xref: /openbmc/linux/arch/x86/kernel/fpu/init.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * x86 FPU boot time init code:
3  */
4 #include <asm/fpu/internal.h>
5 #include <asm/tlbflush.h>
6 
7 #include <linux/sched.h>
8 
9 /*
10  * Initialize the TS bit in CR0 according to the style of context-switches
11  * we are using:
12  */
13 static void fpu__init_cpu_ctx_switch(void)
14 {
15 	if (!cpu_has_eager_fpu)
16 		stts();
17 	else
18 		clts();
19 }
20 
21 /*
22  * Initialize the registers found in all CPUs, CR0 and CR4:
23  */
24 static void fpu__init_cpu_generic(void)
25 {
26 	unsigned long cr0;
27 	unsigned long cr4_mask = 0;
28 
29 	if (cpu_has_fxsr)
30 		cr4_mask |= X86_CR4_OSFXSR;
31 	if (cpu_has_xmm)
32 		cr4_mask |= X86_CR4_OSXMMEXCPT;
33 	if (cr4_mask)
34 		cr4_set_bits(cr4_mask);
35 
36 	cr0 = read_cr0();
37 	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
38 	if (!cpu_has_fpu)
39 		cr0 |= X86_CR0_EM;
40 	write_cr0(cr0);
41 
42 	/* Flush out any pending x87 state: */
43 #ifdef CONFIG_MATH_EMULATION
44 	if (!cpu_has_fpu)
45 		fpstate_init_soft(&current->thread.fpu.state.soft);
46 	else
47 #endif
48 		asm volatile ("fninit");
49 }
50 
51 /*
52  * Enable all supported FPU features. Called when a CPU is brought online:
53  */
54 void fpu__init_cpu(void)
55 {
56 	fpu__init_cpu_generic();
57 	fpu__init_cpu_xstate();
58 	fpu__init_cpu_ctx_switch();
59 }
60 
61 /*
62  * The earliest FPU detection code.
63  *
64  * Set the X86_FEATURE_FPU CPU-capability bit based on
65  * trying to execute an actual sequence of FPU instructions:
66  */
67 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
68 {
69 	unsigned long cr0;
70 	u16 fsw, fcw;
71 
72 	fsw = fcw = 0xffff;
73 
74 	cr0 = read_cr0();
75 	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
76 	write_cr0(cr0);
77 
78 	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
79 		     : "+m" (fsw), "+m" (fcw));
80 
81 	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
82 		set_cpu_cap(c, X86_FEATURE_FPU);
83 	else
84 		clear_cpu_cap(c, X86_FEATURE_FPU);
85 
86 #ifndef CONFIG_MATH_EMULATION
87 	if (!cpu_has_fpu) {
88 		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
89 		for (;;)
90 			asm volatile("hlt");
91 	}
92 #endif
93 }
94 
95 /*
96  * Boot time FPU feature detection code:
97  */
98 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
99 
100 static void __init fpu__init_system_mxcsr(void)
101 {
102 	unsigned int mask = 0;
103 
104 	if (cpu_has_fxsr) {
105 		/* Static because GCC does not get 16-byte stack alignment right: */
106 		static struct fxregs_state fxregs __initdata;
107 
108 		asm volatile("fxsave %0" : "+m" (fxregs));
109 
110 		mask = fxregs.mxcsr_mask;
111 
112 		/*
113 		 * If zero then use the default features mask,
114 		 * which has all features set, except the
115 		 * denormals-are-zero feature bit:
116 		 */
117 		if (mask == 0)
118 			mask = 0x0000ffbf;
119 	}
120 	mxcsr_feature_mask &= mask;
121 }
122 
123 /*
124  * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
125  */
126 static void __init fpu__init_system_generic(void)
127 {
128 	/*
129 	 * Set up the legacy init FPU context. (xstate init might overwrite this
130 	 * with a more modern format, if the CPU supports it.)
131 	 */
132 	fpstate_init_fxstate(&init_fpstate.fxsave);
133 
134 	fpu__init_system_mxcsr();
135 }
136 
137 /*
138  * Size of the FPU context state. All tasks in the system use the
139  * same context size, regardless of what portion they use.
140  * This is inherent to the XSAVE architecture which puts all state
141  * components into a single, continuous memory block:
142  */
143 unsigned int xstate_size;
144 EXPORT_SYMBOL_GPL(xstate_size);
145 
146 /* Enforce that 'MEMBER' is the last field of 'TYPE': */
147 #define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
148 	BUILD_BUG_ON(sizeof(TYPE) != offsetofend(TYPE, MEMBER))
149 
150 /*
151  * We append the 'struct fpu' to the task_struct:
152  */
153 static void __init fpu__init_task_struct_size(void)
154 {
155 	int task_size = sizeof(struct task_struct);
156 
157 	/*
158 	 * Subtract off the static size of the register state.
159 	 * It potentially has a bunch of padding.
160 	 */
161 	task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
162 
163 	/*
164 	 * Add back the dynamically-calculated register state
165 	 * size.
166 	 */
167 	task_size += xstate_size;
168 
169 	/*
170 	 * We dynamically size 'struct fpu', so we require that
171 	 * it be at the end of 'thread_struct' and that
172 	 * 'thread_struct' be at the end of 'task_struct'.  If
173 	 * you hit a compile error here, check the structure to
174 	 * see if something got added to the end.
175 	 */
176 	CHECK_MEMBER_AT_END_OF(struct fpu, state);
177 	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
178 	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
179 
180 	arch_task_struct_size = task_size;
181 }
182 
183 /*
184  * Set up the xstate_size based on the legacy FPU context size.
185  *
186  * We set this up first, and later it will be overwritten by
187  * fpu__init_system_xstate() if the CPU knows about xstates.
188  */
189 static void __init fpu__init_system_xstate_size_legacy(void)
190 {
191 	static int on_boot_cpu = 1;
192 
193 	WARN_ON_FPU(!on_boot_cpu);
194 	on_boot_cpu = 0;
195 
196 	/*
197 	 * Note that xstate_size might be overwriten later during
198 	 * fpu__init_system_xstate().
199 	 */
200 
201 	if (!cpu_has_fpu) {
202 		/*
203 		 * Disable xsave as we do not support it if i387
204 		 * emulation is enabled.
205 		 */
206 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
207 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
208 		xstate_size = sizeof(struct swregs_state);
209 	} else {
210 		if (cpu_has_fxsr)
211 			xstate_size = sizeof(struct fxregs_state);
212 		else
213 			xstate_size = sizeof(struct fregs_state);
214 	}
215 	/*
216 	 * Quirk: we don't yet handle the XSAVES* instructions
217 	 * correctly, as we don't correctly convert between
218 	 * standard and compacted format when interfacing
219 	 * with user-space - so disable it for now.
220 	 *
221 	 * The difference is small: with recent CPUs the
222 	 * compacted format is only marginally smaller than
223 	 * the standard FPU state format.
224 	 *
225 	 * ( This is easy to backport while we are fixing
226 	 *   XSAVES* support. )
227 	 */
228 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
229 }
230 
231 /*
232  * FPU context switching strategies:
233  *
234  * Against popular belief, we don't do lazy FPU saves, due to the
235  * task migration complications it brings on SMP - we only do
236  * lazy FPU restores.
237  *
238  * 'lazy' is the traditional strategy, which is based on setting
239  * CR0::TS to 1 during context-switch (instead of doing a full
240  * restore of the FPU state), which causes the first FPU instruction
241  * after the context switch (whenever it is executed) to fault - at
242  * which point we lazily restore the FPU state into FPU registers.
243  *
244  * Tasks are of course under no obligation to execute FPU instructions,
245  * so it can easily happen that another context-switch occurs without
246  * a single FPU instruction being executed. If we eventually switch
247  * back to the original task (that still owns the FPU) then we have
248  * not only saved the restores along the way, but we also have the
249  * FPU ready to be used for the original task.
250  *
251  * 'eager' switching is used on modern CPUs, there we switch the FPU
252  * state during every context switch, regardless of whether the task
253  * has used FPU instructions in that time slice or not. This is done
254  * because modern FPU context saving instructions are able to optimize
255  * state saving and restoration in hardware: they can detect both
256  * unused and untouched FPU state and optimize accordingly.
257  *
258  * [ Note that even in 'lazy' mode we might optimize context switches
259  *   to use 'eager' restores, if we detect that a task is using the FPU
260  *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
261  */
262 static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
263 
264 static int __init eager_fpu_setup(char *s)
265 {
266 	if (!strcmp(s, "on"))
267 		eagerfpu = ENABLE;
268 	else if (!strcmp(s, "off"))
269 		eagerfpu = DISABLE;
270 	else if (!strcmp(s, "auto"))
271 		eagerfpu = AUTO;
272 	return 1;
273 }
274 __setup("eagerfpu=", eager_fpu_setup);
275 
276 /*
277  * Pick the FPU context switching strategy:
278  */
279 static void __init fpu__init_system_ctx_switch(void)
280 {
281 	static bool on_boot_cpu = 1;
282 
283 	WARN_ON_FPU(!on_boot_cpu);
284 	on_boot_cpu = 0;
285 
286 	WARN_ON_FPU(current->thread.fpu.fpstate_active);
287 	current_thread_info()->status = 0;
288 
289 	/* Auto enable eagerfpu for xsaveopt */
290 	if (cpu_has_xsaveopt && eagerfpu != DISABLE)
291 		eagerfpu = ENABLE;
292 
293 	if (xfeatures_mask & XSTATE_EAGER) {
294 		if (eagerfpu == DISABLE) {
295 			pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
296 			       xfeatures_mask & XSTATE_EAGER);
297 			xfeatures_mask &= ~XSTATE_EAGER;
298 		} else {
299 			eagerfpu = ENABLE;
300 		}
301 	}
302 
303 	if (eagerfpu == ENABLE)
304 		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
305 
306 	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
307 }
308 
309 /*
310  * Called on the boot CPU once per system bootup, to set up the initial
311  * FPU state that is later cloned into all processes:
312  */
313 void __init fpu__init_system(struct cpuinfo_x86 *c)
314 {
315 	fpu__init_system_early_generic(c);
316 
317 	/*
318 	 * The FPU has to be operational for some of the
319 	 * later FPU init activities:
320 	 */
321 	fpu__init_cpu();
322 
323 	/*
324 	 * But don't leave CR0::TS set yet, as some of the FPU setup
325 	 * methods depend on being able to execute FPU instructions
326 	 * that will fault on a set TS, such as the FXSAVE in
327 	 * fpu__init_system_mxcsr().
328 	 */
329 	clts();
330 
331 	fpu__init_system_generic();
332 	fpu__init_system_xstate_size_legacy();
333 	fpu__init_system_xstate();
334 	fpu__init_task_struct_size();
335 
336 	fpu__init_system_ctx_switch();
337 }
338 
339 /*
340  * Boot parameter to turn off FPU support and fall back to math-emu:
341  */
342 static int __init no_387(char *s)
343 {
344 	setup_clear_cpu_cap(X86_FEATURE_FPU);
345 	return 1;
346 }
347 __setup("no387", no_387);
348 
349 /*
350  * Disable all xstate CPU features:
351  */
352 static int __init x86_noxsave_setup(char *s)
353 {
354 	if (strlen(s))
355 		return 0;
356 
357 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
358 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
359 	setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
360 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
361 	setup_clear_cpu_cap(X86_FEATURE_AVX);
362 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
363 	setup_clear_cpu_cap(X86_FEATURE_AVX512F);
364 	setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
365 	setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
366 	setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
367 	setup_clear_cpu_cap(X86_FEATURE_MPX);
368 
369 	return 1;
370 }
371 __setup("noxsave", x86_noxsave_setup);
372 
373 /*
374  * Disable the XSAVEOPT instruction specifically:
375  */
376 static int __init x86_noxsaveopt_setup(char *s)
377 {
378 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
379 
380 	return 1;
381 }
382 __setup("noxsaveopt", x86_noxsaveopt_setup);
383 
384 /*
385  * Disable the XSAVES instruction:
386  */
387 static int __init x86_noxsaves_setup(char *s)
388 {
389 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
390 
391 	return 1;
392 }
393 __setup("noxsaves", x86_noxsaves_setup);
394 
395 /*
396  * Disable FX save/restore and SSE support:
397  */
398 static int __init x86_nofxsr_setup(char *s)
399 {
400 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
401 	setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
402 	setup_clear_cpu_cap(X86_FEATURE_XMM);
403 
404 	return 1;
405 }
406 __setup("nofxsr", x86_nofxsr_setup);
407