1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * FPU signal frame handling routines. 4 */ 5 6 #include <linux/compat.h> 7 #include <linux/cpu.h> 8 #include <linux/pagemap.h> 9 10 #include <asm/fpu/internal.h> 11 #include <asm/fpu/signal.h> 12 #include <asm/fpu/regset.h> 13 #include <asm/fpu/xstate.h> 14 15 #include <asm/sigframe.h> 16 #include <asm/trace/fpu.h> 17 18 static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32; 19 20 /* 21 * Check for the presence of extended state information in the 22 * user fpstate pointer in the sigcontext. 23 */ 24 static inline int check_for_xstate(struct fxregs_state __user *buf, 25 void __user *fpstate, 26 struct _fpx_sw_bytes *fx_sw) 27 { 28 int min_xstate_size = sizeof(struct fxregs_state) + 29 sizeof(struct xstate_header); 30 unsigned int magic2; 31 32 if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw))) 33 return -1; 34 35 /* Check for the first magic field and other error scenarios. */ 36 if (fx_sw->magic1 != FP_XSTATE_MAGIC1 || 37 fx_sw->xstate_size < min_xstate_size || 38 fx_sw->xstate_size > fpu_user_xstate_size || 39 fx_sw->xstate_size > fx_sw->extended_size) 40 return -1; 41 42 /* 43 * Check for the presence of second magic word at the end of memory 44 * layout. This detects the case where the user just copied the legacy 45 * fpstate layout with out copying the extended state information 46 * in the memory layout. 47 */ 48 if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size)) 49 || magic2 != FP_XSTATE_MAGIC2) 50 return -1; 51 52 return 0; 53 } 54 55 /* 56 * Signal frame handlers. 57 */ 58 static inline int save_fsave_header(struct task_struct *tsk, void __user *buf) 59 { 60 if (use_fxsr()) { 61 struct xregs_state *xsave = &tsk->thread.fpu.state.xsave; 62 struct user_i387_ia32_struct env; 63 struct _fpstate_32 __user *fp = buf; 64 65 fpregs_lock(); 66 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 67 copy_fxregs_to_kernel(&tsk->thread.fpu); 68 fpregs_unlock(); 69 70 convert_from_fxsr(&env, tsk); 71 72 if (__copy_to_user(buf, &env, sizeof(env)) || 73 __put_user(xsave->i387.swd, &fp->status) || 74 __put_user(X86_FXSR_MAGIC, &fp->magic)) 75 return -1; 76 } else { 77 struct fregs_state __user *fp = buf; 78 u32 swd; 79 if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status)) 80 return -1; 81 } 82 83 return 0; 84 } 85 86 static inline int save_xstate_epilog(void __user *buf, int ia32_frame) 87 { 88 struct xregs_state __user *x = buf; 89 struct _fpx_sw_bytes *sw_bytes; 90 u32 xfeatures; 91 int err; 92 93 /* Setup the bytes not touched by the [f]xsave and reserved for SW. */ 94 sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved; 95 err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes)); 96 97 if (!use_xsave()) 98 return err; 99 100 err |= __put_user(FP_XSTATE_MAGIC2, 101 (__u32 __user *)(buf + fpu_user_xstate_size)); 102 103 /* 104 * Read the xfeatures which we copied (directly from the cpu or 105 * from the state in task struct) to the user buffers. 106 */ 107 err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures); 108 109 /* 110 * For legacy compatible, we always set FP/SSE bits in the bit 111 * vector while saving the state to the user context. This will 112 * enable us capturing any changes(during sigreturn) to 113 * the FP/SSE bits by the legacy applications which don't touch 114 * xfeatures in the xsave header. 115 * 116 * xsave aware apps can change the xfeatures in the xsave 117 * header as well as change any contents in the memory layout. 118 * xrestore as part of sigreturn will capture all the changes. 119 */ 120 xfeatures |= XFEATURE_MASK_FPSSE; 121 122 err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures); 123 124 return err; 125 } 126 127 static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf) 128 { 129 int err; 130 131 if (use_xsave()) 132 err = copy_xregs_to_user(buf); 133 else if (use_fxsr()) 134 err = copy_fxregs_to_user((struct fxregs_state __user *) buf); 135 else 136 err = copy_fregs_to_user((struct fregs_state __user *) buf); 137 138 if (unlikely(err) && __clear_user(buf, fpu_user_xstate_size)) 139 err = -EFAULT; 140 return err; 141 } 142 143 /* 144 * Save the fpu, extended register state to the user signal frame. 145 * 146 * 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save 147 * state is copied. 148 * 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'. 149 * 150 * buf == buf_fx for 64-bit frames and 32-bit fsave frame. 151 * buf != buf_fx for 32-bit frames with fxstate. 152 * 153 * Try to save it directly to the user frame with disabled page fault handler. 154 * If this fails then do the slow path where the FPU state is first saved to 155 * task's fpu->state and then copy it to the user frame pointed to by the 156 * aligned pointer 'buf_fx'. 157 * 158 * If this is a 32-bit frame with fxstate, put a fsave header before 159 * the aligned state at 'buf_fx'. 160 * 161 * For [f]xsave state, update the SW reserved fields in the [f]xsave frame 162 * indicating the absence/presence of the extended state to the user. 163 */ 164 int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size) 165 { 166 struct task_struct *tsk = current; 167 int ia32_fxstate = (buf != buf_fx); 168 int ret; 169 170 ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) || 171 IS_ENABLED(CONFIG_IA32_EMULATION)); 172 173 if (!static_cpu_has(X86_FEATURE_FPU)) { 174 struct user_i387_ia32_struct fp; 175 fpregs_soft_get(current, NULL, (struct membuf){.p = &fp, 176 .left = sizeof(fp)}); 177 return copy_to_user(buf, &fp, sizeof(fp)) ? -EFAULT : 0; 178 } 179 180 if (!access_ok(buf, size)) 181 return -EACCES; 182 retry: 183 /* 184 * Load the FPU registers if they are not valid for the current task. 185 * With a valid FPU state we can attempt to save the state directly to 186 * userland's stack frame which will likely succeed. If it does not, 187 * resolve the fault in the user memory and try again. 188 */ 189 fpregs_lock(); 190 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 191 __fpregs_load_activate(); 192 193 pagefault_disable(); 194 ret = copy_fpregs_to_sigframe(buf_fx); 195 pagefault_enable(); 196 fpregs_unlock(); 197 198 if (ret) { 199 if (!fault_in_pages_writeable(buf_fx, fpu_user_xstate_size)) 200 goto retry; 201 return -EFAULT; 202 } 203 204 /* Save the fsave header for the 32-bit frames. */ 205 if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf)) 206 return -1; 207 208 if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate)) 209 return -1; 210 211 return 0; 212 } 213 214 static inline void 215 sanitize_restored_user_xstate(union fpregs_state *state, 216 struct user_i387_ia32_struct *ia32_env, 217 u64 user_xfeatures, int fx_only) 218 { 219 struct xregs_state *xsave = &state->xsave; 220 struct xstate_header *header = &xsave->header; 221 222 if (use_xsave()) { 223 /* 224 * Note: we don't need to zero the reserved bits in the 225 * xstate_header here because we either didn't copy them at all, 226 * or we checked earlier that they aren't set. 227 */ 228 229 /* 230 * 'user_xfeatures' might have bits clear which are 231 * set in header->xfeatures. This represents features that 232 * were in init state prior to a signal delivery, and need 233 * to be reset back to the init state. Clear any user 234 * feature bits which are set in the kernel buffer to get 235 * them back to the init state. 236 * 237 * Supervisor state is unchanged by input from userspace. 238 * Ensure supervisor state bits stay set and supervisor 239 * state is not modified. 240 */ 241 if (fx_only) 242 header->xfeatures = XFEATURE_MASK_FPSSE; 243 else 244 header->xfeatures &= user_xfeatures | 245 xfeatures_mask_supervisor(); 246 } 247 248 if (use_fxsr()) { 249 /* 250 * mscsr reserved bits must be masked to zero for security 251 * reasons. 252 */ 253 xsave->i387.mxcsr &= mxcsr_feature_mask; 254 255 if (ia32_env) 256 convert_to_fxsr(&state->fxsave, ia32_env); 257 } 258 } 259 260 /* 261 * Restore the extended state if present. Otherwise, restore the FP/SSE state. 262 */ 263 static int copy_user_to_fpregs_zeroing(void __user *buf, u64 xbv, int fx_only) 264 { 265 u64 init_bv; 266 int r; 267 268 if (use_xsave()) { 269 if (fx_only) { 270 init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE; 271 272 r = copy_user_to_fxregs(buf); 273 if (!r) 274 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 275 return r; 276 } else { 277 init_bv = xfeatures_mask_user() & ~xbv; 278 279 r = copy_user_to_xregs(buf, xbv); 280 if (!r && unlikely(init_bv)) 281 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 282 return r; 283 } 284 } else if (use_fxsr()) { 285 return copy_user_to_fxregs(buf); 286 } else 287 return copy_user_to_fregs(buf); 288 } 289 290 static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size) 291 { 292 struct user_i387_ia32_struct *envp = NULL; 293 int state_size = fpu_kernel_xstate_size; 294 int ia32_fxstate = (buf != buf_fx); 295 struct task_struct *tsk = current; 296 struct fpu *fpu = &tsk->thread.fpu; 297 struct user_i387_ia32_struct env; 298 u64 user_xfeatures = 0; 299 int fx_only = 0; 300 int ret = 0; 301 302 ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) || 303 IS_ENABLED(CONFIG_IA32_EMULATION)); 304 305 if (!buf) { 306 fpu__clear_user_states(fpu); 307 return 0; 308 } 309 310 if (!access_ok(buf, size)) { 311 ret = -EACCES; 312 goto out; 313 } 314 315 if (!static_cpu_has(X86_FEATURE_FPU)) { 316 ret = fpregs_soft_set(current, NULL, 0, 317 sizeof(struct user_i387_ia32_struct), 318 NULL, buf); 319 goto out; 320 } 321 322 if (use_xsave()) { 323 struct _fpx_sw_bytes fx_sw_user; 324 if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) { 325 /* 326 * Couldn't find the extended state information in the 327 * memory layout. Restore just the FP/SSE and init all 328 * the other extended state. 329 */ 330 state_size = sizeof(struct fxregs_state); 331 fx_only = 1; 332 trace_x86_fpu_xstate_check_failed(fpu); 333 } else { 334 state_size = fx_sw_user.xstate_size; 335 user_xfeatures = fx_sw_user.xfeatures; 336 } 337 } 338 339 if ((unsigned long)buf_fx % 64) 340 fx_only = 1; 341 342 if (!ia32_fxstate) { 343 /* 344 * Attempt to restore the FPU registers directly from user 345 * memory. For that to succeed, the user access cannot cause 346 * page faults. If it does, fall back to the slow path below, 347 * going through the kernel buffer with the enabled pagefault 348 * handler. 349 */ 350 fpregs_lock(); 351 pagefault_disable(); 352 ret = copy_user_to_fpregs_zeroing(buf_fx, user_xfeatures, fx_only); 353 pagefault_enable(); 354 if (!ret) { 355 356 /* 357 * Restore supervisor states: previous context switch 358 * etc has done XSAVES and saved the supervisor states 359 * in the kernel buffer from which they can be restored 360 * now. 361 * 362 * We cannot do a single XRSTORS here - which would 363 * be nice - because the rest of the FPU registers are 364 * being restored from a user buffer directly. The 365 * single XRSTORS happens below, when the user buffer 366 * has been copied to the kernel one. 367 */ 368 if (test_thread_flag(TIF_NEED_FPU_LOAD) && 369 xfeatures_mask_supervisor()) 370 copy_kernel_to_xregs(&fpu->state.xsave, 371 xfeatures_mask_supervisor()); 372 fpregs_mark_activate(); 373 fpregs_unlock(); 374 return 0; 375 } 376 377 /* 378 * The above did an FPU restore operation, restricted to 379 * the user portion of the registers, and failed, but the 380 * microcode might have modified the FPU registers 381 * nevertheless. 382 * 383 * If the FPU registers do not belong to current, then 384 * invalidate the FPU register state otherwise the task might 385 * preempt current and return to user space with corrupted 386 * FPU registers. 387 * 388 * In case current owns the FPU registers then no further 389 * action is required. The fixup below will handle it 390 * correctly. 391 */ 392 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 393 __cpu_invalidate_fpregs_state(); 394 395 fpregs_unlock(); 396 } else { 397 /* 398 * For 32-bit frames with fxstate, copy the fxstate so it can 399 * be reconstructed later. 400 */ 401 ret = __copy_from_user(&env, buf, sizeof(env)); 402 if (ret) 403 goto out; 404 envp = &env; 405 } 406 407 /* 408 * By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is 409 * not modified on context switch and that the xstate is considered 410 * to be loaded again on return to userland (overriding last_cpu avoids 411 * the optimisation). 412 */ 413 fpregs_lock(); 414 415 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { 416 417 /* 418 * Supervisor states are not modified by user space input. Save 419 * current supervisor states first and invalidate the FPU regs. 420 */ 421 if (xfeatures_mask_supervisor()) 422 copy_supervisor_to_kernel(&fpu->state.xsave); 423 set_thread_flag(TIF_NEED_FPU_LOAD); 424 } 425 __fpu_invalidate_fpregs_state(fpu); 426 fpregs_unlock(); 427 428 if (use_xsave() && !fx_only) { 429 u64 init_bv = xfeatures_mask_user() & ~user_xfeatures; 430 431 ret = copy_user_to_xstate(&fpu->state.xsave, buf_fx); 432 if (ret) 433 goto out; 434 435 sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures, 436 fx_only); 437 438 fpregs_lock(); 439 if (unlikely(init_bv)) 440 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 441 442 /* 443 * Restore previously saved supervisor xstates along with 444 * copied-in user xstates. 445 */ 446 ret = copy_kernel_to_xregs_err(&fpu->state.xsave, 447 user_xfeatures | xfeatures_mask_supervisor()); 448 449 } else if (use_fxsr()) { 450 ret = __copy_from_user(&fpu->state.fxsave, buf_fx, state_size); 451 if (ret) { 452 ret = -EFAULT; 453 goto out; 454 } 455 456 sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures, 457 fx_only); 458 459 fpregs_lock(); 460 if (use_xsave()) { 461 u64 init_bv; 462 463 init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE; 464 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 465 } 466 467 ret = copy_kernel_to_fxregs_err(&fpu->state.fxsave); 468 } else { 469 ret = __copy_from_user(&fpu->state.fsave, buf_fx, state_size); 470 if (ret) 471 goto out; 472 473 fpregs_lock(); 474 ret = copy_kernel_to_fregs_err(&fpu->state.fsave); 475 } 476 if (!ret) 477 fpregs_mark_activate(); 478 else 479 fpregs_deactivate(fpu); 480 fpregs_unlock(); 481 482 out: 483 if (ret) 484 fpu__clear_user_states(fpu); 485 return ret; 486 } 487 488 static inline int xstate_sigframe_size(void) 489 { 490 return use_xsave() ? fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE : 491 fpu_user_xstate_size; 492 } 493 494 /* 495 * Restore FPU state from a sigframe: 496 */ 497 int fpu__restore_sig(void __user *buf, int ia32_frame) 498 { 499 void __user *buf_fx = buf; 500 int size = xstate_sigframe_size(); 501 502 if (ia32_frame && use_fxsr()) { 503 buf_fx = buf + sizeof(struct fregs_state); 504 size += sizeof(struct fregs_state); 505 } 506 507 return __fpu__restore_sig(buf, buf_fx, size); 508 } 509 510 unsigned long 511 fpu__alloc_mathframe(unsigned long sp, int ia32_frame, 512 unsigned long *buf_fx, unsigned long *size) 513 { 514 unsigned long frame_size = xstate_sigframe_size(); 515 516 *buf_fx = sp = round_down(sp - frame_size, 64); 517 if (ia32_frame && use_fxsr()) { 518 frame_size += sizeof(struct fregs_state); 519 sp -= sizeof(struct fregs_state); 520 } 521 522 *size = frame_size; 523 524 return sp; 525 } 526 /* 527 * Prepare the SW reserved portion of the fxsave memory layout, indicating 528 * the presence of the extended state information in the memory layout 529 * pointed by the fpstate pointer in the sigcontext. 530 * This will be saved when ever the FP and extended state context is 531 * saved on the user stack during the signal handler delivery to the user. 532 */ 533 void fpu__init_prepare_fx_sw_frame(void) 534 { 535 int size = fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE; 536 537 fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1; 538 fx_sw_reserved.extended_size = size; 539 fx_sw_reserved.xfeatures = xfeatures_mask_user(); 540 fx_sw_reserved.xstate_size = fpu_user_xstate_size; 541 542 if (IS_ENABLED(CONFIG_IA32_EMULATION) || 543 IS_ENABLED(CONFIG_X86_32)) { 544 int fsave_header_size = sizeof(struct fregs_state); 545 546 fx_sw_reserved_ia32 = fx_sw_reserved; 547 fx_sw_reserved_ia32.extended_size = size + fsave_header_size; 548 } 549 } 550 551