xref: /openbmc/linux/arch/x86/kernel/fpu/xstate.c (revision 193b1fc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * xsave/xrstor support.
4  *
5  * Author: Suresh Siddha <suresh.b.siddha@intel.com>
6  */
7 #include <linux/bitops.h>
8 #include <linux/compat.h>
9 #include <linux/cpu.h>
10 #include <linux/mman.h>
11 #include <linux/nospec.h>
12 #include <linux/pkeys.h>
13 #include <linux/seq_file.h>
14 #include <linux/proc_fs.h>
15 #include <linux/vmalloc.h>
16 
17 #include <asm/fpu/api.h>
18 #include <asm/fpu/regset.h>
19 #include <asm/fpu/signal.h>
20 #include <asm/fpu/xcr.h>
21 
22 #include <asm/tlbflush.h>
23 #include <asm/prctl.h>
24 #include <asm/elf.h>
25 
26 #include "context.h"
27 #include "internal.h"
28 #include "legacy.h"
29 #include "xstate.h"
30 
31 #define for_each_extended_xfeature(bit, mask)				\
32 	(bit) = FIRST_EXTENDED_XFEATURE;				\
33 	for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask))
34 
35 /*
36  * Although we spell it out in here, the Processor Trace
37  * xfeature is completely unused.  We use other mechanisms
38  * to save/restore PT state in Linux.
39  */
40 static const char *xfeature_names[] =
41 {
42 	"x87 floating point registers",
43 	"SSE registers",
44 	"AVX registers",
45 	"MPX bounds registers",
46 	"MPX CSR",
47 	"AVX-512 opmask",
48 	"AVX-512 Hi256",
49 	"AVX-512 ZMM_Hi256",
50 	"Processor Trace (unused)",
51 	"Protection Keys User registers",
52 	"PASID state",
53 	"Control-flow User registers",
54 	"Control-flow Kernel registers (unused)",
55 	"unknown xstate feature",
56 	"unknown xstate feature",
57 	"unknown xstate feature",
58 	"unknown xstate feature",
59 	"AMX Tile config",
60 	"AMX Tile data",
61 	"unknown xstate feature",
62 };
63 
64 static unsigned short xsave_cpuid_features[] __initdata = {
65 	[XFEATURE_FP]				= X86_FEATURE_FPU,
66 	[XFEATURE_SSE]				= X86_FEATURE_XMM,
67 	[XFEATURE_YMM]				= X86_FEATURE_AVX,
68 	[XFEATURE_BNDREGS]			= X86_FEATURE_MPX,
69 	[XFEATURE_BNDCSR]			= X86_FEATURE_MPX,
70 	[XFEATURE_OPMASK]			= X86_FEATURE_AVX512F,
71 	[XFEATURE_ZMM_Hi256]			= X86_FEATURE_AVX512F,
72 	[XFEATURE_Hi16_ZMM]			= X86_FEATURE_AVX512F,
73 	[XFEATURE_PT_UNIMPLEMENTED_SO_FAR]	= X86_FEATURE_INTEL_PT,
74 	[XFEATURE_PKRU]				= X86_FEATURE_OSPKE,
75 	[XFEATURE_PASID]			= X86_FEATURE_ENQCMD,
76 	[XFEATURE_CET_USER]			= X86_FEATURE_SHSTK,
77 	[XFEATURE_XTILE_CFG]			= X86_FEATURE_AMX_TILE,
78 	[XFEATURE_XTILE_DATA]			= X86_FEATURE_AMX_TILE,
79 };
80 
81 static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init =
82 	{ [ 0 ... XFEATURE_MAX - 1] = -1};
83 static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init =
84 	{ [ 0 ... XFEATURE_MAX - 1] = -1};
85 static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init;
86 
87 #define XSTATE_FLAG_SUPERVISOR	BIT(0)
88 #define XSTATE_FLAG_ALIGNED64	BIT(1)
89 
90 /*
91  * Return whether the system supports a given xfeature.
92  *
93  * Also return the name of the (most advanced) feature that the caller requested:
94  */
95 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
96 {
97 	u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features;
98 
99 	if (unlikely(feature_name)) {
100 		long xfeature_idx, max_idx;
101 		u64 xfeatures_print;
102 		/*
103 		 * So we use FLS here to be able to print the most advanced
104 		 * feature that was requested but is missing. So if a driver
105 		 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
106 		 * missing AVX feature - this is the most informative message
107 		 * to users:
108 		 */
109 		if (xfeatures_missing)
110 			xfeatures_print = xfeatures_missing;
111 		else
112 			xfeatures_print = xfeatures_needed;
113 
114 		xfeature_idx = fls64(xfeatures_print)-1;
115 		max_idx = ARRAY_SIZE(xfeature_names)-1;
116 		xfeature_idx = min(xfeature_idx, max_idx);
117 
118 		*feature_name = xfeature_names[xfeature_idx];
119 	}
120 
121 	if (xfeatures_missing)
122 		return 0;
123 
124 	return 1;
125 }
126 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
127 
128 static bool xfeature_is_aligned64(int xfeature_nr)
129 {
130 	return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64;
131 }
132 
133 static bool xfeature_is_supervisor(int xfeature_nr)
134 {
135 	return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR;
136 }
137 
138 static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature)
139 {
140 	unsigned int offs, i;
141 
142 	/*
143 	 * Non-compacted format and legacy features use the cached fixed
144 	 * offsets.
145 	 */
146 	if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) ||
147 	    xfeature <= XFEATURE_SSE)
148 		return xstate_offsets[xfeature];
149 
150 	/*
151 	 * Compacted format offsets depend on the actual content of the
152 	 * compacted xsave area which is determined by the xcomp_bv header
153 	 * field.
154 	 */
155 	offs = FXSAVE_SIZE + XSAVE_HDR_SIZE;
156 	for_each_extended_xfeature(i, xcomp_bv) {
157 		if (xfeature_is_aligned64(i))
158 			offs = ALIGN(offs, 64);
159 		if (i == xfeature)
160 			break;
161 		offs += xstate_sizes[i];
162 	}
163 	return offs;
164 }
165 
166 /*
167  * Enable the extended processor state save/restore feature.
168  * Called once per CPU onlining.
169  */
170 void fpu__init_cpu_xstate(void)
171 {
172 	if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features)
173 		return;
174 
175 	cr4_set_bits(X86_CR4_OSXSAVE);
176 
177 	/*
178 	 * Must happen after CR4 setup and before xsetbv() to allow KVM
179 	 * lazy passthrough.  Write independent of the dynamic state static
180 	 * key as that does not work on the boot CPU. This also ensures
181 	 * that any stale state is wiped out from XFD. Reset the per CPU
182 	 * xfd cache too.
183 	 */
184 	if (cpu_feature_enabled(X86_FEATURE_XFD))
185 		xfd_set_state(init_fpstate.xfd);
186 
187 	/*
188 	 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
189 	 * managed by XSAVE{C, OPT, S} and XRSTOR{S}.  Only XSAVE user
190 	 * states can be set here.
191 	 */
192 	xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
193 
194 	/*
195 	 * MSR_IA32_XSS sets supervisor states managed by XSAVES.
196 	 */
197 	if (boot_cpu_has(X86_FEATURE_XSAVES)) {
198 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
199 				     xfeatures_mask_independent());
200 	}
201 }
202 
203 static bool xfeature_enabled(enum xfeature xfeature)
204 {
205 	return fpu_kernel_cfg.max_features & BIT_ULL(xfeature);
206 }
207 
208 /*
209  * Record the offsets and sizes of various xstates contained
210  * in the XSAVE state memory layout.
211  */
212 static void __init setup_xstate_cache(void)
213 {
214 	u32 eax, ebx, ecx, edx, i;
215 	/* start at the beginning of the "extended state" */
216 	unsigned int last_good_offset = offsetof(struct xregs_state,
217 						 extended_state_area);
218 	/*
219 	 * The FP xstates and SSE xstates are legacy states. They are always
220 	 * in the fixed offsets in the xsave area in either compacted form
221 	 * or standard form.
222 	 */
223 	xstate_offsets[XFEATURE_FP]	= 0;
224 	xstate_sizes[XFEATURE_FP]	= offsetof(struct fxregs_state,
225 						   xmm_space);
226 
227 	xstate_offsets[XFEATURE_SSE]	= xstate_sizes[XFEATURE_FP];
228 	xstate_sizes[XFEATURE_SSE]	= sizeof_field(struct fxregs_state,
229 						       xmm_space);
230 
231 	for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
232 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
233 
234 		xstate_sizes[i] = eax;
235 		xstate_flags[i] = ecx;
236 
237 		/*
238 		 * If an xfeature is supervisor state, the offset in EBX is
239 		 * invalid, leave it to -1.
240 		 */
241 		if (xfeature_is_supervisor(i))
242 			continue;
243 
244 		xstate_offsets[i] = ebx;
245 
246 		/*
247 		 * In our xstate size checks, we assume that the highest-numbered
248 		 * xstate feature has the highest offset in the buffer.  Ensure
249 		 * it does.
250 		 */
251 		WARN_ONCE(last_good_offset > xstate_offsets[i],
252 			  "x86/fpu: misordered xstate at %d\n", last_good_offset);
253 
254 		last_good_offset = xstate_offsets[i];
255 	}
256 }
257 
258 static void __init print_xstate_feature(u64 xstate_mask)
259 {
260 	const char *feature_name;
261 
262 	if (cpu_has_xfeatures(xstate_mask, &feature_name))
263 		pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
264 }
265 
266 /*
267  * Print out all the supported xstate features:
268  */
269 static void __init print_xstate_features(void)
270 {
271 	print_xstate_feature(XFEATURE_MASK_FP);
272 	print_xstate_feature(XFEATURE_MASK_SSE);
273 	print_xstate_feature(XFEATURE_MASK_YMM);
274 	print_xstate_feature(XFEATURE_MASK_BNDREGS);
275 	print_xstate_feature(XFEATURE_MASK_BNDCSR);
276 	print_xstate_feature(XFEATURE_MASK_OPMASK);
277 	print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
278 	print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
279 	print_xstate_feature(XFEATURE_MASK_PKRU);
280 	print_xstate_feature(XFEATURE_MASK_PASID);
281 	print_xstate_feature(XFEATURE_MASK_CET_USER);
282 	print_xstate_feature(XFEATURE_MASK_XTILE_CFG);
283 	print_xstate_feature(XFEATURE_MASK_XTILE_DATA);
284 }
285 
286 /*
287  * This check is important because it is easy to get XSTATE_*
288  * confused with XSTATE_BIT_*.
289  */
290 #define CHECK_XFEATURE(nr) do {		\
291 	WARN_ON(nr < FIRST_EXTENDED_XFEATURE);	\
292 	WARN_ON(nr >= XFEATURE_MAX);	\
293 } while (0)
294 
295 /*
296  * Print out xstate component offsets and sizes
297  */
298 static void __init print_xstate_offset_size(void)
299 {
300 	int i;
301 
302 	for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
303 		pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
304 			i, xfeature_get_offset(fpu_kernel_cfg.max_features, i),
305 			i, xstate_sizes[i]);
306 	}
307 }
308 
309 /*
310  * This function is called only during boot time when x86 caps are not set
311  * up and alternative can not be used yet.
312  */
313 static __init void os_xrstor_booting(struct xregs_state *xstate)
314 {
315 	u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE;
316 	u32 lmask = mask;
317 	u32 hmask = mask >> 32;
318 	int err;
319 
320 	if (cpu_feature_enabled(X86_FEATURE_XSAVES))
321 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
322 	else
323 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
324 
325 	/*
326 	 * We should never fault when copying from a kernel buffer, and the FPU
327 	 * state we set at boot time should be valid.
328 	 */
329 	WARN_ON_FPU(err);
330 }
331 
332 /*
333  * All supported features have either init state all zeros or are
334  * handled in setup_init_fpu() individually. This is an explicit
335  * feature list and does not use XFEATURE_MASK*SUPPORTED to catch
336  * newly added supported features at build time and make people
337  * actually look at the init state for the new feature.
338  */
339 #define XFEATURES_INIT_FPSTATE_HANDLED		\
340 	(XFEATURE_MASK_FP |			\
341 	 XFEATURE_MASK_SSE |			\
342 	 XFEATURE_MASK_YMM |			\
343 	 XFEATURE_MASK_OPMASK |			\
344 	 XFEATURE_MASK_ZMM_Hi256 |		\
345 	 XFEATURE_MASK_Hi16_ZMM	 |		\
346 	 XFEATURE_MASK_PKRU |			\
347 	 XFEATURE_MASK_BNDREGS |		\
348 	 XFEATURE_MASK_BNDCSR |			\
349 	 XFEATURE_MASK_PASID |			\
350 	 XFEATURE_MASK_CET_USER |		\
351 	 XFEATURE_MASK_XTILE)
352 
353 /*
354  * setup the xstate image representing the init state
355  */
356 static void __init setup_init_fpu_buf(void)
357 {
358 	BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
359 		      XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
360 		     XFEATURES_INIT_FPSTATE_HANDLED);
361 
362 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
363 		return;
364 
365 	print_xstate_features();
366 
367 	xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures);
368 
369 	/*
370 	 * Init all the features state with header.xfeatures being 0x0
371 	 */
372 	os_xrstor_booting(&init_fpstate.regs.xsave);
373 
374 	/*
375 	 * All components are now in init state. Read the state back so
376 	 * that init_fpstate contains all non-zero init state. This only
377 	 * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because
378 	 * those use the init optimization which skips writing data for
379 	 * components in init state.
380 	 *
381 	 * XSAVE could be used, but that would require to reshuffle the
382 	 * data when XSAVEC/S is available because XSAVEC/S uses xstate
383 	 * compaction. But doing so is a pointless exercise because most
384 	 * components have an all zeros init state except for the legacy
385 	 * ones (FP and SSE). Those can be saved with FXSAVE into the
386 	 * legacy area. Adding new features requires to ensure that init
387 	 * state is all zeroes or if not to add the necessary handling
388 	 * here.
389 	 */
390 	fxsave(&init_fpstate.regs.fxsave);
391 }
392 
393 int xfeature_size(int xfeature_nr)
394 {
395 	u32 eax, ebx, ecx, edx;
396 
397 	CHECK_XFEATURE(xfeature_nr);
398 	cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
399 	return eax;
400 }
401 
402 /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
403 static int validate_user_xstate_header(const struct xstate_header *hdr,
404 				       struct fpstate *fpstate)
405 {
406 	/* No unknown or supervisor features may be set */
407 	if (hdr->xfeatures & ~fpstate->user_xfeatures)
408 		return -EINVAL;
409 
410 	/* Userspace must use the uncompacted format */
411 	if (hdr->xcomp_bv)
412 		return -EINVAL;
413 
414 	/*
415 	 * If 'reserved' is shrunken to add a new field, make sure to validate
416 	 * that new field here!
417 	 */
418 	BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
419 
420 	/* No reserved bits may be set */
421 	if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
422 		return -EINVAL;
423 
424 	return 0;
425 }
426 
427 static void __init __xstate_dump_leaves(void)
428 {
429 	int i;
430 	u32 eax, ebx, ecx, edx;
431 	static int should_dump = 1;
432 
433 	if (!should_dump)
434 		return;
435 	should_dump = 0;
436 	/*
437 	 * Dump out a few leaves past the ones that we support
438 	 * just in case there are some goodies up there
439 	 */
440 	for (i = 0; i < XFEATURE_MAX + 10; i++) {
441 		cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
442 		pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
443 			XSTATE_CPUID, i, eax, ebx, ecx, edx);
444 	}
445 }
446 
447 #define XSTATE_WARN_ON(x, fmt, ...) do {					\
448 	if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) {	\
449 		__xstate_dump_leaves();						\
450 	}									\
451 } while (0)
452 
453 #define XCHECK_SZ(sz, nr, __struct) ({					\
454 	if (WARN_ONCE(sz != sizeof(__struct),				\
455 	    "[%s]: struct is %zu bytes, cpu state %d bytes\n",		\
456 	    xfeature_names[nr], sizeof(__struct), sz)) {		\
457 		__xstate_dump_leaves();					\
458 	}								\
459 	true;								\
460 })
461 
462 
463 /**
464  * check_xtile_data_against_struct - Check tile data state size.
465  *
466  * Calculate the state size by multiplying the single tile size which is
467  * recorded in a C struct, and the number of tiles that the CPU informs.
468  * Compare the provided size with the calculation.
469  *
470  * @size:	The tile data state size
471  *
472  * Returns:	0 on success, -EINVAL on mismatch.
473  */
474 static int __init check_xtile_data_against_struct(int size)
475 {
476 	u32 max_palid, palid, state_size;
477 	u32 eax, ebx, ecx, edx;
478 	u16 max_tile;
479 
480 	/*
481 	 * Check the maximum palette id:
482 	 *   eax: the highest numbered palette subleaf.
483 	 */
484 	cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx);
485 
486 	/*
487 	 * Cross-check each tile size and find the maximum number of
488 	 * supported tiles.
489 	 */
490 	for (palid = 1, max_tile = 0; palid <= max_palid; palid++) {
491 		u16 tile_size, max;
492 
493 		/*
494 		 * Check the tile size info:
495 		 *   eax[31:16]:  bytes per title
496 		 *   ebx[31:16]:  the max names (or max number of tiles)
497 		 */
498 		cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx);
499 		tile_size = eax >> 16;
500 		max = ebx >> 16;
501 
502 		if (tile_size != sizeof(struct xtile_data)) {
503 			pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n",
504 			       __stringify(XFEATURE_XTILE_DATA),
505 			       sizeof(struct xtile_data), tile_size);
506 			__xstate_dump_leaves();
507 			return -EINVAL;
508 		}
509 
510 		if (max > max_tile)
511 			max_tile = max;
512 	}
513 
514 	state_size = sizeof(struct xtile_data) * max_tile;
515 	if (size != state_size) {
516 		pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n",
517 		       __stringify(XFEATURE_XTILE_DATA), state_size, size);
518 		__xstate_dump_leaves();
519 		return -EINVAL;
520 	}
521 	return 0;
522 }
523 
524 /*
525  * We have a C struct for each 'xstate'.  We need to ensure
526  * that our software representation matches what the CPU
527  * tells us about the state's size.
528  */
529 static bool __init check_xstate_against_struct(int nr)
530 {
531 	/*
532 	 * Ask the CPU for the size of the state.
533 	 */
534 	int sz = xfeature_size(nr);
535 
536 	/*
537 	 * Match each CPU state with the corresponding software
538 	 * structure.
539 	 */
540 	switch (nr) {
541 	case XFEATURE_YMM:	  return XCHECK_SZ(sz, nr, struct ymmh_struct);
542 	case XFEATURE_BNDREGS:	  return XCHECK_SZ(sz, nr, struct mpx_bndreg_state);
543 	case XFEATURE_BNDCSR:	  return XCHECK_SZ(sz, nr, struct mpx_bndcsr_state);
544 	case XFEATURE_OPMASK:	  return XCHECK_SZ(sz, nr, struct avx_512_opmask_state);
545 	case XFEATURE_ZMM_Hi256:  return XCHECK_SZ(sz, nr, struct avx_512_zmm_uppers_state);
546 	case XFEATURE_Hi16_ZMM:	  return XCHECK_SZ(sz, nr, struct avx_512_hi16_state);
547 	case XFEATURE_PKRU:	  return XCHECK_SZ(sz, nr, struct pkru_state);
548 	case XFEATURE_PASID:	  return XCHECK_SZ(sz, nr, struct ia32_pasid_state);
549 	case XFEATURE_XTILE_CFG:  return XCHECK_SZ(sz, nr, struct xtile_cfg);
550 	case XFEATURE_CET_USER:	  return XCHECK_SZ(sz, nr, struct cet_user_state);
551 	case XFEATURE_XTILE_DATA: check_xtile_data_against_struct(sz); return true;
552 	default:
553 		XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr);
554 		return false;
555 	}
556 
557 	return true;
558 }
559 
560 static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted)
561 {
562 	unsigned int topmost = fls64(xfeatures) -  1;
563 	unsigned int offset = xstate_offsets[topmost];
564 
565 	if (topmost <= XFEATURE_SSE)
566 		return sizeof(struct xregs_state);
567 
568 	if (compacted)
569 		offset = xfeature_get_offset(xfeatures, topmost);
570 	return offset + xstate_sizes[topmost];
571 }
572 
573 /*
574  * This essentially double-checks what the cpu told us about
575  * how large the XSAVE buffer needs to be.  We are recalculating
576  * it to be safe.
577  *
578  * Independent XSAVE features allocate their own buffers and are not
579  * covered by these checks. Only the size of the buffer for task->fpu
580  * is checked here.
581  */
582 static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
583 {
584 	bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
585 	bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES);
586 	unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
587 	int i;
588 
589 	for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
590 		if (!check_xstate_against_struct(i))
591 			return false;
592 		/*
593 		 * Supervisor state components can be managed only by
594 		 * XSAVES.
595 		 */
596 		if (!xsaves && xfeature_is_supervisor(i)) {
597 			XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i);
598 			return false;
599 		}
600 	}
601 	size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted);
602 	XSTATE_WARN_ON(size != kernel_size,
603 		       "size %u != kernel_size %u\n", size, kernel_size);
604 	return size == kernel_size;
605 }
606 
607 /*
608  * Get total size of enabled xstates in XCR0 | IA32_XSS.
609  *
610  * Note the SDM's wording here.  "sub-function 0" only enumerates
611  * the size of the *user* states.  If we use it to size a buffer
612  * that we use 'XSAVES' on, we could potentially overflow the
613  * buffer because 'XSAVES' saves system states too.
614  *
615  * This also takes compaction into account. So this works for
616  * XSAVEC as well.
617  */
618 static unsigned int __init get_compacted_size(void)
619 {
620 	unsigned int eax, ebx, ecx, edx;
621 	/*
622 	 * - CPUID function 0DH, sub-function 1:
623 	 *    EBX enumerates the size (in bytes) required by
624 	 *    the XSAVES instruction for an XSAVE area
625 	 *    containing all the state components
626 	 *    corresponding to bits currently set in
627 	 *    XCR0 | IA32_XSS.
628 	 *
629 	 * When XSAVES is not available but XSAVEC is (virt), then there
630 	 * are no supervisor states, but XSAVEC still uses compacted
631 	 * format.
632 	 */
633 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
634 	return ebx;
635 }
636 
637 /*
638  * Get the total size of the enabled xstates without the independent supervisor
639  * features.
640  */
641 static unsigned int __init get_xsave_compacted_size(void)
642 {
643 	u64 mask = xfeatures_mask_independent();
644 	unsigned int size;
645 
646 	if (!mask)
647 		return get_compacted_size();
648 
649 	/* Disable independent features. */
650 	wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
651 
652 	/*
653 	 * Ask the hardware what size is required of the buffer.
654 	 * This is the size required for the task->fpu buffer.
655 	 */
656 	size = get_compacted_size();
657 
658 	/* Re-enable independent features so XSAVES will work on them again. */
659 	wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
660 
661 	return size;
662 }
663 
664 static unsigned int __init get_xsave_size_user(void)
665 {
666 	unsigned int eax, ebx, ecx, edx;
667 	/*
668 	 * - CPUID function 0DH, sub-function 0:
669 	 *    EBX enumerates the size (in bytes) required by
670 	 *    the XSAVE instruction for an XSAVE area
671 	 *    containing all the *user* state components
672 	 *    corresponding to bits currently set in XCR0.
673 	 */
674 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
675 	return ebx;
676 }
677 
678 static int __init init_xstate_size(void)
679 {
680 	/* Recompute the context size for enabled features: */
681 	unsigned int user_size, kernel_size, kernel_default_size;
682 	bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
683 
684 	/* Uncompacted user space size */
685 	user_size = get_xsave_size_user();
686 
687 	/*
688 	 * XSAVES kernel size includes supervisor states and uses compacted
689 	 * format. XSAVEC uses compacted format, but does not save
690 	 * supervisor states.
691 	 *
692 	 * XSAVE[OPT] do not support supervisor states so kernel and user
693 	 * size is identical.
694 	 */
695 	if (compacted)
696 		kernel_size = get_xsave_compacted_size();
697 	else
698 		kernel_size = user_size;
699 
700 	kernel_default_size =
701 		xstate_calculate_size(fpu_kernel_cfg.default_features, compacted);
702 
703 	if (!paranoid_xstate_size_valid(kernel_size))
704 		return -EINVAL;
705 
706 	fpu_kernel_cfg.max_size = kernel_size;
707 	fpu_user_cfg.max_size = user_size;
708 
709 	fpu_kernel_cfg.default_size = kernel_default_size;
710 	fpu_user_cfg.default_size =
711 		xstate_calculate_size(fpu_user_cfg.default_features, false);
712 
713 	return 0;
714 }
715 
716 /*
717  * We enabled the XSAVE hardware, but something went wrong and
718  * we can not use it.  Disable it.
719  */
720 static void __init fpu__init_disable_system_xstate(unsigned int legacy_size)
721 {
722 	fpu_kernel_cfg.max_features = 0;
723 	cr4_clear_bits(X86_CR4_OSXSAVE);
724 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
725 
726 	/* Restore the legacy size.*/
727 	fpu_kernel_cfg.max_size = legacy_size;
728 	fpu_kernel_cfg.default_size = legacy_size;
729 	fpu_user_cfg.max_size = legacy_size;
730 	fpu_user_cfg.default_size = legacy_size;
731 
732 	/*
733 	 * Prevent enabling the static branch which enables writes to the
734 	 * XFD MSR.
735 	 */
736 	init_fpstate.xfd = 0;
737 
738 	fpstate_reset(&current->thread.fpu);
739 }
740 
741 /*
742  * Enable and initialize the xsave feature.
743  * Called once per system bootup.
744  */
745 void __init fpu__init_system_xstate(unsigned int legacy_size)
746 {
747 	unsigned int eax, ebx, ecx, edx;
748 	u64 xfeatures;
749 	int err;
750 	int i;
751 
752 	if (!boot_cpu_has(X86_FEATURE_FPU)) {
753 		pr_info("x86/fpu: No FPU detected\n");
754 		return;
755 	}
756 
757 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
758 		pr_info("x86/fpu: x87 FPU will use %s\n",
759 			boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
760 		return;
761 	}
762 
763 	if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
764 		WARN_ON_FPU(1);
765 		return;
766 	}
767 
768 	/*
769 	 * Find user xstates supported by the processor.
770 	 */
771 	cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
772 	fpu_kernel_cfg.max_features = eax + ((u64)edx << 32);
773 
774 	/*
775 	 * Find supervisor xstates supported by the processor.
776 	 */
777 	cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
778 	fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32);
779 
780 	if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
781 		/*
782 		 * This indicates that something really unexpected happened
783 		 * with the enumeration.  Disable XSAVE and try to continue
784 		 * booting without it.  This is too early to BUG().
785 		 */
786 		pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
787 		       fpu_kernel_cfg.max_features);
788 		goto out_disable;
789 	}
790 
791 	fpu_kernel_cfg.independent_features = fpu_kernel_cfg.max_features &
792 					      XFEATURE_MASK_INDEPENDENT;
793 
794 	/*
795 	 * Clear XSAVE features that are disabled in the normal CPUID.
796 	 */
797 	for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
798 		unsigned short cid = xsave_cpuid_features[i];
799 
800 		/* Careful: X86_FEATURE_FPU is 0! */
801 		if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid))
802 			fpu_kernel_cfg.max_features &= ~BIT_ULL(i);
803 	}
804 
805 	if (!cpu_feature_enabled(X86_FEATURE_XFD))
806 		fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
807 
808 	if (!cpu_feature_enabled(X86_FEATURE_XSAVES))
809 		fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
810 	else
811 		fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
812 					XFEATURE_MASK_SUPERVISOR_SUPPORTED;
813 
814 	fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
815 	fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
816 
817 	/* Clean out dynamic features from default */
818 	fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features;
819 	fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
820 
821 	fpu_user_cfg.default_features = fpu_user_cfg.max_features;
822 	fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
823 
824 	/* Store it for paranoia check at the end */
825 	xfeatures = fpu_kernel_cfg.max_features;
826 
827 	/*
828 	 * Initialize the default XFD state in initfp_state and enable the
829 	 * dynamic sizing mechanism if dynamic states are available.  The
830 	 * static key cannot be enabled here because this runs before
831 	 * jump_label_init(). This is delayed to an initcall.
832 	 */
833 	init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
834 
835 	/* Set up compaction feature bit */
836 	if (cpu_feature_enabled(X86_FEATURE_XSAVEC) ||
837 	    cpu_feature_enabled(X86_FEATURE_XSAVES))
838 		setup_force_cpu_cap(X86_FEATURE_XCOMPACTED);
839 
840 	/* Enable xstate instructions to be able to continue with initialization: */
841 	fpu__init_cpu_xstate();
842 
843 	/* Cache size, offset and flags for initialization */
844 	setup_xstate_cache();
845 
846 	err = init_xstate_size();
847 	if (err)
848 		goto out_disable;
849 
850 	/* Reset the state for the current task */
851 	fpstate_reset(&current->thread.fpu);
852 
853 	/*
854 	 * Update info used for ptrace frames; use standard-format size and no
855 	 * supervisor xstates:
856 	 */
857 	update_regset_xstate_info(fpu_user_cfg.max_size,
858 				  fpu_user_cfg.max_features);
859 
860 	/*
861 	 * init_fpstate excludes dynamic states as they are large but init
862 	 * state is zero.
863 	 */
864 	init_fpstate.size		= fpu_kernel_cfg.default_size;
865 	init_fpstate.xfeatures		= fpu_kernel_cfg.default_features;
866 
867 	if (init_fpstate.size > sizeof(init_fpstate.regs)) {
868 		pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n",
869 			sizeof(init_fpstate.regs), init_fpstate.size);
870 		goto out_disable;
871 	}
872 
873 	setup_init_fpu_buf();
874 
875 	/*
876 	 * Paranoia check whether something in the setup modified the
877 	 * xfeatures mask.
878 	 */
879 	if (xfeatures != fpu_kernel_cfg.max_features) {
880 		pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n",
881 		       xfeatures, fpu_kernel_cfg.max_features);
882 		goto out_disable;
883 	}
884 
885 	/*
886 	 * CPU capabilities initialization runs before FPU init. So
887 	 * X86_FEATURE_OSXSAVE is not set. Now that XSAVE is completely
888 	 * functional, set the feature bit so depending code works.
889 	 */
890 	setup_force_cpu_cap(X86_FEATURE_OSXSAVE);
891 
892 	print_xstate_offset_size();
893 	pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
894 		fpu_kernel_cfg.max_features,
895 		fpu_kernel_cfg.max_size,
896 		boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard");
897 	return;
898 
899 out_disable:
900 	/* something went wrong, try to boot without any XSAVE support */
901 	fpu__init_disable_system_xstate(legacy_size);
902 }
903 
904 /*
905  * Restore minimal FPU state after suspend:
906  */
907 void fpu__resume_cpu(void)
908 {
909 	/*
910 	 * Restore XCR0 on xsave capable CPUs:
911 	 */
912 	if (cpu_feature_enabled(X86_FEATURE_XSAVE))
913 		xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
914 
915 	/*
916 	 * Restore IA32_XSS. The same CPUID bit enumerates support
917 	 * of XSAVES and MSR_IA32_XSS.
918 	 */
919 	if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
920 		wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()  |
921 				     xfeatures_mask_independent());
922 	}
923 
924 	if (fpu_state_size_dynamic())
925 		wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd);
926 }
927 
928 /*
929  * Given an xstate feature nr, calculate where in the xsave
930  * buffer the state is.  Callers should ensure that the buffer
931  * is valid.
932  */
933 static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
934 {
935 	u64 xcomp_bv = xsave->header.xcomp_bv;
936 
937 	if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
938 		return NULL;
939 
940 	if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) {
941 		if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
942 			return NULL;
943 	}
944 
945 	return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr);
946 }
947 
948 /*
949  * Given the xsave area and a state inside, this function returns the
950  * address of the state.
951  *
952  * This is the API that is called to get xstate address in either
953  * standard format or compacted format of xsave area.
954  *
955  * Note that if there is no data for the field in the xsave buffer
956  * this will return NULL.
957  *
958  * Inputs:
959  *	xstate: the thread's storage area for all FPU data
960  *	xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
961  *	XFEATURE_SSE, etc...)
962  * Output:
963  *	address of the state in the xsave area, or NULL if the
964  *	field is not present in the xsave buffer.
965  */
966 void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
967 {
968 	/*
969 	 * Do we even *have* xsave state?
970 	 */
971 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
972 		return NULL;
973 
974 	/*
975 	 * We should not ever be requesting features that we
976 	 * have not enabled.
977 	 */
978 	if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
979 		return NULL;
980 
981 	/*
982 	 * This assumes the last 'xsave*' instruction to
983 	 * have requested that 'xfeature_nr' be saved.
984 	 * If it did not, we might be seeing and old value
985 	 * of the field in the buffer.
986 	 *
987 	 * This can happen because the last 'xsave' did not
988 	 * request that this feature be saved (unlikely)
989 	 * or because the "init optimization" caused it
990 	 * to not be saved.
991 	 */
992 	if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
993 		return NULL;
994 
995 	return __raw_xsave_addr(xsave, xfeature_nr);
996 }
997 
998 #ifdef CONFIG_ARCH_HAS_PKEYS
999 
1000 /*
1001  * This will go out and modify PKRU register to set the access
1002  * rights for @pkey to @init_val.
1003  */
1004 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
1005 			      unsigned long init_val)
1006 {
1007 	u32 old_pkru, new_pkru_bits = 0;
1008 	int pkey_shift;
1009 
1010 	/*
1011 	 * This check implies XSAVE support.  OSPKE only gets
1012 	 * set if we enable XSAVE and we enable PKU in XCR0.
1013 	 */
1014 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
1015 		return -EINVAL;
1016 
1017 	/*
1018 	 * This code should only be called with valid 'pkey'
1019 	 * values originating from in-kernel users.  Complain
1020 	 * if a bad value is observed.
1021 	 */
1022 	if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
1023 		return -EINVAL;
1024 
1025 	/* Set the bits we need in PKRU:  */
1026 	if (init_val & PKEY_DISABLE_ACCESS)
1027 		new_pkru_bits |= PKRU_AD_BIT;
1028 	if (init_val & PKEY_DISABLE_WRITE)
1029 		new_pkru_bits |= PKRU_WD_BIT;
1030 
1031 	/* Shift the bits in to the correct place in PKRU for pkey: */
1032 	pkey_shift = pkey * PKRU_BITS_PER_PKEY;
1033 	new_pkru_bits <<= pkey_shift;
1034 
1035 	/* Get old PKRU and mask off any old bits in place: */
1036 	old_pkru = read_pkru();
1037 	old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
1038 
1039 	/* Write old part along with new part: */
1040 	write_pkru(old_pkru | new_pkru_bits);
1041 
1042 	return 0;
1043 }
1044 #endif /* ! CONFIG_ARCH_HAS_PKEYS */
1045 
1046 static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
1047 			 void *init_xstate, unsigned int size)
1048 {
1049 	membuf_write(to, from_xstate ? xstate : init_xstate, size);
1050 }
1051 
1052 /**
1053  * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1054  * @to:		membuf descriptor
1055  * @fpstate:	The fpstate buffer from which to copy
1056  * @xfeatures:	The mask of xfeatures to save (XSAVE mode only)
1057  * @pkru_val:	The PKRU value to store in the PKRU component
1058  * @copy_mode:	The requested copy mode
1059  *
1060  * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1061  * format, i.e. from the kernel internal hardware dependent storage format
1062  * to the requested @mode. UABI XSTATE is always uncompacted!
1063  *
1064  * It supports partial copy but @to.pos always starts from zero.
1065  */
1066 void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate,
1067 			       u64 xfeatures, u32 pkru_val,
1068 			       enum xstate_copy_mode copy_mode)
1069 {
1070 	const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
1071 	struct xregs_state *xinit = &init_fpstate.regs.xsave;
1072 	struct xregs_state *xsave = &fpstate->regs.xsave;
1073 	struct xstate_header header;
1074 	unsigned int zerofrom;
1075 	u64 mask;
1076 	int i;
1077 
1078 	memset(&header, 0, sizeof(header));
1079 	header.xfeatures = xsave->header.xfeatures;
1080 
1081 	/* Mask out the feature bits depending on copy mode */
1082 	switch (copy_mode) {
1083 	case XSTATE_COPY_FP:
1084 		header.xfeatures &= XFEATURE_MASK_FP;
1085 		break;
1086 
1087 	case XSTATE_COPY_FX:
1088 		header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE;
1089 		break;
1090 
1091 	case XSTATE_COPY_XSAVE:
1092 		header.xfeatures &= fpstate->user_xfeatures & xfeatures;
1093 		break;
1094 	}
1095 
1096 	/* Copy FP state up to MXCSR */
1097 	copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387,
1098 		     &xinit->i387, off_mxcsr);
1099 
1100 	/* Copy MXCSR when SSE or YMM are set in the feature mask */
1101 	copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
1102 		     &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr,
1103 		     MXCSR_AND_FLAGS_SIZE);
1104 
1105 	/* Copy the remaining FP state */
1106 	copy_feature(header.xfeatures & XFEATURE_MASK_FP,
1107 		     &to, &xsave->i387.st_space, &xinit->i387.st_space,
1108 		     sizeof(xsave->i387.st_space));
1109 
1110 	/* Copy the SSE state - shared with YMM, but independently managed */
1111 	copy_feature(header.xfeatures & XFEATURE_MASK_SSE,
1112 		     &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space,
1113 		     sizeof(xsave->i387.xmm_space));
1114 
1115 	if (copy_mode != XSTATE_COPY_XSAVE)
1116 		goto out;
1117 
1118 	/* Zero the padding area */
1119 	membuf_zero(&to, sizeof(xsave->i387.padding));
1120 
1121 	/* Copy xsave->i387.sw_reserved */
1122 	membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved));
1123 
1124 	/* Copy the user space relevant state of @xsave->header */
1125 	membuf_write(&to, &header, sizeof(header));
1126 
1127 	zerofrom = offsetof(struct xregs_state, extended_state_area);
1128 
1129 	/*
1130 	 * This 'mask' indicates which states to copy from fpstate.
1131 	 * Those extended states that are not present in fpstate are
1132 	 * either disabled or initialized:
1133 	 *
1134 	 * In non-compacted format, disabled features still occupy
1135 	 * state space but there is no state to copy from in the
1136 	 * compacted init_fpstate. The gap tracking will zero these
1137 	 * states.
1138 	 *
1139 	 * The extended features have an all zeroes init state. Thus,
1140 	 * remove them from 'mask' to zero those features in the user
1141 	 * buffer instead of retrieving them from init_fpstate.
1142 	 */
1143 	mask = header.xfeatures;
1144 
1145 	for_each_extended_xfeature(i, mask) {
1146 		/*
1147 		 * If there was a feature or alignment gap, zero the space
1148 		 * in the destination buffer.
1149 		 */
1150 		if (zerofrom < xstate_offsets[i])
1151 			membuf_zero(&to, xstate_offsets[i] - zerofrom);
1152 
1153 		if (i == XFEATURE_PKRU) {
1154 			struct pkru_state pkru = {0};
1155 			/*
1156 			 * PKRU is not necessarily up to date in the
1157 			 * XSAVE buffer. Use the provided value.
1158 			 */
1159 			pkru.pkru = pkru_val;
1160 			membuf_write(&to, &pkru, sizeof(pkru));
1161 		} else {
1162 			membuf_write(&to,
1163 				     __raw_xsave_addr(xsave, i),
1164 				     xstate_sizes[i]);
1165 		}
1166 		/*
1167 		 * Keep track of the last copied state in the non-compacted
1168 		 * target buffer for gap zeroing.
1169 		 */
1170 		zerofrom = xstate_offsets[i] + xstate_sizes[i];
1171 	}
1172 
1173 out:
1174 	if (to.left)
1175 		membuf_zero(&to, to.left);
1176 }
1177 
1178 /**
1179  * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1180  * @to:		membuf descriptor
1181  * @tsk:	The task from which to copy the saved xstate
1182  * @copy_mode:	The requested copy mode
1183  *
1184  * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1185  * format, i.e. from the kernel internal hardware dependent storage format
1186  * to the requested @mode. UABI XSTATE is always uncompacted!
1187  *
1188  * It supports partial copy but @to.pos always starts from zero.
1189  */
1190 void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk,
1191 			     enum xstate_copy_mode copy_mode)
1192 {
1193 	__copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate,
1194 				  tsk->thread.fpu.fpstate->user_xfeatures,
1195 				  tsk->thread.pkru, copy_mode);
1196 }
1197 
1198 static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size,
1199 			    const void *kbuf, const void __user *ubuf)
1200 {
1201 	if (kbuf) {
1202 		memcpy(dst, kbuf + offset, size);
1203 	} else {
1204 		if (copy_from_user(dst, ubuf + offset, size))
1205 			return -EFAULT;
1206 	}
1207 	return 0;
1208 }
1209 
1210 
1211 /**
1212  * copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate
1213  * @fpstate:	The fpstate buffer to copy to
1214  * @kbuf:	The UABI format buffer, if it comes from the kernel
1215  * @ubuf:	The UABI format buffer, if it comes from userspace
1216  * @pkru:	The location to write the PKRU value to
1217  *
1218  * Converts from the UABI format into the kernel internal hardware
1219  * dependent format.
1220  *
1221  * This function ultimately has three different callers with distinct PKRU
1222  * behavior.
1223  * 1.	When called from sigreturn the PKRU register will be restored from
1224  *	@fpstate via an XRSTOR. Correctly copying the UABI format buffer to
1225  *	@fpstate is sufficient to cover this case, but the caller will also
1226  *	pass a pointer to the thread_struct's pkru field in @pkru and updating
1227  *	it is harmless.
1228  * 2.	When called from ptrace the PKRU register will be restored from the
1229  *	thread_struct's pkru field. A pointer to that is passed in @pkru.
1230  *	The kernel will restore it manually, so the XRSTOR behavior that resets
1231  *	the PKRU register to the hardware init value (0) if the corresponding
1232  *	xfeatures bit is not set is emulated here.
1233  * 3.	When called from KVM the PKRU register will be restored from the vcpu's
1234  *	pkru field. A pointer to that is passed in @pkru. KVM hasn't used
1235  *	XRSTOR and hasn't had the PKRU resetting behavior described above. To
1236  *	preserve that KVM behavior, it passes NULL for @pkru if the xfeatures
1237  *	bit is not set.
1238  */
1239 static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf,
1240 			       const void __user *ubuf, u32 *pkru)
1241 {
1242 	struct xregs_state *xsave = &fpstate->regs.xsave;
1243 	unsigned int offset, size;
1244 	struct xstate_header hdr;
1245 	u64 mask;
1246 	int i;
1247 
1248 	offset = offsetof(struct xregs_state, header);
1249 	if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf))
1250 		return -EFAULT;
1251 
1252 	if (validate_user_xstate_header(&hdr, fpstate))
1253 		return -EINVAL;
1254 
1255 	/* Validate MXCSR when any of the related features is in use */
1256 	mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM;
1257 	if (hdr.xfeatures & mask) {
1258 		u32 mxcsr[2];
1259 
1260 		offset = offsetof(struct fxregs_state, mxcsr);
1261 		if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf))
1262 			return -EFAULT;
1263 
1264 		/* Reserved bits in MXCSR must be zero. */
1265 		if (mxcsr[0] & ~mxcsr_feature_mask)
1266 			return -EINVAL;
1267 
1268 		/* SSE and YMM require MXCSR even when FP is not in use. */
1269 		if (!(hdr.xfeatures & XFEATURE_MASK_FP)) {
1270 			xsave->i387.mxcsr = mxcsr[0];
1271 			xsave->i387.mxcsr_mask = mxcsr[1];
1272 		}
1273 	}
1274 
1275 	for (i = 0; i < XFEATURE_MAX; i++) {
1276 		mask = BIT_ULL(i);
1277 
1278 		if (hdr.xfeatures & mask) {
1279 			void *dst = __raw_xsave_addr(xsave, i);
1280 
1281 			offset = xstate_offsets[i];
1282 			size = xstate_sizes[i];
1283 
1284 			if (copy_from_buffer(dst, offset, size, kbuf, ubuf))
1285 				return -EFAULT;
1286 		}
1287 	}
1288 
1289 	if (hdr.xfeatures & XFEATURE_MASK_PKRU) {
1290 		struct pkru_state *xpkru;
1291 
1292 		xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU);
1293 		*pkru = xpkru->pkru;
1294 	} else {
1295 		/*
1296 		 * KVM may pass NULL here to indicate that it does not need
1297 		 * PKRU updated.
1298 		 */
1299 		if (pkru)
1300 			*pkru = 0;
1301 	}
1302 
1303 	/*
1304 	 * The state that came in from userspace was user-state only.
1305 	 * Mask all the user states out of 'xfeatures':
1306 	 */
1307 	xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1308 
1309 	/*
1310 	 * Add back in the features that came in from userspace:
1311 	 */
1312 	xsave->header.xfeatures |= hdr.xfeatures;
1313 
1314 	return 0;
1315 }
1316 
1317 /*
1318  * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S]
1319  * format and copy to the target thread. Used by ptrace and KVM.
1320  */
1321 int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru)
1322 {
1323 	return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru);
1324 }
1325 
1326 /*
1327  * Convert from a sigreturn standard-format user-space buffer to kernel
1328  * XSAVE[S] format and copy to the target thread. This is called from the
1329  * sigreturn() and rt_sigreturn() system calls.
1330  */
1331 int copy_sigframe_from_user_to_xstate(struct task_struct *tsk,
1332 				      const void __user *ubuf)
1333 {
1334 	return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru);
1335 }
1336 
1337 static bool validate_independent_components(u64 mask)
1338 {
1339 	u64 xchk;
1340 
1341 	if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES)))
1342 		return false;
1343 
1344 	xchk = ~xfeatures_mask_independent();
1345 
1346 	if (WARN_ON_ONCE(!mask || mask & xchk))
1347 		return false;
1348 
1349 	return true;
1350 }
1351 
1352 /**
1353  * xsaves - Save selected components to a kernel xstate buffer
1354  * @xstate:	Pointer to the buffer
1355  * @mask:	Feature mask to select the components to save
1356  *
1357  * The @xstate buffer must be 64 byte aligned and correctly initialized as
1358  * XSAVES does not write the full xstate header. Before first use the
1359  * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer
1360  * can #GP.
1361  *
1362  * The feature mask must be a subset of the independent features.
1363  */
1364 void xsaves(struct xregs_state *xstate, u64 mask)
1365 {
1366 	int err;
1367 
1368 	if (!validate_independent_components(mask))
1369 		return;
1370 
1371 	XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err);
1372 	WARN_ON_ONCE(err);
1373 }
1374 
1375 /**
1376  * xrstors - Restore selected components from a kernel xstate buffer
1377  * @xstate:	Pointer to the buffer
1378  * @mask:	Feature mask to select the components to restore
1379  *
1380  * The @xstate buffer must be 64 byte aligned and correctly initialized
1381  * otherwise XRSTORS from that buffer can #GP.
1382  *
1383  * Proper usage is to restore the state which was saved with
1384  * xsaves() into @xstate.
1385  *
1386  * The feature mask must be a subset of the independent features.
1387  */
1388 void xrstors(struct xregs_state *xstate, u64 mask)
1389 {
1390 	int err;
1391 
1392 	if (!validate_independent_components(mask))
1393 		return;
1394 
1395 	XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err);
1396 	WARN_ON_ONCE(err);
1397 }
1398 
1399 #if IS_ENABLED(CONFIG_KVM)
1400 void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature)
1401 {
1402 	void *addr = get_xsave_addr(&fps->regs.xsave, xfeature);
1403 
1404 	if (addr)
1405 		memset(addr, 0, xstate_sizes[xfeature]);
1406 }
1407 EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component);
1408 #endif
1409 
1410 #ifdef CONFIG_X86_64
1411 
1412 #ifdef CONFIG_X86_DEBUG_FPU
1413 /*
1414  * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask
1415  * can safely operate on the @fpstate buffer.
1416  */
1417 static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor)
1418 {
1419 	u64 xfd = __this_cpu_read(xfd_state);
1420 
1421 	if (fpstate->xfd == xfd)
1422 		return true;
1423 
1424 	 /*
1425 	  * The XFD MSR does not match fpstate->xfd. That's invalid when
1426 	  * the passed in fpstate is current's fpstate.
1427 	  */
1428 	if (fpstate->xfd == current->thread.fpu.fpstate->xfd)
1429 		return false;
1430 
1431 	/*
1432 	 * XRSTOR(S) from init_fpstate are always correct as it will just
1433 	 * bring all components into init state and not read from the
1434 	 * buffer. XSAVE(S) raises #PF after init.
1435 	 */
1436 	if (fpstate == &init_fpstate)
1437 		return rstor;
1438 
1439 	/*
1440 	 * XSAVE(S): clone(), fpu_swap_kvm_fpu()
1441 	 * XRSTORS(S): fpu_swap_kvm_fpu()
1442 	 */
1443 
1444 	/*
1445 	 * No XSAVE/XRSTOR instructions (except XSAVE itself) touch
1446 	 * the buffer area for XFD-disabled state components.
1447 	 */
1448 	mask &= ~xfd;
1449 
1450 	/*
1451 	 * Remove features which are valid in fpstate. They
1452 	 * have space allocated in fpstate.
1453 	 */
1454 	mask &= ~fpstate->xfeatures;
1455 
1456 	/*
1457 	 * Any remaining state components in 'mask' might be written
1458 	 * by XSAVE/XRSTOR. Fail validation it found.
1459 	 */
1460 	return !mask;
1461 }
1462 
1463 void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor)
1464 {
1465 	WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor));
1466 }
1467 #endif /* CONFIG_X86_DEBUG_FPU */
1468 
1469 static int __init xfd_update_static_branch(void)
1470 {
1471 	/*
1472 	 * If init_fpstate.xfd has bits set then dynamic features are
1473 	 * available and the dynamic sizing must be enabled.
1474 	 */
1475 	if (init_fpstate.xfd)
1476 		static_branch_enable(&__fpu_state_size_dynamic);
1477 	return 0;
1478 }
1479 arch_initcall(xfd_update_static_branch)
1480 
1481 void fpstate_free(struct fpu *fpu)
1482 {
1483 	if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate)
1484 		vfree(fpu->fpstate);
1485 }
1486 
1487 /**
1488  * fpstate_realloc - Reallocate struct fpstate for the requested new features
1489  *
1490  * @xfeatures:	A bitmap of xstate features which extend the enabled features
1491  *		of that task
1492  * @ksize:	The required size for the kernel buffer
1493  * @usize:	The required size for user space buffers
1494  * @guest_fpu:	Pointer to a guest FPU container. NULL for host allocations
1495  *
1496  * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer
1497  * terminates quickly, vfree()-induced IPIs may be a concern, but tasks
1498  * with large states are likely to live longer.
1499  *
1500  * Returns: 0 on success, -ENOMEM on allocation error.
1501  */
1502 static int fpstate_realloc(u64 xfeatures, unsigned int ksize,
1503 			   unsigned int usize, struct fpu_guest *guest_fpu)
1504 {
1505 	struct fpu *fpu = &current->thread.fpu;
1506 	struct fpstate *curfps, *newfps = NULL;
1507 	unsigned int fpsize;
1508 	bool in_use;
1509 
1510 	fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64);
1511 
1512 	newfps = vzalloc(fpsize);
1513 	if (!newfps)
1514 		return -ENOMEM;
1515 	newfps->size = ksize;
1516 	newfps->user_size = usize;
1517 	newfps->is_valloc = true;
1518 
1519 	/*
1520 	 * When a guest FPU is supplied, use @guest_fpu->fpstate
1521 	 * as reference independent whether it is in use or not.
1522 	 */
1523 	curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate;
1524 
1525 	/* Determine whether @curfps is the active fpstate */
1526 	in_use = fpu->fpstate == curfps;
1527 
1528 	if (guest_fpu) {
1529 		newfps->is_guest = true;
1530 		newfps->is_confidential = curfps->is_confidential;
1531 		newfps->in_use = curfps->in_use;
1532 		guest_fpu->xfeatures |= xfeatures;
1533 		guest_fpu->uabi_size = usize;
1534 	}
1535 
1536 	fpregs_lock();
1537 	/*
1538 	 * If @curfps is in use, ensure that the current state is in the
1539 	 * registers before swapping fpstate as that might invalidate it
1540 	 * due to layout changes.
1541 	 */
1542 	if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD))
1543 		fpregs_restore_userregs();
1544 
1545 	newfps->xfeatures = curfps->xfeatures | xfeatures;
1546 	newfps->user_xfeatures = curfps->user_xfeatures | xfeatures;
1547 	newfps->xfd = curfps->xfd & ~xfeatures;
1548 
1549 	/* Do the final updates within the locked region */
1550 	xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures);
1551 
1552 	if (guest_fpu) {
1553 		guest_fpu->fpstate = newfps;
1554 		/* If curfps is active, update the FPU fpstate pointer */
1555 		if (in_use)
1556 			fpu->fpstate = newfps;
1557 	} else {
1558 		fpu->fpstate = newfps;
1559 	}
1560 
1561 	if (in_use)
1562 		xfd_update_state(fpu->fpstate);
1563 	fpregs_unlock();
1564 
1565 	/* Only free valloc'ed state */
1566 	if (curfps && curfps->is_valloc)
1567 		vfree(curfps);
1568 
1569 	return 0;
1570 }
1571 
1572 static int validate_sigaltstack(unsigned int usize)
1573 {
1574 	struct task_struct *thread, *leader = current->group_leader;
1575 	unsigned long framesize = get_sigframe_size();
1576 
1577 	lockdep_assert_held(&current->sighand->siglock);
1578 
1579 	/* get_sigframe_size() is based on fpu_user_cfg.max_size */
1580 	framesize -= fpu_user_cfg.max_size;
1581 	framesize += usize;
1582 	for_each_thread(leader, thread) {
1583 		if (thread->sas_ss_size && thread->sas_ss_size < framesize)
1584 			return -ENOSPC;
1585 	}
1586 	return 0;
1587 }
1588 
1589 static int __xstate_request_perm(u64 permitted, u64 requested, bool guest)
1590 {
1591 	/*
1592 	 * This deliberately does not exclude !XSAVES as we still might
1593 	 * decide to optionally context switch XCR0 or talk the silicon
1594 	 * vendors into extending XFD for the pre AMX states, especially
1595 	 * AVX512.
1596 	 */
1597 	bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
1598 	struct fpu *fpu = &current->group_leader->thread.fpu;
1599 	struct fpu_state_perm *perm;
1600 	unsigned int ksize, usize;
1601 	u64 mask;
1602 	int ret = 0;
1603 
1604 	/* Check whether fully enabled */
1605 	if ((permitted & requested) == requested)
1606 		return 0;
1607 
1608 	/* Calculate the resulting kernel state size */
1609 	mask = permitted | requested;
1610 	/* Take supervisor states into account on the host */
1611 	if (!guest)
1612 		mask |= xfeatures_mask_supervisor();
1613 	ksize = xstate_calculate_size(mask, compacted);
1614 
1615 	/* Calculate the resulting user state size */
1616 	mask &= XFEATURE_MASK_USER_SUPPORTED;
1617 	usize = xstate_calculate_size(mask, false);
1618 
1619 	if (!guest) {
1620 		ret = validate_sigaltstack(usize);
1621 		if (ret)
1622 			return ret;
1623 	}
1624 
1625 	perm = guest ? &fpu->guest_perm : &fpu->perm;
1626 	/* Pairs with the READ_ONCE() in xstate_get_group_perm() */
1627 	WRITE_ONCE(perm->__state_perm, mask);
1628 	/* Protected by sighand lock */
1629 	perm->__state_size = ksize;
1630 	perm->__user_state_size = usize;
1631 	return ret;
1632 }
1633 
1634 /*
1635  * Permissions array to map facilities with more than one component
1636  */
1637 static const u64 xstate_prctl_req[XFEATURE_MAX] = {
1638 	[XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA,
1639 };
1640 
1641 static int xstate_request_perm(unsigned long idx, bool guest)
1642 {
1643 	u64 permitted, requested;
1644 	int ret;
1645 
1646 	if (idx >= XFEATURE_MAX)
1647 		return -EINVAL;
1648 
1649 	/*
1650 	 * Look up the facility mask which can require more than
1651 	 * one xstate component.
1652 	 */
1653 	idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req));
1654 	requested = xstate_prctl_req[idx];
1655 	if (!requested)
1656 		return -EOPNOTSUPP;
1657 
1658 	if ((fpu_user_cfg.max_features & requested) != requested)
1659 		return -EOPNOTSUPP;
1660 
1661 	/* Lockless quick check */
1662 	permitted = xstate_get_group_perm(guest);
1663 	if ((permitted & requested) == requested)
1664 		return 0;
1665 
1666 	/* Protect against concurrent modifications */
1667 	spin_lock_irq(&current->sighand->siglock);
1668 	permitted = xstate_get_group_perm(guest);
1669 
1670 	/* First vCPU allocation locks the permissions. */
1671 	if (guest && (permitted & FPU_GUEST_PERM_LOCKED))
1672 		ret = -EBUSY;
1673 	else
1674 		ret = __xstate_request_perm(permitted, requested, guest);
1675 	spin_unlock_irq(&current->sighand->siglock);
1676 	return ret;
1677 }
1678 
1679 int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu)
1680 {
1681 	u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC;
1682 	struct fpu_state_perm *perm;
1683 	unsigned int ksize, usize;
1684 	struct fpu *fpu;
1685 
1686 	if (!xfd_event) {
1687 		if (!guest_fpu)
1688 			pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err);
1689 		return 0;
1690 	}
1691 
1692 	/* Protect against concurrent modifications */
1693 	spin_lock_irq(&current->sighand->siglock);
1694 
1695 	/* If not permitted let it die */
1696 	if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) {
1697 		spin_unlock_irq(&current->sighand->siglock);
1698 		return -EPERM;
1699 	}
1700 
1701 	fpu = &current->group_leader->thread.fpu;
1702 	perm = guest_fpu ? &fpu->guest_perm : &fpu->perm;
1703 	ksize = perm->__state_size;
1704 	usize = perm->__user_state_size;
1705 
1706 	/*
1707 	 * The feature is permitted. State size is sufficient.  Dropping
1708 	 * the lock is safe here even if more features are added from
1709 	 * another task, the retrieved buffer sizes are valid for the
1710 	 * currently requested feature(s).
1711 	 */
1712 	spin_unlock_irq(&current->sighand->siglock);
1713 
1714 	/*
1715 	 * Try to allocate a new fpstate. If that fails there is no way
1716 	 * out.
1717 	 */
1718 	if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu))
1719 		return -EFAULT;
1720 	return 0;
1721 }
1722 
1723 int xfd_enable_feature(u64 xfd_err)
1724 {
1725 	return __xfd_enable_feature(xfd_err, NULL);
1726 }
1727 
1728 #else /* CONFIG_X86_64 */
1729 static inline int xstate_request_perm(unsigned long idx, bool guest)
1730 {
1731 	return -EPERM;
1732 }
1733 #endif  /* !CONFIG_X86_64 */
1734 
1735 u64 xstate_get_guest_group_perm(void)
1736 {
1737 	return xstate_get_group_perm(true);
1738 }
1739 EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm);
1740 
1741 /**
1742  * fpu_xstate_prctl - xstate permission operations
1743  * @tsk:	Redundant pointer to current
1744  * @option:	A subfunction of arch_prctl()
1745  * @arg2:	option argument
1746  * Return:	0 if successful; otherwise, an error code
1747  *
1748  * Option arguments:
1749  *
1750  * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info
1751  * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info
1752  * ARCH_REQ_XCOMP_PERM: Facility number requested
1753  *
1754  * For facilities which require more than one XSTATE component, the request
1755  * must be the highest state component number related to that facility,
1756  * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and
1757  * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18).
1758  */
1759 long fpu_xstate_prctl(int option, unsigned long arg2)
1760 {
1761 	u64 __user *uptr = (u64 __user *)arg2;
1762 	u64 permitted, supported;
1763 	unsigned long idx = arg2;
1764 	bool guest = false;
1765 
1766 	switch (option) {
1767 	case ARCH_GET_XCOMP_SUPP:
1768 		supported = fpu_user_cfg.max_features |	fpu_user_cfg.legacy_features;
1769 		return put_user(supported, uptr);
1770 
1771 	case ARCH_GET_XCOMP_PERM:
1772 		/*
1773 		 * Lockless snapshot as it can also change right after the
1774 		 * dropping the lock.
1775 		 */
1776 		permitted = xstate_get_host_group_perm();
1777 		permitted &= XFEATURE_MASK_USER_SUPPORTED;
1778 		return put_user(permitted, uptr);
1779 
1780 	case ARCH_GET_XCOMP_GUEST_PERM:
1781 		permitted = xstate_get_guest_group_perm();
1782 		permitted &= XFEATURE_MASK_USER_SUPPORTED;
1783 		return put_user(permitted, uptr);
1784 
1785 	case ARCH_REQ_XCOMP_GUEST_PERM:
1786 		guest = true;
1787 		fallthrough;
1788 
1789 	case ARCH_REQ_XCOMP_PERM:
1790 		if (!IS_ENABLED(CONFIG_X86_64))
1791 			return -EOPNOTSUPP;
1792 
1793 		return xstate_request_perm(idx, guest);
1794 
1795 	default:
1796 		return -EINVAL;
1797 	}
1798 }
1799 
1800 #ifdef CONFIG_PROC_PID_ARCH_STATUS
1801 /*
1802  * Report the amount of time elapsed in millisecond since last AVX512
1803  * use in the task.
1804  */
1805 static void avx512_status(struct seq_file *m, struct task_struct *task)
1806 {
1807 	unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
1808 	long delta;
1809 
1810 	if (!timestamp) {
1811 		/*
1812 		 * Report -1 if no AVX512 usage
1813 		 */
1814 		delta = -1;
1815 	} else {
1816 		delta = (long)(jiffies - timestamp);
1817 		/*
1818 		 * Cap to LONG_MAX if time difference > LONG_MAX
1819 		 */
1820 		if (delta < 0)
1821 			delta = LONG_MAX;
1822 		delta = jiffies_to_msecs(delta);
1823 	}
1824 
1825 	seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
1826 	seq_putc(m, '\n');
1827 }
1828 
1829 /*
1830  * Report architecture specific information
1831  */
1832 int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
1833 			struct pid *pid, struct task_struct *task)
1834 {
1835 	/*
1836 	 * Report AVX512 state if the processor and build option supported.
1837 	 */
1838 	if (cpu_feature_enabled(X86_FEATURE_AVX512F))
1839 		avx512_status(m, task);
1840 
1841 	return 0;
1842 }
1843 #endif /* CONFIG_PROC_PID_ARCH_STATUS */
1844