1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * FPU signal frame handling routines. 4 */ 5 6 #include <linux/compat.h> 7 #include <linux/cpu.h> 8 #include <linux/pagemap.h> 9 10 #include <asm/fpu/internal.h> 11 #include <asm/fpu/signal.h> 12 #include <asm/fpu/regset.h> 13 #include <asm/fpu/xstate.h> 14 15 #include <asm/sigframe.h> 16 #include <asm/trace/fpu.h> 17 18 static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32; 19 20 /* 21 * Check for the presence of extended state information in the 22 * user fpstate pointer in the sigcontext. 23 */ 24 static inline int check_for_xstate(struct fxregs_state __user *buf, 25 void __user *fpstate, 26 struct _fpx_sw_bytes *fx_sw) 27 { 28 int min_xstate_size = sizeof(struct fxregs_state) + 29 sizeof(struct xstate_header); 30 unsigned int magic2; 31 32 if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw))) 33 return -1; 34 35 /* Check for the first magic field and other error scenarios. */ 36 if (fx_sw->magic1 != FP_XSTATE_MAGIC1 || 37 fx_sw->xstate_size < min_xstate_size || 38 fx_sw->xstate_size > fpu_user_xstate_size || 39 fx_sw->xstate_size > fx_sw->extended_size) 40 return -1; 41 42 /* 43 * Check for the presence of second magic word at the end of memory 44 * layout. This detects the case where the user just copied the legacy 45 * fpstate layout with out copying the extended state information 46 * in the memory layout. 47 */ 48 if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size)) 49 || magic2 != FP_XSTATE_MAGIC2) 50 return -1; 51 52 return 0; 53 } 54 55 /* 56 * Signal frame handlers. 57 */ 58 static inline int save_fsave_header(struct task_struct *tsk, void __user *buf) 59 { 60 if (use_fxsr()) { 61 struct xregs_state *xsave = &tsk->thread.fpu.state.xsave; 62 struct user_i387_ia32_struct env; 63 struct _fpstate_32 __user *fp = buf; 64 65 fpregs_lock(); 66 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 67 copy_fxregs_to_kernel(&tsk->thread.fpu); 68 fpregs_unlock(); 69 70 convert_from_fxsr(&env, tsk); 71 72 if (__copy_to_user(buf, &env, sizeof(env)) || 73 __put_user(xsave->i387.swd, &fp->status) || 74 __put_user(X86_FXSR_MAGIC, &fp->magic)) 75 return -1; 76 } else { 77 struct fregs_state __user *fp = buf; 78 u32 swd; 79 if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status)) 80 return -1; 81 } 82 83 return 0; 84 } 85 86 static inline int save_xstate_epilog(void __user *buf, int ia32_frame) 87 { 88 struct xregs_state __user *x = buf; 89 struct _fpx_sw_bytes *sw_bytes; 90 u32 xfeatures; 91 int err; 92 93 /* Setup the bytes not touched by the [f]xsave and reserved for SW. */ 94 sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved; 95 err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes)); 96 97 if (!use_xsave()) 98 return err; 99 100 err |= __put_user(FP_XSTATE_MAGIC2, 101 (__u32 __user *)(buf + fpu_user_xstate_size)); 102 103 /* 104 * Read the xfeatures which we copied (directly from the cpu or 105 * from the state in task struct) to the user buffers. 106 */ 107 err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures); 108 109 /* 110 * For legacy compatible, we always set FP/SSE bits in the bit 111 * vector while saving the state to the user context. This will 112 * enable us capturing any changes(during sigreturn) to 113 * the FP/SSE bits by the legacy applications which don't touch 114 * xfeatures in the xsave header. 115 * 116 * xsave aware apps can change the xfeatures in the xsave 117 * header as well as change any contents in the memory layout. 118 * xrestore as part of sigreturn will capture all the changes. 119 */ 120 xfeatures |= XFEATURE_MASK_FPSSE; 121 122 err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures); 123 124 return err; 125 } 126 127 static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf) 128 { 129 int err; 130 131 if (use_xsave()) 132 err = copy_xregs_to_user(buf); 133 else if (use_fxsr()) 134 err = copy_fxregs_to_user((struct fxregs_state __user *) buf); 135 else 136 err = copy_fregs_to_user((struct fregs_state __user *) buf); 137 138 if (unlikely(err) && __clear_user(buf, fpu_user_xstate_size)) 139 err = -EFAULT; 140 return err; 141 } 142 143 /* 144 * Save the fpu, extended register state to the user signal frame. 145 * 146 * 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save 147 * state is copied. 148 * 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'. 149 * 150 * buf == buf_fx for 64-bit frames and 32-bit fsave frame. 151 * buf != buf_fx for 32-bit frames with fxstate. 152 * 153 * Try to save it directly to the user frame with disabled page fault handler. 154 * If this fails then do the slow path where the FPU state is first saved to 155 * task's fpu->state and then copy it to the user frame pointed to by the 156 * aligned pointer 'buf_fx'. 157 * 158 * If this is a 32-bit frame with fxstate, put a fsave header before 159 * the aligned state at 'buf_fx'. 160 * 161 * For [f]xsave state, update the SW reserved fields in the [f]xsave frame 162 * indicating the absence/presence of the extended state to the user. 163 */ 164 int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size) 165 { 166 struct task_struct *tsk = current; 167 int ia32_fxstate = (buf != buf_fx); 168 int ret; 169 170 ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) || 171 IS_ENABLED(CONFIG_IA32_EMULATION)); 172 173 if (!access_ok(buf, size)) 174 return -EACCES; 175 176 if (!static_cpu_has(X86_FEATURE_FPU)) 177 return fpregs_soft_get(current, NULL, 0, 178 sizeof(struct user_i387_ia32_struct), NULL, 179 (struct _fpstate_32 __user *) buf) ? -1 : 1; 180 181 retry: 182 /* 183 * Load the FPU registers if they are not valid for the current task. 184 * With a valid FPU state we can attempt to save the state directly to 185 * userland's stack frame which will likely succeed. If it does not, 186 * resolve the fault in the user memory and try again. 187 */ 188 fpregs_lock(); 189 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 190 __fpregs_load_activate(); 191 192 pagefault_disable(); 193 ret = copy_fpregs_to_sigframe(buf_fx); 194 pagefault_enable(); 195 fpregs_unlock(); 196 197 if (ret) { 198 if (!fault_in_pages_writeable(buf_fx, fpu_user_xstate_size)) 199 goto retry; 200 return -EFAULT; 201 } 202 203 /* Save the fsave header for the 32-bit frames. */ 204 if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf)) 205 return -1; 206 207 if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate)) 208 return -1; 209 210 return 0; 211 } 212 213 static inline void 214 sanitize_restored_user_xstate(union fpregs_state *state, 215 struct user_i387_ia32_struct *ia32_env, 216 u64 user_xfeatures, int fx_only) 217 { 218 struct xregs_state *xsave = &state->xsave; 219 struct xstate_header *header = &xsave->header; 220 221 if (use_xsave()) { 222 /* 223 * Note: we don't need to zero the reserved bits in the 224 * xstate_header here because we either didn't copy them at all, 225 * or we checked earlier that they aren't set. 226 */ 227 228 /* 229 * 'user_xfeatures' might have bits clear which are 230 * set in header->xfeatures. This represents features that 231 * were in init state prior to a signal delivery, and need 232 * to be reset back to the init state. Clear any user 233 * feature bits which are set in the kernel buffer to get 234 * them back to the init state. 235 * 236 * Supervisor state is unchanged by input from userspace. 237 * Ensure supervisor state bits stay set and supervisor 238 * state is not modified. 239 */ 240 if (fx_only) 241 header->xfeatures = XFEATURE_MASK_FPSSE; 242 else 243 header->xfeatures &= user_xfeatures | 244 xfeatures_mask_supervisor(); 245 } 246 247 if (use_fxsr()) { 248 /* 249 * mscsr reserved bits must be masked to zero for security 250 * reasons. 251 */ 252 xsave->i387.mxcsr &= mxcsr_feature_mask; 253 254 if (ia32_env) 255 convert_to_fxsr(&state->fxsave, ia32_env); 256 } 257 } 258 259 /* 260 * Restore the extended state if present. Otherwise, restore the FP/SSE state. 261 */ 262 static int copy_user_to_fpregs_zeroing(void __user *buf, u64 xbv, int fx_only) 263 { 264 u64 init_bv; 265 int r; 266 267 if (use_xsave()) { 268 if (fx_only) { 269 init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE; 270 271 r = copy_user_to_fxregs(buf); 272 if (!r) 273 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 274 return r; 275 } else { 276 init_bv = xfeatures_mask_user() & ~xbv; 277 278 r = copy_user_to_xregs(buf, xbv); 279 if (!r && unlikely(init_bv)) 280 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 281 return r; 282 } 283 } else if (use_fxsr()) { 284 return copy_user_to_fxregs(buf); 285 } else 286 return copy_user_to_fregs(buf); 287 } 288 289 static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size) 290 { 291 struct user_i387_ia32_struct *envp = NULL; 292 int state_size = fpu_kernel_xstate_size; 293 int ia32_fxstate = (buf != buf_fx); 294 struct task_struct *tsk = current; 295 struct fpu *fpu = &tsk->thread.fpu; 296 struct user_i387_ia32_struct env; 297 u64 user_xfeatures = 0; 298 int fx_only = 0; 299 int ret = 0; 300 301 ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) || 302 IS_ENABLED(CONFIG_IA32_EMULATION)); 303 304 if (!buf) { 305 fpu__clear_user_states(fpu); 306 return 0; 307 } 308 309 if (!access_ok(buf, size)) 310 return -EACCES; 311 312 if (!static_cpu_has(X86_FEATURE_FPU)) 313 return fpregs_soft_set(current, NULL, 314 0, sizeof(struct user_i387_ia32_struct), 315 NULL, buf) != 0; 316 317 if (use_xsave()) { 318 struct _fpx_sw_bytes fx_sw_user; 319 if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) { 320 /* 321 * Couldn't find the extended state information in the 322 * memory layout. Restore just the FP/SSE and init all 323 * the other extended state. 324 */ 325 state_size = sizeof(struct fxregs_state); 326 fx_only = 1; 327 trace_x86_fpu_xstate_check_failed(fpu); 328 } else { 329 state_size = fx_sw_user.xstate_size; 330 user_xfeatures = fx_sw_user.xfeatures; 331 } 332 } 333 334 if ((unsigned long)buf_fx % 64) 335 fx_only = 1; 336 337 if (!ia32_fxstate) { 338 /* 339 * Attempt to restore the FPU registers directly from user 340 * memory. For that to succeed, the user access cannot cause 341 * page faults. If it does, fall back to the slow path below, 342 * going through the kernel buffer with the enabled pagefault 343 * handler. 344 */ 345 fpregs_lock(); 346 pagefault_disable(); 347 ret = copy_user_to_fpregs_zeroing(buf_fx, user_xfeatures, fx_only); 348 pagefault_enable(); 349 if (!ret) { 350 351 /* 352 * Restore supervisor states: previous context switch 353 * etc has done XSAVES and saved the supervisor states 354 * in the kernel buffer from which they can be restored 355 * now. 356 * 357 * We cannot do a single XRSTORS here - which would 358 * be nice - because the rest of the FPU registers are 359 * being restored from a user buffer directly. The 360 * single XRSTORS happens below, when the user buffer 361 * has been copied to the kernel one. 362 */ 363 if (test_thread_flag(TIF_NEED_FPU_LOAD) && 364 xfeatures_mask_supervisor()) 365 copy_kernel_to_xregs(&fpu->state.xsave, 366 xfeatures_mask_supervisor()); 367 fpregs_mark_activate(); 368 fpregs_unlock(); 369 return 0; 370 } 371 fpregs_unlock(); 372 } else { 373 /* 374 * For 32-bit frames with fxstate, copy the fxstate so it can 375 * be reconstructed later. 376 */ 377 ret = __copy_from_user(&env, buf, sizeof(env)); 378 if (ret) 379 goto err_out; 380 envp = &env; 381 } 382 383 /* 384 * By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is 385 * not modified on context switch and that the xstate is considered 386 * to be loaded again on return to userland (overriding last_cpu avoids 387 * the optimisation). 388 */ 389 fpregs_lock(); 390 391 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { 392 393 /* 394 * Supervisor states are not modified by user space input. Save 395 * current supervisor states first and invalidate the FPU regs. 396 */ 397 if (xfeatures_mask_supervisor()) 398 copy_supervisor_to_kernel(&fpu->state.xsave); 399 set_thread_flag(TIF_NEED_FPU_LOAD); 400 } 401 __fpu_invalidate_fpregs_state(fpu); 402 fpregs_unlock(); 403 404 if (use_xsave() && !fx_only) { 405 u64 init_bv = xfeatures_mask_user() & ~user_xfeatures; 406 407 if (using_compacted_format()) { 408 ret = copy_user_to_xstate(&fpu->state.xsave, buf_fx); 409 } else { 410 ret = __copy_from_user(&fpu->state.xsave, buf_fx, state_size); 411 412 if (!ret && state_size > offsetof(struct xregs_state, header)) 413 ret = validate_user_xstate_header(&fpu->state.xsave.header); 414 } 415 if (ret) 416 goto err_out; 417 418 sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures, 419 fx_only); 420 421 fpregs_lock(); 422 if (unlikely(init_bv)) 423 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 424 425 /* 426 * Restore previously saved supervisor xstates along with 427 * copied-in user xstates. 428 */ 429 ret = copy_kernel_to_xregs_err(&fpu->state.xsave, 430 user_xfeatures | xfeatures_mask_supervisor()); 431 432 } else if (use_fxsr()) { 433 ret = __copy_from_user(&fpu->state.fxsave, buf_fx, state_size); 434 if (ret) { 435 ret = -EFAULT; 436 goto err_out; 437 } 438 439 sanitize_restored_user_xstate(&fpu->state, envp, user_xfeatures, 440 fx_only); 441 442 fpregs_lock(); 443 if (use_xsave()) { 444 u64 init_bv; 445 446 init_bv = xfeatures_mask_user() & ~XFEATURE_MASK_FPSSE; 447 copy_kernel_to_xregs(&init_fpstate.xsave, init_bv); 448 } 449 450 ret = copy_kernel_to_fxregs_err(&fpu->state.fxsave); 451 } else { 452 ret = __copy_from_user(&fpu->state.fsave, buf_fx, state_size); 453 if (ret) 454 goto err_out; 455 456 fpregs_lock(); 457 ret = copy_kernel_to_fregs_err(&fpu->state.fsave); 458 } 459 if (!ret) 460 fpregs_mark_activate(); 461 else 462 fpregs_deactivate(fpu); 463 fpregs_unlock(); 464 465 err_out: 466 if (ret) 467 fpu__clear_user_states(fpu); 468 return ret; 469 } 470 471 static inline int xstate_sigframe_size(void) 472 { 473 return use_xsave() ? fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE : 474 fpu_user_xstate_size; 475 } 476 477 /* 478 * Restore FPU state from a sigframe: 479 */ 480 int fpu__restore_sig(void __user *buf, int ia32_frame) 481 { 482 void __user *buf_fx = buf; 483 int size = xstate_sigframe_size(); 484 485 if (ia32_frame && use_fxsr()) { 486 buf_fx = buf + sizeof(struct fregs_state); 487 size += sizeof(struct fregs_state); 488 } 489 490 return __fpu__restore_sig(buf, buf_fx, size); 491 } 492 493 unsigned long 494 fpu__alloc_mathframe(unsigned long sp, int ia32_frame, 495 unsigned long *buf_fx, unsigned long *size) 496 { 497 unsigned long frame_size = xstate_sigframe_size(); 498 499 *buf_fx = sp = round_down(sp - frame_size, 64); 500 if (ia32_frame && use_fxsr()) { 501 frame_size += sizeof(struct fregs_state); 502 sp -= sizeof(struct fregs_state); 503 } 504 505 *size = frame_size; 506 507 return sp; 508 } 509 /* 510 * Prepare the SW reserved portion of the fxsave memory layout, indicating 511 * the presence of the extended state information in the memory layout 512 * pointed by the fpstate pointer in the sigcontext. 513 * This will be saved when ever the FP and extended state context is 514 * saved on the user stack during the signal handler delivery to the user. 515 */ 516 void fpu__init_prepare_fx_sw_frame(void) 517 { 518 int size = fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE; 519 520 fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1; 521 fx_sw_reserved.extended_size = size; 522 fx_sw_reserved.xfeatures = xfeatures_mask_user(); 523 fx_sw_reserved.xstate_size = fpu_user_xstate_size; 524 525 if (IS_ENABLED(CONFIG_IA32_EMULATION) || 526 IS_ENABLED(CONFIG_X86_32)) { 527 int fsave_header_size = sizeof(struct fregs_state); 528 529 fx_sw_reserved_ia32 = fx_sw_reserved; 530 fx_sw_reserved_ia32.extended_size = size + fsave_header_size; 531 } 532 } 533 534