xref: /openbmc/linux/arch/x86/kernel/fpu/regset.c (revision 43be46e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FPU register's regset abstraction, for ptrace, core dumps, etc.
4  */
5 #include <linux/sched/task_stack.h>
6 #include <linux/vmalloc.h>
7 
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/signal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/xstate.h>
12 
13 /*
14  * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
15  * as the "regset->n" for the xstate regset will be updated based on the feature
16  * capabilities supported by the xsave.
17  */
18 int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
19 {
20 	return regset->n;
21 }
22 
23 int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
24 {
25 	if (boot_cpu_has(X86_FEATURE_FXSR))
26 		return regset->n;
27 	else
28 		return 0;
29 }
30 
31 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
32 		struct membuf to)
33 {
34 	struct fpu *fpu = &target->thread.fpu;
35 
36 	if (!boot_cpu_has(X86_FEATURE_FXSR))
37 		return -ENODEV;
38 
39 	fpu__prepare_read(fpu);
40 	fpstate_sanitize_xstate(fpu);
41 
42 	return membuf_write(&to, &fpu->state.fxsave, sizeof(struct fxregs_state));
43 }
44 
45 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
46 		unsigned int pos, unsigned int count,
47 		const void *kbuf, const void __user *ubuf)
48 {
49 	struct fpu *fpu = &target->thread.fpu;
50 	int ret;
51 
52 	if (!boot_cpu_has(X86_FEATURE_FXSR))
53 		return -ENODEV;
54 
55 	fpu__prepare_write(fpu);
56 	fpstate_sanitize_xstate(fpu);
57 
58 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
59 				 &fpu->state.fxsave, 0, -1);
60 
61 	/*
62 	 * mxcsr reserved bits must be masked to zero for security reasons.
63 	 */
64 	fpu->state.fxsave.mxcsr &= mxcsr_feature_mask;
65 
66 	/*
67 	 * update the header bits in the xsave header, indicating the
68 	 * presence of FP and SSE state.
69 	 */
70 	if (boot_cpu_has(X86_FEATURE_XSAVE))
71 		fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
72 
73 	return ret;
74 }
75 
76 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
77 		struct membuf to)
78 {
79 	struct fpu *fpu = &target->thread.fpu;
80 	struct xregs_state *xsave;
81 
82 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
83 		return -ENODEV;
84 
85 	xsave = &fpu->state.xsave;
86 
87 	fpu__prepare_read(fpu);
88 
89 	if (using_compacted_format()) {
90 		copy_xstate_to_kernel(to, xsave);
91 		return 0;
92 	} else {
93 		fpstate_sanitize_xstate(fpu);
94 		/*
95 		 * Copy the 48 bytes defined by the software into the xsave
96 		 * area in the thread struct, so that we can copy the whole
97 		 * area to user using one user_regset_copyout().
98 		 */
99 		memcpy(&xsave->i387.sw_reserved, xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
100 
101 		/*
102 		 * Copy the xstate memory layout.
103 		 */
104 		return membuf_write(&to, xsave, fpu_user_xstate_size);
105 	}
106 }
107 
108 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
109 		  unsigned int pos, unsigned int count,
110 		  const void *kbuf, const void __user *ubuf)
111 {
112 	struct fpu *fpu = &target->thread.fpu;
113 	struct xregs_state *tmpbuf = NULL;
114 	int ret;
115 
116 	if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
117 		return -ENODEV;
118 
119 	/*
120 	 * A whole standard-format XSAVE buffer is needed:
121 	 */
122 	if (pos != 0 || count != fpu_user_xstate_size)
123 		return -EFAULT;
124 
125 	if (!kbuf) {
126 		tmpbuf = vmalloc(count);
127 		if (!tmpbuf)
128 			return -ENOMEM;
129 
130 		if (copy_from_user(tmpbuf, ubuf, count)) {
131 			ret = -EFAULT;
132 			goto out;
133 		}
134 	}
135 
136 	fpu__prepare_write(fpu);
137 	ret = copy_kernel_to_xstate(&fpu->state.xsave, kbuf ?: tmpbuf);
138 
139 out:
140 	vfree(tmpbuf);
141 	return ret;
142 }
143 
144 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
145 
146 /*
147  * FPU tag word conversions.
148  */
149 
150 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
151 {
152 	unsigned int tmp; /* to avoid 16 bit prefixes in the code */
153 
154 	/* Transform each pair of bits into 01 (valid) or 00 (empty) */
155 	tmp = ~twd;
156 	tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
157 	/* and move the valid bits to the lower byte. */
158 	tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
159 	tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
160 	tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
161 
162 	return tmp;
163 }
164 
165 #define FPREG_ADDR(f, n)	((void *)&(f)->st_space + (n) * 16)
166 #define FP_EXP_TAG_VALID	0
167 #define FP_EXP_TAG_ZERO		1
168 #define FP_EXP_TAG_SPECIAL	2
169 #define FP_EXP_TAG_EMPTY	3
170 
171 static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
172 {
173 	struct _fpxreg *st;
174 	u32 tos = (fxsave->swd >> 11) & 7;
175 	u32 twd = (unsigned long) fxsave->twd;
176 	u32 tag;
177 	u32 ret = 0xffff0000u;
178 	int i;
179 
180 	for (i = 0; i < 8; i++, twd >>= 1) {
181 		if (twd & 0x1) {
182 			st = FPREG_ADDR(fxsave, (i - tos) & 7);
183 
184 			switch (st->exponent & 0x7fff) {
185 			case 0x7fff:
186 				tag = FP_EXP_TAG_SPECIAL;
187 				break;
188 			case 0x0000:
189 				if (!st->significand[0] &&
190 				    !st->significand[1] &&
191 				    !st->significand[2] &&
192 				    !st->significand[3])
193 					tag = FP_EXP_TAG_ZERO;
194 				else
195 					tag = FP_EXP_TAG_SPECIAL;
196 				break;
197 			default:
198 				if (st->significand[3] & 0x8000)
199 					tag = FP_EXP_TAG_VALID;
200 				else
201 					tag = FP_EXP_TAG_SPECIAL;
202 				break;
203 			}
204 		} else {
205 			tag = FP_EXP_TAG_EMPTY;
206 		}
207 		ret |= tag << (2 * i);
208 	}
209 	return ret;
210 }
211 
212 /*
213  * FXSR floating point environment conversions.
214  */
215 
216 void
217 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
218 {
219 	struct fxregs_state *fxsave = &tsk->thread.fpu.state.fxsave;
220 	struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
221 	struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
222 	int i;
223 
224 	env->cwd = fxsave->cwd | 0xffff0000u;
225 	env->swd = fxsave->swd | 0xffff0000u;
226 	env->twd = twd_fxsr_to_i387(fxsave);
227 
228 #ifdef CONFIG_X86_64
229 	env->fip = fxsave->rip;
230 	env->foo = fxsave->rdp;
231 	/*
232 	 * should be actually ds/cs at fpu exception time, but
233 	 * that information is not available in 64bit mode.
234 	 */
235 	env->fcs = task_pt_regs(tsk)->cs;
236 	if (tsk == current) {
237 		savesegment(ds, env->fos);
238 	} else {
239 		env->fos = tsk->thread.ds;
240 	}
241 	env->fos |= 0xffff0000;
242 #else
243 	env->fip = fxsave->fip;
244 	env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
245 	env->foo = fxsave->foo;
246 	env->fos = fxsave->fos;
247 #endif
248 
249 	for (i = 0; i < 8; ++i)
250 		memcpy(&to[i], &from[i], sizeof(to[0]));
251 }
252 
253 void convert_to_fxsr(struct fxregs_state *fxsave,
254 		     const struct user_i387_ia32_struct *env)
255 
256 {
257 	struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
258 	struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
259 	int i;
260 
261 	fxsave->cwd = env->cwd;
262 	fxsave->swd = env->swd;
263 	fxsave->twd = twd_i387_to_fxsr(env->twd);
264 	fxsave->fop = (u16) ((u32) env->fcs >> 16);
265 #ifdef CONFIG_X86_64
266 	fxsave->rip = env->fip;
267 	fxsave->rdp = env->foo;
268 	/* cs and ds ignored */
269 #else
270 	fxsave->fip = env->fip;
271 	fxsave->fcs = (env->fcs & 0xffff);
272 	fxsave->foo = env->foo;
273 	fxsave->fos = env->fos;
274 #endif
275 
276 	for (i = 0; i < 8; ++i)
277 		memcpy(&to[i], &from[i], sizeof(from[0]));
278 }
279 
280 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
281 	       struct membuf to)
282 {
283 	struct fpu *fpu = &target->thread.fpu;
284 	struct user_i387_ia32_struct env;
285 
286 	fpu__prepare_read(fpu);
287 
288 	if (!boot_cpu_has(X86_FEATURE_FPU))
289 		return fpregs_soft_get(target, regset, to);
290 
291 	if (!boot_cpu_has(X86_FEATURE_FXSR)) {
292 		return membuf_write(&to, &fpu->state.fsave,
293 				    sizeof(struct fregs_state));
294 	}
295 
296 	fpstate_sanitize_xstate(fpu);
297 
298 	if (to.left == sizeof(env)) {
299 		convert_from_fxsr(to.p, target);
300 		return 0;
301 	}
302 
303 	convert_from_fxsr(&env, target);
304 	return membuf_write(&to, &env, sizeof(env));
305 }
306 
307 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
308 	       unsigned int pos, unsigned int count,
309 	       const void *kbuf, const void __user *ubuf)
310 {
311 	struct fpu *fpu = &target->thread.fpu;
312 	struct user_i387_ia32_struct env;
313 	int ret;
314 
315 	fpu__prepare_write(fpu);
316 	fpstate_sanitize_xstate(fpu);
317 
318 	if (!boot_cpu_has(X86_FEATURE_FPU))
319 		return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
320 
321 	if (!boot_cpu_has(X86_FEATURE_FXSR))
322 		return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
323 					  &fpu->state.fsave, 0,
324 					  -1);
325 
326 	if (pos > 0 || count < sizeof(env))
327 		convert_from_fxsr(&env, target);
328 
329 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
330 	if (!ret)
331 		convert_to_fxsr(&target->thread.fpu.state.fxsave, &env);
332 
333 	/*
334 	 * update the header bit in the xsave header, indicating the
335 	 * presence of FP.
336 	 */
337 	if (boot_cpu_has(X86_FEATURE_XSAVE))
338 		fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
339 	return ret;
340 }
341 
342 #endif	/* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
343