xfeature is completely unused. We use other mechanisms 26 * to save/restore PT state in Linux. 27 */ 28 static const char *xfeature_names[] = 29 { 30 "x87 floating point registers" , 31 "SSE registers" , 32 "AVX registers" , 33 "MPX bounds registers" , 34 "MPX CSR" , 35 "AVX-512 opmask" , 36 "AVX-512 Hi256" , 37 "AVX-512 ZMM_Hi256" , 38 "Processor Trace (unused)" , 39 "Protection Keys User registers", 40 "PASID state", 41 "unknown xstate feature" , 42 }; 43 44 static short xsave_cpuid_features[] __initdata = { 45 X86_FEATURE_FPU, 46 X86_FEATURE_XMM, 47 X86_FEATURE_AVX, 48 X86_FEATURE_MPX, 49 X86_FEATURE_MPX, 50 X86_FEATURE_AVX512F, 51 X86_FEATURE_AVX512F, 52 X86_FEATURE_AVX512F, 53 X86_FEATURE_INTEL_PT, 54 X86_FEATURE_PKU, 55 X86_FEATURE_ENQCMD, 56 }; 57 58 /* 59 * This represents the full set of bits that should ever be set in a kernel 60 * XSAVE buffer, both supervisor and user xstates. 61 */ 62 u64 xfeatures_mask_all __read_mostly; 63 64 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 65 static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 66 static unsigned int xstate_comp_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 67 static unsigned int xstate_supervisor_only_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1}; 68 69 /* 70 * The XSAVE area of kernel can be in standard or compacted format; 71 * it is always in standard format for user mode. This is the user 72 * mode standard format size used for signal and ptrace frames. 73 */ 74 unsigned int fpu_user_xstate_size; 75 76 /* 77 * Return whether the system supports a given xfeature. 78 * 79 * Also return the name of the (most advanced) feature that the caller requested: 80 */ 81 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) 82 { 83 u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask_all; 84 85 if (unlikely(feature_name)) { 86 long xfeature_idx, max_idx; 87 u64 xfeatures_print; 88 /* 89 * So we use FLS here to be able to print the most advanced 90 * feature that was requested but is missing. So if a driver 91 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the 92 * missing AVX feature - this is the most informative message 93 * to users: 94 */ 95 if (xfeatures_missing) 96 xfeatures_print = xfeatures_missing; 97 else 98 xfeatures_print = xfeatures_needed; 99 100 xfeature_idx = fls64(xfeatures_print)-1; 101 max_idx = ARRAY_SIZE(xfeature_names)-1; 102 xfeature_idx = min(xfeature_idx, max_idx); 103 104 *feature_name = xfeature_names[xfeature_idx]; 105 } 106 107 if (xfeatures_missing) 108 return 0; 109 110 return 1; 111 } 112 EXPORT_SYMBOL_GPL(cpu_has_xfeatures); 113 114 static bool xfeature_is_supervisor(int xfeature_nr) 115 { 116 /* 117 * Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1) 118 * returns ECX[0] set to (1) for a supervisor state, and cleared (0) 119 * for a user state. 120 */ 121 u32 eax, ebx, ecx, edx; 122 123 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 124 return ecx & 1; 125 } 126 127 /* 128 * When executing XSAVEOPT (or other optimized XSAVE instructions), if 129 * a processor implementation detects that an FPU state component is still 130 * (or is again) in its initialized state, it may clear the corresponding 131 * bit in the header.xfeatures field, and can skip the writeout of registers 132 * to the corresponding memory layout. 133 * 134 * This means that when the bit is zero, the state component might still contain 135 * some previous - non-initialized register state. 136 * 137 * Before writing xstate information to user-space we sanitize those components, 138 * to always ensure that the memory layout of a feature will be in the init state 139 * if the corresponding header bit is zero. This is to ensure that user-space doesn't 140 * see some stale state in the memory layout during signal handling, debugging etc. 141 */ 142 void fpstate_sanitize_xstate(struct fpu *fpu) 143 { 144 struct fxregs_state *fx = &fpu->state.fxsave; 145 int feature_bit; 146 u64 xfeatures; 147 148 if (!use_xsaveopt()) 149 return; 150 151 xfeatures = fpu->state.xsave.header.xfeatures; 152 153 /* 154 * None of the feature bits are in init state. So nothing else 155 * to do for us, as the memory layout is up to date. 156 */ 157 if ((xfeatures & xfeatures_mask_all) == xfeatures_mask_all) 158 return; 159 160 /* 161 * FP is in init state 162 */ 163 if (!(xfeatures & XFEATURE_MASK_FP)) { 164 fx->cwd = 0x37f; 165 fx->swd = 0; 166 fx->twd = 0; 167 fx->fop = 0; 168 fx->rip = 0; 169 fx->rdp = 0; 170 memset(fx->st_space, 0, sizeof(fx->st_space)); 171 } 172 173 /* 174 * SSE is in init state 175 */ 176 if (!(xfeatures & XFEATURE_MASK_SSE)) 177 memset(fx->xmm_space, 0, sizeof(fx->xmm_space)); 178 179 /* 180 * First two features are FPU and SSE, which above we handled 181 * in a special way already: 182 */ 183 feature_bit = 0x2; 184 xfeatures = (xfeatures_mask_user() & ~xfeatures) >> 2; 185 186 /* 187 * Update all the remaining memory layouts according to their 188 * standard xstate layout, if their header bit is in the init 189 * state: 190 */ 191 while (xfeatures) { 192 if (xfeatures & 0x1) { 193 int offset = xstate_comp_offsets[feature_bit]; 194 int size = xstate_sizes[feature_bit]; 195 196 memcpy((void *)fx + offset, 197 (void *)&init_fpstate.xsave + offset, 198 size); 199 } 200 201 xfeatures >>= 1; 202 feature_bit++; 203 } 204 } 205 206 /* 207 * Enable the extended processor state save/restore feature. 208 * Called once per CPU onlining. 209 */ 210 void fpu__init_cpu_xstate(void) 211 { 212 u64 unsup_bits; 213 214 if (!boot_cpu_has(X86_FEATURE_XSAVE) || !xfeatures_mask_all) 215 return; 216 /* 217 * Unsupported supervisor xstates should not be found in 218 * the xfeatures mask. 219 */ 220 unsup_bits = xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_UNSUPPORTED; 221 WARN_ONCE(unsup_bits, "x86/fpu: Found unsupported supervisor xstates: 0x%llx\n", 222 unsup_bits); 223 224 xfeatures_mask_all &= ~XFEATURE_MASK_SUPERVISOR_UNSUPPORTED; 225 226 cr4_set_bits(X86_CR4_OSXSAVE); 227 228 /* 229 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features 230 * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user 231 * states can be set here. 232 */ 233 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user()); 234 235 /* 236 * MSR_IA32_XSS sets supervisor states managed by XSAVES. 237 */ 238 if (boot_cpu_has(X86_FEATURE_XSAVES)) { 239 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | 240 xfeatures_mask_dynamic()); 241 } 242 } 243 244 static bool xfeature_enabled(enum xfeature xfeature) 245 { 246 return xfeatures_mask_all & BIT_ULL(xfeature); 247 } 248 249 /* 250 * Record the offsets and sizes of various xstates contained 251 * in the XSAVE state memory layout. 252 */ 253 static void __init setup_xstate_features(void) 254 { 255 u32 eax, ebx, ecx, edx, i; 256 /* start at the beginning of the "extended state" */ 257 unsigned int last_good_offset = offsetof(struct xregs_state, 258 extended_state_area); 259 /* 260 * The FP xstates and SSE xstates are legacy states. They are always 261 * in the fixed offsets in the xsave area in either compacted form 262 * or standard form. 263 */ 264 xstate_offsets[XFEATURE_FP] = 0; 265 xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state, 266 xmm_space); 267 268 xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP]; 269 xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state, 270 xmm_space); 271 272 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 273 if (!xfeature_enabled(i)) 274 continue; 275 276 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 277 278 xstate_sizes[i] = eax; 279 280 /* 281 * If an xfeature is supervisor state, the offset in EBX is 282 * invalid, leave it to -1. 283 */ 284 if (xfeature_is_supervisor(i)) 285 continue; 286 287 xstate_offsets[i] = ebx; 288 289 /* 290 * In our xstate size checks, we assume that the highest-numbered 291 * xstate feature has the highest offset in the buffer. Ensure 292 * it does. 293 */ 294 WARN_ONCE(last_good_offset > xstate_offsets[i], 295 "x86/fpu: misordered xstate at %d\n", last_good_offset); 296 297 last_good_offset = xstate_offsets[i]; 298 } 299 } 300 301 static void __init print_xstate_feature(u64 xstate_mask) 302 { 303 const char *feature_name; 304 305 if (cpu_has_xfeatures(xstate_mask, &feature_name)) 306 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); 307 } 308 309 /* 310 * Print out all the supported xstate features: 311 */ 312 static void __init print_xstate_features(void) 313 { 314 print_xstate_feature(XFEATURE_MASK_FP); 315 print_xstate_feature(XFEATURE_MASK_SSE); 316 print_xstate_feature(XFEATURE_MASK_YMM); 317 print_xstate_feature(XFEATURE_MASK_BNDREGS); 318 print_xstate_feature(XFEATURE_MASK_BNDCSR); 319 print_xstate_feature(XFEATURE_MASK_OPMASK); 320 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); 321 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); 322 print_xstate_feature(XFEATURE_MASK_PKRU); 323 print_xstate_feature(XFEATURE_MASK_PASID); 324 } 325 326 /* 327 * This check is important because it is easy to get XSTATE_* 328 * confused with XSTATE_BIT_*. 329 */ 330 #define CHECK_XFEATURE(nr) do { \ 331 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ 332 WARN_ON(nr >= XFEATURE_MAX); \ 333 } while (0) 334 335 /* 336 * We could cache this like xstate_size[], but we only use 337 * it here, so it would be a waste of space. 338 */ 339 static int xfeature_is_aligned(int xfeature_nr) 340 { 341 u32 eax, ebx, ecx, edx; 342 343 CHECK_XFEATURE(xfeature_nr); 344 345 if (!xfeature_enabled(xfeature_nr)) { 346 WARN_ONCE(1, "Checking alignment of disabled xfeature %d\n", 347 xfeature_nr); 348 return 0; 349 } 350 351 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 352 /* 353 * The value returned by ECX[1] indicates the alignment 354 * of state component 'i' when the compacted format 355 * of the extended region of an XSAVE area is used: 356 */ 357 return !!(ecx & 2); 358 } 359 360 /* 361 * This function sets up offsets and sizes of all extended states in 362 * xsave area. This supports both standard format and compacted format 363 * of the xsave area. 364 */ 365 static void __init setup_xstate_comp_offsets(void) 366 { 367 unsigned int next_offset; 368 int i; 369 370 /* 371 * The FP xstates and SSE xstates are legacy states. They are always 372 * in the fixed offsets in the xsave area in either compacted form 373 * or standard form. 374 */ 375 xstate_comp_offsets[XFEATURE_FP] = 0; 376 xstate_comp_offsets[XFEATURE_SSE] = offsetof(struct fxregs_state, 377 xmm_space); 378 379 if (!boot_cpu_has(X86_FEATURE_XSAVES)) { 380 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 381 if (xfeature_enabled(i)) 382 xstate_comp_offsets[i] = xstate_offsets[i]; 383 } 384 return; 385 } 386 387 next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE; 388 389 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 390 if (!xfeature_enabled(i)) 391 continue; 392 393 if (xfeature_is_aligned(i)) 394 next_offset = ALIGN(next_offset, 64); 395 396 xstate_comp_offsets[i] = next_offset; 397 next_offset += xstate_sizes[i]; 398 } 399 } 400 401 /* 402 * Setup offsets of a supervisor-state-only XSAVES buffer: 403 * 404 * The offsets stored in xstate_comp_offsets[] only work for one specific 405 * value of the Requested Feature BitMap (RFBM). In cases where a different 406 * RFBM value is used, a different set of offsets is required. This set of 407 * offsets is for when RFBM=xfeatures_mask_supervisor(). 408 */ 409 static void __init setup_supervisor_only_offsets(void) 410 { 411 unsigned int next_offset; 412 int i; 413 414 next_offset = FXSAVE_SIZE + XSAVE_HDR_SIZE; 415 416 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 417 if (!xfeature_enabled(i) || !xfeature_is_supervisor(i)) 418 continue; 419 420 if (xfeature_is_aligned(i)) 421 next_offset = ALIGN(next_offset, 64); 422 423 xstate_supervisor_only_offsets[i] = next_offset; 424 next_offset += xstate_sizes[i]; 425 } 426 } 427 428 /* 429 * Print out xstate component offsets and sizes 430 */ 431 static void __init print_xstate_offset_size(void) 432 { 433 int i; 434 435 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 436 if (!xfeature_enabled(i)) 437 continue; 438 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", 439 i, xstate_comp_offsets[i], i, xstate_sizes[i]); 440 } 441 } 442 443 /* 444 * All supported features have either init state all zeros or are 445 * handled in setup_init_fpu() individually. This is an explicit 446 * feature list and does not use XFEATURE_MASK*SUPPORTED to catch 447 * newly added supported features at build time and make people 448 * actually look at the init state for the new feature. 449 */ 450 #define XFEATURES_INIT_FPSTATE_HANDLED \ 451 (XFEATURE_MASK_FP | \ 452 XFEATURE_MASK_SSE | \ 453 XFEATURE_MASK_YMM | \ 454 XFEATURE_MASK_OPMASK | \ 455 XFEATURE_MASK_ZMM_Hi256 | \ 456 XFEATURE_MASK_Hi16_ZMM | \ 457 XFEATURE_MASK_PKRU | \ 458 XFEATURE_MASK_BNDREGS | \ 459 XFEATURE_MASK_BNDCSR | \ 460 XFEATURE_MASK_PASID) 461 462 /* 463 * setup the xstate image representing the init state 464 */ 465 static void __init setup_init_fpu_buf(void) 466 { 467 static int on_boot_cpu __initdata = 1; 468 469 BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED | 470 XFEATURE_MASK_SUPERVISOR_SUPPORTED) != 471 XFEATURES_INIT_FPSTATE_HANDLED); 472 473 WARN_ON_FPU(!on_boot_cpu); 474 on_boot_cpu = 0; 475 476 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 477 return; 478 479 setup_xstate_features(); 480 print_xstate_features(); 481 482 if (boot_cpu_has(X86_FEATURE_XSAVES)) 483 init_fpstate.xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | 484 xfeatures_mask_all; 485 486 /* 487 * Init all the features state with header.xfeatures being 0x0 488 */ 489 copy_kernel_to_xregs_booting(&init_fpstate.xsave); 490 491 /* 492 * All components are now in init state. Read the state back so 493 * that init_fpstate contains all non-zero init state. This only 494 * works with XSAVE, but not with XSAVEOPT and XSAVES because 495 * those use the init optimization which skips writing data for 496 * components in init state. 497 * 498 * XSAVE could be used, but that would require to reshuffle the 499 * data when XSAVES is available because XSAVES uses xstate 500 * compaction. But doing so is a pointless exercise because most 501 * components have an all zeros init state except for the legacy 502 * ones (FP and SSE). Those can be saved with FXSAVE into the 503 * legacy area. Adding new features requires to ensure that init 504 * state is all zeroes or if not to add the necessary handling 505 * here. 506 */ 507 fxsave(&init_fpstate.fxsave); 508 } 509 510 static int xfeature_uncompacted_offset(int xfeature_nr) 511 { 512 u32 eax, ebx, ecx, edx; 513 514 /* 515 * Only XSAVES supports supervisor states and it uses compacted 516 * format. Checking a supervisor state's uncompacted offset is 517 * an error. 518 */ 519 if (XFEATURE_MASK_SUPERVISOR_ALL & BIT_ULL(xfeature_nr)) { 520 WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr); 521 return -1; 522 } 523 524 CHECK_XFEATURE(xfeature_nr); 525 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 526 return ebx; 527 } 528 529 int xfeature_size(int xfeature_nr) 530 { 531 u32 eax, ebx, ecx, edx; 532 533 CHECK_XFEATURE(xfeature_nr); 534 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); 535 return eax; 536 } 537 538 /* 539 * 'XSAVES' implies two different things: 540 * 1. saving of supervisor/system state 541 * 2. using the compacted format 542 * 543 * Use this function when dealing with the compacted format so 544 * that it is obvious which aspect of 'XSAVES' is being handled 545 * by the calling code. 546 */ 547 int using_compacted_format(void) 548 { 549 return boot_cpu_has(X86_FEATURE_XSAVES); 550 } 551 552 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ 553 int validate_user_xstate_header(const struct xstate_header *hdr) 554 { 555 /* No unknown or supervisor features may be set */ 556 if (hdr->xfeatures & ~xfeatures_mask_user()) 557 return -EINVAL; 558 559 /* Userspace must use the uncompacted format */ 560 if (hdr->xcomp_bv) 561 return -EINVAL; 562 563 /* 564 * If 'reserved' is shrunken to add a new field, make sure to validate 565 * that new field here! 566 */ 567 BUILD_BUG_ON(sizeof(hdr->reserved) != 48); 568 569 /* No reserved bits may be set */ 570 if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved))) 571 return -EINVAL; 572 573 return 0; 574 } 575 576 static void __xstate_dump_leaves(void) 577 { 578 int i; 579 u32 eax, ebx, ecx, edx; 580 static int should_dump = 1; 581 582 if (!should_dump) 583 return; 584 should_dump = 0; 585 /* 586 * Dump out a few leaves past the ones that we support 587 * just in case there are some goodies up there 588 */ 589 for (i = 0; i < XFEATURE_MAX + 10; i++) { 590 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); 591 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", 592 XSTATE_CPUID, i, eax, ebx, ecx, edx); 593 } 594 } 595 596 #define XSTATE_WARN_ON(x) do { \ 597 if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \ 598 __xstate_dump_leaves(); \ 599 } \ 600 } while (0) 601 602 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \ 603 if ((nr == nr_macro) && \ 604 WARN_ONCE(sz != sizeof(__struct), \ 605 "%s: struct is %zu bytes, cpu state %d bytes\n", \ 606 __stringify(nr_macro), sizeof(__struct), sz)) { \ 607 __xstate_dump_leaves(); \ 608 } \ 609 } while (0) 610 611 /* 612 * We have a C struct for each 'xstate'. We need to ensure 613 * that our software representation matches what the CPU 614 * tells us about the state's size. 615 */ 616 static void check_xstate_against_struct(int nr) 617 { 618 /* 619 * Ask the CPU for the size of the state. 620 */ 621 int sz = xfeature_size(nr); 622 /* 623 * Match each CPU state with the corresponding software 624 * structure. 625 */ 626 XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct); 627 XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state); 628 XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state); 629 XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state); 630 XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state); 631 XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state); 632 XCHECK_SZ(sz, nr, XFEATURE_PKRU, struct pkru_state); 633 XCHECK_SZ(sz, nr, XFEATURE_PASID, struct ia32_pasid_state); 634 635 /* 636 * Make *SURE* to add any feature numbers in below if 637 * there are "holes" in the xsave state component 638 * numbers. 639 */ 640 if ((nr < XFEATURE_YMM) || 641 (nr >= XFEATURE_MAX) || 642 (nr == XFEATURE_PT_UNIMPLEMENTED_SO_FAR) || 643 ((nr >= XFEATURE_RSRVD_COMP_11) && (nr <= XFEATURE_LBR))) { 644 WARN_ONCE(1, "no structure for xstate: %d\n", nr); 645 XSTATE_WARN_ON(1); 646 } 647 } 648 649 /* 650 * This essentially double-checks what the cpu told us about 651 * how large the XSAVE buffer needs to be. We are recalculating 652 * it to be safe. 653 * 654 * Dynamic XSAVE features allocate their own buffers and are not 655 * covered by these checks. Only the size of the buffer for task->fpu 656 * is checked here. 657 */ 658 static void do_extra_xstate_size_checks(void) 659 { 660 int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE; 661 int i; 662 663 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 664 if (!xfeature_enabled(i)) 665 continue; 666 667 check_xstate_against_struct(i); 668 /* 669 * Supervisor state components can be managed only by 670 * XSAVES, which is compacted-format only. 671 */ 672 if (!using_compacted_format()) 673 XSTATE_WARN_ON(xfeature_is_supervisor(i)); 674 675 /* Align from the end of the previous feature */ 676 if (xfeature_is_aligned(i)) 677 paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64); 678 /* 679 * The offset of a given state in the non-compacted 680 * format is given to us in a CPUID leaf. We check 681 * them for being ordered (increasing offsets) in 682 * setup_xstate_features(). 683 */ 684 if (!using_compacted_format()) 685 paranoid_xstate_size = xfeature_uncompacted_offset(i); 686 /* 687 * The compacted-format offset always depends on where 688 * the previous state ended. 689 */ 690 paranoid_xstate_size += xfeature_size(i); 691 } 692 XSTATE_WARN_ON(paranoid_xstate_size != fpu_kernel_xstate_size); 693 } 694 695 696 /* 697 * Get total size of enabled xstates in XCR0 | IA32_XSS. 698 * 699 * Note the SDM's wording here. "sub-function 0" only enumerates 700 * the size of the *user* states. If we use it to size a buffer 701 * that we use 'XSAVES' on, we could potentially overflow the 702 * buffer because 'XSAVES' saves system states too. 703 */ 704 static unsigned int __init get_xsaves_size(void) 705 { 706 unsigned int eax, ebx, ecx, edx; 707 /* 708 * - CPUID function 0DH, sub-function 1: 709 * EBX enumerates the size (in bytes) required by 710 * the XSAVES instruction for an XSAVE area 711 * containing all the state components 712 * corresponding to bits currently set in 713 * XCR0 | IA32_XSS. 714 */ 715 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 716 return ebx; 717 } 718 719 /* 720 * Get the total size of the enabled xstates without the dynamic supervisor 721 * features. 722 */ 723 static unsigned int __init get_xsaves_size_no_dynamic(void) 724 { 725 u64 mask = xfeatures_mask_dynamic(); 726 unsigned int size; 727 728 if (!mask) 729 return get_xsaves_size(); 730 731 /* Disable dynamic features. */ 732 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); 733 734 /* 735 * Ask the hardware what size is required of the buffer. 736 * This is the size required for the task->fpu buffer. 737 */ 738 size = get_xsaves_size(); 739 740 /* Re-enable dynamic features so XSAVES will work on them again. */ 741 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask); 742 743 return size; 744 } 745 746 static unsigned int __init get_xsave_size(void) 747 { 748 unsigned int eax, ebx, ecx, edx; 749 /* 750 * - CPUID function 0DH, sub-function 0: 751 * EBX enumerates the size (in bytes) required by 752 * the XSAVE instruction for an XSAVE area 753 * containing all the *user* state components 754 * corresponding to bits currently set in XCR0. 755 */ 756 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 757 return ebx; 758 } 759 760 /* 761 * Will the runtime-enumerated 'xstate_size' fit in the init 762 * task's statically-allocated buffer? 763 */ 764 static bool is_supported_xstate_size(unsigned int test_xstate_size) 765 { 766 if (test_xstate_size <= sizeof(union fpregs_state)) 767 return true; 768 769 pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n", 770 sizeof(union fpregs_state), test_xstate_size); 771 return false; 772 } 773 774 static int __init init_xstate_size(void) 775 { 776 /* Recompute the context size for enabled features: */ 777 unsigned int possible_xstate_size; 778 unsigned int xsave_size; 779 780 xsave_size = get_xsave_size(); 781 782 if (boot_cpu_has(X86_FEATURE_XSAVES)) 783 possible_xstate_size = get_xsaves_size_no_dynamic(); 784 else 785 possible_xstate_size = xsave_size; 786 787 /* Ensure we have the space to store all enabled: */ 788 if (!is_supported_xstate_size(possible_xstate_size)) 789 return -EINVAL; 790 791 /* 792 * The size is OK, we are definitely going to use xsave, 793 * make it known to the world that we need more space. 794 */ 795 fpu_kernel_xstate_size = possible_xstate_size; 796 do_extra_xstate_size_checks(); 797 798 /* 799 * User space is always in standard format. 800 */ 801 fpu_user_xstate_size = xsave_size; 802 return 0; 803 } 804 805 /* 806 * We enabled the XSAVE hardware, but something went wrong and 807 * we can not use it. Disable it. 808 */ 809 static void fpu__init_disable_system_xstate(void) 810 { 811 xfeatures_mask_all = 0; 812 cr4_clear_bits(X86_CR4_OSXSAVE); 813 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 814 } 815 816 /* 817 * Enable and initialize the xsave feature. 818 * Called once per system bootup. 819 */ 820 void __init fpu__init_system_xstate(void) 821 { 822 unsigned int eax, ebx, ecx, edx; 823 static int on_boot_cpu __initdata = 1; 824 int err; 825 int i; 826 827 WARN_ON_FPU(!on_boot_cpu); 828 on_boot_cpu = 0; 829 830 if (!boot_cpu_has(X86_FEATURE_FPU)) { 831 pr_info("x86/fpu: No FPU detected\n"); 832 return; 833 } 834 835 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 836 pr_info("x86/fpu: x87 FPU will use %s\n", 837 boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE"); 838 return; 839 } 840 841 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { 842 WARN_ON_FPU(1); 843 return; 844 } 845 846 /* 847 * Find user xstates supported by the processor. 848 */ 849 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); 850 xfeatures_mask_all = eax + ((u64)edx << 32); 851 852 /* 853 * Find supervisor xstates supported by the processor. 854 */ 855 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); 856 xfeatures_mask_all |= ecx + ((u64)edx << 32); 857 858 if ((xfeatures_mask_user() & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { 859 /* 860 * This indicates that something really unexpected happened 861 * with the enumeration. Disable XSAVE and try to continue 862 * booting without it. This is too early to BUG(). 863 */ 864 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", 865 xfeatures_mask_all); 866 goto out_disable; 867 } 868 869 /* 870 * Clear XSAVE features that are disabled in the normal CPUID. 871 */ 872 for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) { 873 if (!boot_cpu_has(xsave_cpuid_features[i])) 874 xfeatures_mask_all &= ~BIT_ULL(i); 875 } 876 877 xfeatures_mask_all &= fpu__get_supported_xfeatures_mask(); 878 879 /* Enable xstate instructions to be able to continue with initialization: */ 880 fpu__init_cpu_xstate(); 881 err = init_xstate_size(); 882 if (err) 883 goto out_disable; 884 885 /* 886 * Update info used for ptrace frames; use standard-format size and no 887 * supervisor xstates: 888 */ 889 update_regset_xstate_info(fpu_user_xstate_size, xfeatures_mask_user()); 890 891 fpu__init_prepare_fx_sw_frame(); 892 setup_init_fpu_buf(); 893 setup_xstate_comp_offsets(); 894 setup_supervisor_only_offsets(); 895 print_xstate_offset_size(); 896 897 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", 898 xfeatures_mask_all, 899 fpu_kernel_xstate_size, 900 boot_cpu_has(X86_FEATURE_XSAVES) ? "compacted" : "standard"); 901 return; 902 903 out_disable: 904 /* something went wrong, try to boot without any XSAVE support */ 905 fpu__init_disable_system_xstate(); 906 } 907 908 /* 909 * Restore minimal FPU state after suspend: 910 */ 911 void fpu__resume_cpu(void) 912 { 913 /* 914 * Restore XCR0 on xsave capable CPUs: 915 */ 916 if (boot_cpu_has(X86_FEATURE_XSAVE)) 917 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask_user()); 918 919 /* 920 * Restore IA32_XSS. The same CPUID bit enumerates support 921 * of XSAVES and MSR_IA32_XSS. 922 */ 923 if (boot_cpu_has(X86_FEATURE_XSAVES)) { 924 wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | 925 xfeatures_mask_dynamic()); 926 } 927 } 928 929 /* 930 * Given an xstate feature nr, calculate where in the xsave 931 * buffer the state is. Callers should ensure that the buffer 932 * is valid. 933 */ 934 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 935 { 936 if (!xfeature_enabled(xfeature_nr)) { 937 WARN_ON_FPU(1); 938 return NULL; 939 } 940 941 return (void *)xsave + xstate_comp_offsets[xfeature_nr]; 942 } 943 /* 944 * Given the xsave area and a state inside, this function returns the 945 * address of the state. 946 * 947 * This is the API that is called to get xstate address in either 948 * standard format or compacted format of xsave area. 949 * 950 * Note that if there is no data for the field in the xsave buffer 951 * this will return NULL. 952 * 953 * Inputs: 954 * xstate: the thread's storage area for all FPU data 955 * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, 956 * XFEATURE_SSE, etc...) 957 * Output: 958 * address of the state in the xsave area, or NULL if the 959 * field is not present in the xsave buffer. 960 */ 961 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr) 962 { 963 /* 964 * Do we even *have* xsave state? 965 */ 966 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 967 return NULL; 968 969 /* 970 * We should not ever be requesting features that we 971 * have not enabled. 972 */ 973 WARN_ONCE(!(xfeatures_mask_all & BIT_ULL(xfeature_nr)), 974 "get of unsupported state"); 975 /* 976 * This assumes the last 'xsave*' instruction to 977 * have requested that 'xfeature_nr' be saved. 978 * If it did not, we might be seeing and old value 979 * of the field in the buffer. 980 * 981 * This can happen because the last 'xsave' did not 982 * request that this feature be saved (unlikely) 983 * or because the "init optimization" caused it 984 * to not be saved. 985 */ 986 if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr))) 987 return NULL; 988 989 return __raw_xsave_addr(xsave, xfeature_nr); 990 } 991 EXPORT_SYMBOL_GPL(get_xsave_addr); 992 993 /* 994 * This wraps up the common operations that need to occur when retrieving 995 * data from xsave state. It first ensures that the current task was 996 * using the FPU and retrieves the data in to a buffer. It then calculates 997 * the offset of the requested field in the buffer. 998 * 999 * This function is safe to call whether the FPU is in use or not. 1000 * 1001 * Note that this only works on the current task. 1002 * 1003 * Inputs: 1004 * @xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, 1005 * XFEATURE_SSE, etc...) 1006 * Output: 1007 * address of the state in the xsave area or NULL if the state 1008 * is not present or is in its 'init state'. 1009 */ 1010 const void *get_xsave_field_ptr(int xfeature_nr) 1011 { 1012 struct fpu *fpu = ¤t->thread.fpu; 1013 1014 /* 1015 * fpu__save() takes the CPU's xstate registers 1016 * and saves them off to the 'fpu memory buffer. 1017 */ 1018 fpu__save(fpu); 1019 1020 return get_xsave_addr(&fpu->state.xsave, xfeature_nr); 1021 } 1022 1023 #ifdef CONFIG_ARCH_HAS_PKEYS 1024 1025 /* 1026 * This will go out and modify PKRU register to set the access 1027 * rights for @pkey to @init_val. 1028 */ 1029 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 1030 unsigned long init_val) 1031 { 1032 u32 old_pkru; 1033 int pkey_shift = (pkey * PKRU_BITS_PER_PKEY); 1034 u32 new_pkru_bits = 0; 1035 1036 /* 1037 * This check implies XSAVE support. OSPKE only gets 1038 * set if we enable XSAVE and we enable PKU in XCR0. 1039 */ 1040 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 1041 return -EINVAL; 1042 1043 /* 1044 * This code should only be called with valid 'pkey' 1045 * values originating from in-kernel users. Complain 1046 * if a bad value is observed. 1047 */ 1048 WARN_ON_ONCE(pkey >= arch_max_pkey()); 1049 1050 /* Set the bits we need in PKRU: */ 1051 if (init_val & PKEY_DISABLE_ACCESS) 1052 new_pkru_bits |= PKRU_AD_BIT; 1053 if (init_val & PKEY_DISABLE_WRITE) 1054 new_pkru_bits |= PKRU_WD_BIT; 1055 1056 /* Shift the bits in to the correct place in PKRU for pkey: */ 1057 new_pkru_bits <<= pkey_shift; 1058 1059 /* Get old PKRU and mask off any old bits in place: */ 1060 old_pkru = read_pkru(); 1061 old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); 1062 1063 /* Write old part along with new part: */ 1064 write_pkru(old_pkru | new_pkru_bits); 1065 1066 return 0; 1067 } 1068 #endif /* ! CONFIG_ARCH_HAS_PKEYS */ 1069 1070 /* 1071 * Weird legacy quirk: SSE and YMM states store information in the 1072 * MXCSR and MXCSR_FLAGS fields of the FP area. That means if the FP 1073 * area is marked as unused in the xfeatures header, we need to copy 1074 * MXCSR and MXCSR_FLAGS if either SSE or YMM are in use. 1075 */ 1076 static inline bool xfeatures_mxcsr_quirk(u64 xfeatures) 1077 { 1078 if (!(xfeatures & (XFEATURE_MASK_SSE|XFEATURE_MASK_YMM))) 1079 return false; 1080 1081 if (xfeatures & XFEATURE_MASK_FP) 1082 return false; 1083 1084 return true; 1085 } 1086 1087 static void fill_gap(struct membuf *to, unsigned *last, unsigned offset) 1088 { 1089 if (*last >= offset) 1090 return; 1091 membuf_write(to, (void *)&init_fpstate.xsave + *last, offset - *last); 1092 *last = offset; 1093 } 1094 1095 static void copy_part(struct membuf *to, unsigned *last, unsigned offset, 1096 unsigned size, void *from) 1097 { 1098 fill_gap(to, last, offset); 1099 membuf_write(to, from, size); 1100 *last = offset + size; 1101 } 1102 1103 /* 1104 * Convert from kernel XSAVES compacted format to standard format and copy 1105 * to a kernel-space ptrace buffer. 1106 * 1107 * It supports partial copy but pos always starts from zero. This is called 1108 * from xstateregs_get() and there we check the CPU has XSAVES. 1109 */ 1110 void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave) 1111 { 1112 struct xstate_header header; 1113 const unsigned off_mxcsr = offsetof(struct fxregs_state, mxcsr); 1114 unsigned size = to.left; 1115 unsigned last = 0; 1116 int i; 1117 1118 /* 1119 * The destination is a ptrace buffer; we put in only user xstates: 1120 */ 1121 memset(&header, 0, sizeof(header)); 1122 header.xfeatures = xsave->header.xfeatures; 1123 header.xfeatures &= xfeatures_mask_user(); 1124 1125 if (header.xfeatures & XFEATURE_MASK_FP) 1126 copy_part(&to, &last, 0, off_mxcsr, &xsave->i387); 1127 if (header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM)) 1128 copy_part(&to, &last, off_mxcsr, 1129 MXCSR_AND_FLAGS_SIZE, &xsave->i387.mxcsr); 1130 if (header.xfeatures & XFEATURE_MASK_FP) 1131 copy_part(&to, &last, offsetof(struct fxregs_state, st_space), 1132 128, &xsave->i387.st_space); 1133 if (header.xfeatures & XFEATURE_MASK_SSE) 1134 copy_part(&to, &last, xstate_offsets[XFEATURE_SSE], 1135 256, &xsave->i387.xmm_space); 1136 /* 1137 * Fill xsave->i387.sw_reserved value for ptrace frame: 1138 */ 1139 copy_part(&to, &last, offsetof(struct fxregs_state, sw_reserved), 1140 48, xstate_fx_sw_bytes); 1141 /* 1142 * Copy xregs_state->header: 1143 */ 1144 copy_part(&to, &last, offsetof(struct xregs_state, header), 1145 sizeof(header), &header); 1146 1147 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) { 1148 /* 1149 * Copy only in-use xstates: 1150 */ 1151 if ((header.xfeatures >> i) & 1) { 1152 void *src = __raw_xsave_addr(xsave, i); 1153 1154 copy_part(&to, &last, xstate_offsets[i], 1155 xstate_sizes[i], src); 1156 } 1157 1158 } 1159 fill_gap(&to, &last, size); 1160 } 1161 1162 /* 1163 * Convert from a ptrace standard-format kernel buffer to kernel XSAVES format 1164 * and copy to the target thread. This is called from xstateregs_set(). 1165 */ 1166 int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf) 1167 { 1168 unsigned int offset, size; 1169 int i; 1170 struct xstate_header hdr; 1171 1172 offset = offsetof(struct xregs_state, header); 1173 size = sizeof(hdr); 1174 1175 memcpy(&hdr, kbuf + offset, size); 1176 1177 if (validate_user_xstate_header(&hdr)) 1178 return -EINVAL; 1179 1180 for (i = 0; i < XFEATURE_MAX; i++) { 1181 u64 mask = ((u64)1 << i); 1182 1183 if (hdr.xfeatures & mask) { 1184 void *dst = __raw_xsave_addr(xsave, i); 1185 1186 offset = xstate_offsets[i]; 1187 size = xstate_sizes[i]; 1188 1189 memcpy(dst, kbuf + offset, size); 1190 } 1191 } 1192 1193 if (xfeatures_mxcsr_quirk(hdr.xfeatures)) { 1194 offset = offsetof(struct fxregs_state, mxcsr); 1195 size = MXCSR_AND_FLAGS_SIZE; 1196 memcpy(&xsave->i387.mxcsr, kbuf + offset, size); 1197 } 1198 1199 /* 1200 * The state that came in from userspace was user-state only. 1201 * Mask all the user states out of 'xfeatures': 1202 */ 1203 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; 1204 1205 /* 1206 * Add back in the features that came in from userspace: 1207 */ 1208 xsave->header.xfeatures |= hdr.xfeatures; 1209 1210 return 0; 1211 } 1212 1213 /* 1214 * Convert from a ptrace or sigreturn standard-format user-space buffer to 1215 * kernel XSAVES format and copy to the target thread. This is called from 1216 * xstateregs_set(), as well as potentially from the sigreturn() and 1217 * rt_sigreturn() system calls. 1218 */ 1219 int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf) 1220 { 1221 unsigned int offset, size; 1222 int i; 1223 struct xstate_header hdr; 1224 1225 offset = offsetof(struct xregs_state, header); 1226 size = sizeof(hdr); 1227 1228 if (__copy_from_user(&hdr, ubuf + offset, size)) 1229 return -EFAULT; 1230 1231 if (validate_user_xstate_header(&hdr)) 1232 return -EINVAL; 1233 1234 for (i = 0; i < XFEATURE_MAX; i++) { 1235 u64 mask = ((u64)1 << i); 1236 1237 if (hdr.xfeatures & mask) { 1238 void *dst = __raw_xsave_addr(xsave, i); 1239 1240 offset = xstate_offsets[i]; 1241 size = xstate_sizes[i]; 1242 1243 if (__copy_from_user(dst, ubuf + offset, size)) 1244 return -EFAULT; 1245 } 1246 } 1247 1248 if (xfeatures_mxcsr_quirk(hdr.xfeatures)) { 1249 offset = offsetof(struct fxregs_state, mxcsr); 1250 size = MXCSR_AND_FLAGS_SIZE; 1251 if (__copy_from_user(&xsave->i387.mxcsr, ubuf + offset, size)) 1252 return -EFAULT; 1253 } 1254 1255 /* 1256 * The state that came in from userspace was user-state only. 1257 * Mask all the user states out of 'xfeatures': 1258 */ 1259 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; 1260 1261 /* 1262 * Add back in the features that came in from userspace: 1263 */ 1264 xsave->header.xfeatures |= hdr.xfeatures; 1265 1266 return 0; 1267 } 1268 1269 /* 1270 * Save only supervisor states to the kernel buffer. This blows away all 1271 * old states, and is intended to be used only in __fpu__restore_sig(), where 1272 * user states are restored from the user buffer. 1273 */ 1274 void copy_supervisor_to_kernel(struct xregs_state *xstate) 1275 { 1276 struct xstate_header *header; 1277 u64 max_bit, min_bit; 1278 u32 lmask, hmask; 1279 int err, i; 1280 1281 if (WARN_ON(!boot_cpu_has(X86_FEATURE_XSAVES))) 1282 return; 1283 1284 if (!xfeatures_mask_supervisor()) 1285 return; 1286 1287 max_bit = __fls(xfeatures_mask_supervisor()); 1288 min_bit = __ffs(xfeatures_mask_supervisor()); 1289 1290 lmask = xfeatures_mask_supervisor(); 1291 hmask = xfeatures_mask_supervisor() >> 32; 1292 XSTATE_OP(XSAVES, xstate, lmask, hmask, err); 1293 1294 /* We should never fault when copying to a kernel buffer: */ 1295 if (WARN_ON_FPU(err)) 1296 return; 1297 1298 /* 1299 * At this point, the buffer has only supervisor states and must be 1300 * converted back to normal kernel format. 1301 */ 1302 header = &xstate->header; 1303 header->xcomp_bv |= xfeatures_mask_all; 1304 1305 /* 1306 * This only moves states up in the buffer. Start with 1307 * the last state and move backwards so that states are 1308 * not overwritten until after they are moved. Note: 1309 * memmove() allows overlapping src/dst buffers. 1310 */ 1311 for (i = max_bit; i >= min_bit; i--) { 1312 u8 *xbuf = (u8 *)xstate; 1313 1314 if (!((header->xfeatures >> i) & 1)) 1315 continue; 1316 1317 /* Move xfeature 'i' into its normal location */ 1318 memmove(xbuf + xstate_comp_offsets[i], 1319 xbuf + xstate_supervisor_only_offsets[i], 1320 xstate_sizes[i]); 1321 } 1322 } 1323 1324 /** 1325 * copy_dynamic_supervisor_to_kernel() - Save dynamic supervisor states to 1326 * an xsave area 1327 * @xstate: A pointer to an xsave area 1328 * @mask: Represent the dynamic supervisor features saved into the xsave area 1329 * 1330 * Only the dynamic supervisor states sets in the mask are saved into the xsave 1331 * area (See the comment in XFEATURE_MASK_DYNAMIC for the details of dynamic 1332 * supervisor feature). Besides the dynamic supervisor states, the legacy 1333 * region and XSAVE header are also saved into the xsave area. The supervisor 1334 * features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and 1335 * XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not saved. 1336 * 1337 * The xsave area must be 64-bytes aligned. 1338 */ 1339 void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask) 1340 { 1341 u64 dynamic_mask = xfeatures_mask_dynamic() & mask; 1342 u32 lmask, hmask; 1343 int err; 1344 1345 if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES))) 1346 return; 1347 1348 if (WARN_ON_FPU(!dynamic_mask)) 1349 return; 1350 1351 lmask = dynamic_mask; 1352 hmask = dynamic_mask >> 32; 1353 1354 XSTATE_OP(XSAVES, xstate, lmask, hmask, err); 1355 1356 /* Should never fault when copying to a kernel buffer */ 1357 WARN_ON_FPU(err); 1358 } 1359 1360 /** 1361 * copy_kernel_to_dynamic_supervisor() - Restore dynamic supervisor states from 1362 * an xsave area 1363 * @xstate: A pointer to an xsave area 1364 * @mask: Represent the dynamic supervisor features restored from the xsave area 1365 * 1366 * Only the dynamic supervisor states sets in the mask are restored from the 1367 * xsave area (See the comment in XFEATURE_MASK_DYNAMIC for the details of 1368 * dynamic supervisor feature). Besides the dynamic supervisor states, the 1369 * legacy region and XSAVE header are also restored from the xsave area. The 1370 * supervisor features in the XFEATURE_MASK_SUPERVISOR_SUPPORTED and 1371 * XFEATURE_MASK_SUPERVISOR_UNSUPPORTED are not restored. 1372 * 1373 * The xsave area must be 64-bytes aligned. 1374 */ 1375 void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask) 1376 { 1377 u64 dynamic_mask = xfeatures_mask_dynamic() & mask; 1378 u32 lmask, hmask; 1379 int err; 1380 1381 if (WARN_ON_FPU(!boot_cpu_has(X86_FEATURE_XSAVES))) 1382 return; 1383 1384 if (WARN_ON_FPU(!dynamic_mask)) 1385 return; 1386 1387 lmask = dynamic_mask; 1388 hmask = dynamic_mask >> 32; 1389 1390 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); 1391 1392 /* Should never fault when copying from a kernel buffer */ 1393 WARN_ON_FPU(err); 1394 } 1395 1396 #ifdef CONFIG_PROC_PID_ARCH_STATUS 1397 /* 1398 * Report the amount of time elapsed in millisecond since last AVX512 1399 * use in the task. 1400 */ 1401 static void avx512_status(struct seq_file *m, struct task_struct *task) 1402 { 1403 unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp); 1404 long delta; 1405 1406 if (!timestamp) { 1407 /* 1408 * Report -1 if no AVX512 usage 1409 */ 1410 delta = -1; 1411 } else { 1412 delta = (long)(jiffies - timestamp); 1413 /* 1414 * Cap to LONG_MAX if time difference > LONG_MAX 1415 */ 1416 if (delta < 0) 1417 delta = LONG_MAX; 1418 delta = jiffies_to_msecs(delta); 1419 } 1420 1421 seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta); 1422 seq_putc(m, '\n'); 1423 } 1424 1425 /* 1426 * Report architecture specific information 1427 */ 1428 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, 1429 struct pid *pid, struct task_struct *task) 1430 { 1431 /* 1432 * Report AVX512 state if the processor and build option supported. 1433 */ 1434 if (cpu_feature_enabled(X86_FEATURE_AVX512F)) 1435 avx512_status(m, task); 1436 1437 return 0; 1438 } 1439 #endif /* CONFIG_PROC_PID_ARCH_STATUS */ 1440