1 /* 2 * x86 FPU boot time init code: 3 */ 4 #include <asm/fpu/internal.h> 5 #include <asm/tlbflush.h> 6 #include <asm/setup.h> 7 #include <asm/cmdline.h> 8 9 #include <linux/sched.h> 10 #include <linux/init.h> 11 12 /* 13 * Initialize the TS bit in CR0 according to the style of context-switches 14 * we are using: 15 */ 16 static void fpu__init_cpu_ctx_switch(void) 17 { 18 if (!boot_cpu_has(X86_FEATURE_EAGER_FPU)) 19 stts(); 20 else 21 clts(); 22 } 23 24 /* 25 * Initialize the registers found in all CPUs, CR0 and CR4: 26 */ 27 static void fpu__init_cpu_generic(void) 28 { 29 unsigned long cr0; 30 unsigned long cr4_mask = 0; 31 32 if (boot_cpu_has(X86_FEATURE_FXSR)) 33 cr4_mask |= X86_CR4_OSFXSR; 34 if (boot_cpu_has(X86_FEATURE_XMM)) 35 cr4_mask |= X86_CR4_OSXMMEXCPT; 36 if (cr4_mask) 37 cr4_set_bits(cr4_mask); 38 39 cr0 = read_cr0(); 40 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ 41 if (!boot_cpu_has(X86_FEATURE_FPU)) 42 cr0 |= X86_CR0_EM; 43 write_cr0(cr0); 44 45 /* Flush out any pending x87 state: */ 46 #ifdef CONFIG_MATH_EMULATION 47 if (!boot_cpu_has(X86_FEATURE_FPU)) 48 fpstate_init_soft(¤t->thread.fpu.state.soft); 49 else 50 #endif 51 asm volatile ("fninit"); 52 } 53 54 /* 55 * Enable all supported FPU features. Called when a CPU is brought online: 56 */ 57 void fpu__init_cpu(void) 58 { 59 fpu__init_cpu_generic(); 60 fpu__init_cpu_xstate(); 61 fpu__init_cpu_ctx_switch(); 62 } 63 64 /* 65 * The earliest FPU detection code. 66 * 67 * Set the X86_FEATURE_FPU CPU-capability bit based on 68 * trying to execute an actual sequence of FPU instructions: 69 */ 70 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c) 71 { 72 unsigned long cr0; 73 u16 fsw, fcw; 74 75 fsw = fcw = 0xffff; 76 77 cr0 = read_cr0(); 78 cr0 &= ~(X86_CR0_TS | X86_CR0_EM); 79 write_cr0(cr0); 80 81 if (!test_bit(X86_FEATURE_FPU, (unsigned long *)cpu_caps_cleared)) { 82 asm volatile("fninit ; fnstsw %0 ; fnstcw %1" 83 : "+m" (fsw), "+m" (fcw)); 84 85 if (fsw == 0 && (fcw & 0x103f) == 0x003f) 86 set_cpu_cap(c, X86_FEATURE_FPU); 87 else 88 clear_cpu_cap(c, X86_FEATURE_FPU); 89 } 90 91 #ifndef CONFIG_MATH_EMULATION 92 if (!boot_cpu_has(X86_FEATURE_FPU)) { 93 pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n"); 94 for (;;) 95 asm volatile("hlt"); 96 } 97 #endif 98 } 99 100 /* 101 * Boot time FPU feature detection code: 102 */ 103 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; 104 105 static void __init fpu__init_system_mxcsr(void) 106 { 107 unsigned int mask = 0; 108 109 if (boot_cpu_has(X86_FEATURE_FXSR)) { 110 /* Static because GCC does not get 16-byte stack alignment right: */ 111 static struct fxregs_state fxregs __initdata; 112 113 asm volatile("fxsave %0" : "+m" (fxregs)); 114 115 mask = fxregs.mxcsr_mask; 116 117 /* 118 * If zero then use the default features mask, 119 * which has all features set, except the 120 * denormals-are-zero feature bit: 121 */ 122 if (mask == 0) 123 mask = 0x0000ffbf; 124 } 125 mxcsr_feature_mask &= mask; 126 } 127 128 /* 129 * Once per bootup FPU initialization sequences that will run on most x86 CPUs: 130 */ 131 static void __init fpu__init_system_generic(void) 132 { 133 /* 134 * Set up the legacy init FPU context. (xstate init might overwrite this 135 * with a more modern format, if the CPU supports it.) 136 */ 137 fpstate_init(&init_fpstate); 138 139 fpu__init_system_mxcsr(); 140 } 141 142 /* 143 * Size of the FPU context state. All tasks in the system use the 144 * same context size, regardless of what portion they use. 145 * This is inherent to the XSAVE architecture which puts all state 146 * components into a single, continuous memory block: 147 */ 148 unsigned int fpu_kernel_xstate_size; 149 EXPORT_SYMBOL_GPL(fpu_kernel_xstate_size); 150 151 /* Get alignment of the TYPE. */ 152 #define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test) 153 154 /* 155 * Enforce that 'MEMBER' is the last field of 'TYPE'. 156 * 157 * Align the computed size with alignment of the TYPE, 158 * because that's how C aligns structs. 159 */ 160 #define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \ 161 BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \ 162 TYPE_ALIGN(TYPE))) 163 164 /* 165 * We append the 'struct fpu' to the task_struct: 166 */ 167 static void __init fpu__init_task_struct_size(void) 168 { 169 int task_size = sizeof(struct task_struct); 170 171 /* 172 * Subtract off the static size of the register state. 173 * It potentially has a bunch of padding. 174 */ 175 task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state); 176 177 /* 178 * Add back the dynamically-calculated register state 179 * size. 180 */ 181 task_size += fpu_kernel_xstate_size; 182 183 /* 184 * We dynamically size 'struct fpu', so we require that 185 * it be at the end of 'thread_struct' and that 186 * 'thread_struct' be at the end of 'task_struct'. If 187 * you hit a compile error here, check the structure to 188 * see if something got added to the end. 189 */ 190 CHECK_MEMBER_AT_END_OF(struct fpu, state); 191 CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu); 192 CHECK_MEMBER_AT_END_OF(struct task_struct, thread); 193 194 arch_task_struct_size = task_size; 195 } 196 197 /* 198 * Set up the user and kernel xstate sizes based on the legacy FPU context size. 199 * 200 * We set this up first, and later it will be overwritten by 201 * fpu__init_system_xstate() if the CPU knows about xstates. 202 */ 203 static void __init fpu__init_system_xstate_size_legacy(void) 204 { 205 static int on_boot_cpu __initdata = 1; 206 207 WARN_ON_FPU(!on_boot_cpu); 208 on_boot_cpu = 0; 209 210 /* 211 * Note that xstate sizes might be overwritten later during 212 * fpu__init_system_xstate(). 213 */ 214 215 if (!boot_cpu_has(X86_FEATURE_FPU)) { 216 /* 217 * Disable xsave as we do not support it if i387 218 * emulation is enabled. 219 */ 220 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 221 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); 222 fpu_kernel_xstate_size = sizeof(struct swregs_state); 223 } else { 224 if (boot_cpu_has(X86_FEATURE_FXSR)) 225 fpu_kernel_xstate_size = 226 sizeof(struct fxregs_state); 227 else 228 fpu_kernel_xstate_size = 229 sizeof(struct fregs_state); 230 } 231 232 fpu_user_xstate_size = fpu_kernel_xstate_size; 233 } 234 235 /* 236 * FPU context switching strategies: 237 * 238 * Against popular belief, we don't do lazy FPU saves, due to the 239 * task migration complications it brings on SMP - we only do 240 * lazy FPU restores. 241 * 242 * 'lazy' is the traditional strategy, which is based on setting 243 * CR0::TS to 1 during context-switch (instead of doing a full 244 * restore of the FPU state), which causes the first FPU instruction 245 * after the context switch (whenever it is executed) to fault - at 246 * which point we lazily restore the FPU state into FPU registers. 247 * 248 * Tasks are of course under no obligation to execute FPU instructions, 249 * so it can easily happen that another context-switch occurs without 250 * a single FPU instruction being executed. If we eventually switch 251 * back to the original task (that still owns the FPU) then we have 252 * not only saved the restores along the way, but we also have the 253 * FPU ready to be used for the original task. 254 * 255 * 'lazy' is deprecated because it's almost never a performance win 256 * and it's much more complicated than 'eager'. 257 * 258 * 'eager' switching is by default on all CPUs, there we switch the FPU 259 * state during every context switch, regardless of whether the task 260 * has used FPU instructions in that time slice or not. This is done 261 * because modern FPU context saving instructions are able to optimize 262 * state saving and restoration in hardware: they can detect both 263 * unused and untouched FPU state and optimize accordingly. 264 * 265 * [ Note that even in 'lazy' mode we might optimize context switches 266 * to use 'eager' restores, if we detect that a task is using the FPU 267 * frequently. See the fpu->counter logic in fpu/internal.h for that. ] 268 */ 269 static enum { ENABLE, DISABLE } eagerfpu = ENABLE; 270 271 /* 272 * Find supported xfeatures based on cpu features and command-line input. 273 * This must be called after fpu__init_parse_early_param() is called and 274 * xfeatures_mask is enumerated. 275 */ 276 u64 __init fpu__get_supported_xfeatures_mask(void) 277 { 278 /* Support all xfeatures known to us */ 279 if (eagerfpu != DISABLE) 280 return XCNTXT_MASK; 281 282 /* Warning of xfeatures being disabled for no eagerfpu mode */ 283 if (xfeatures_mask & XFEATURE_MASK_EAGER) { 284 pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n", 285 xfeatures_mask & XFEATURE_MASK_EAGER); 286 } 287 288 /* Return a mask that masks out all features requiring eagerfpu mode */ 289 return ~XFEATURE_MASK_EAGER; 290 } 291 292 /* 293 * Disable features dependent on eagerfpu. 294 */ 295 static void __init fpu__clear_eager_fpu_features(void) 296 { 297 setup_clear_cpu_cap(X86_FEATURE_MPX); 298 } 299 300 /* 301 * Pick the FPU context switching strategy: 302 * 303 * When eagerfpu is AUTO or ENABLE, we ensure it is ENABLE if either of 304 * the following is true: 305 * 306 * (1) the cpu has xsaveopt, as it has the optimization and doing eager 307 * FPU switching has a relatively low cost compared to a plain xsave; 308 * (2) the cpu has xsave features (e.g. MPX) that depend on eager FPU 309 * switching. Should the kernel boot with noxsaveopt, we support MPX 310 * with eager FPU switching at a higher cost. 311 */ 312 static void __init fpu__init_system_ctx_switch(void) 313 { 314 static bool on_boot_cpu __initdata = 1; 315 316 WARN_ON_FPU(!on_boot_cpu); 317 on_boot_cpu = 0; 318 319 WARN_ON_FPU(current->thread.fpu.fpstate_active); 320 321 if (boot_cpu_has(X86_FEATURE_XSAVEOPT) && eagerfpu != DISABLE) 322 eagerfpu = ENABLE; 323 324 if (xfeatures_mask & XFEATURE_MASK_EAGER) 325 eagerfpu = ENABLE; 326 327 if (eagerfpu == ENABLE) 328 setup_force_cpu_cap(X86_FEATURE_EAGER_FPU); 329 330 printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy"); 331 } 332 333 /* 334 * We parse fpu parameters early because fpu__init_system() is executed 335 * before parse_early_param(). 336 */ 337 static void __init fpu__init_parse_early_param(void) 338 { 339 if (cmdline_find_option_bool(boot_command_line, "eagerfpu=off")) { 340 eagerfpu = DISABLE; 341 fpu__clear_eager_fpu_features(); 342 } 343 344 if (cmdline_find_option_bool(boot_command_line, "no387")) 345 setup_clear_cpu_cap(X86_FEATURE_FPU); 346 347 if (cmdline_find_option_bool(boot_command_line, "nofxsr")) { 348 setup_clear_cpu_cap(X86_FEATURE_FXSR); 349 setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT); 350 setup_clear_cpu_cap(X86_FEATURE_XMM); 351 } 352 353 if (cmdline_find_option_bool(boot_command_line, "noxsave")) 354 fpu__xstate_clear_all_cpu_caps(); 355 356 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt")) 357 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); 358 359 if (cmdline_find_option_bool(boot_command_line, "noxsaves")) 360 setup_clear_cpu_cap(X86_FEATURE_XSAVES); 361 } 362 363 /* 364 * Called on the boot CPU once per system bootup, to set up the initial 365 * FPU state that is later cloned into all processes: 366 */ 367 void __init fpu__init_system(struct cpuinfo_x86 *c) 368 { 369 fpu__init_parse_early_param(); 370 fpu__init_system_early_generic(c); 371 372 /* 373 * The FPU has to be operational for some of the 374 * later FPU init activities: 375 */ 376 fpu__init_cpu(); 377 378 /* 379 * But don't leave CR0::TS set yet, as some of the FPU setup 380 * methods depend on being able to execute FPU instructions 381 * that will fault on a set TS, such as the FXSAVE in 382 * fpu__init_system_mxcsr(). 383 */ 384 clts(); 385 386 fpu__init_system_generic(); 387 fpu__init_system_xstate_size_legacy(); 388 fpu__init_system_xstate(); 389 fpu__init_task_struct_size(); 390 391 fpu__init_system_ctx_switch(); 392 } 393