xref: /openbmc/linux/arch/x86/kernel/fpu/init.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * x86 FPU boot time init code:
3  */
4 #include <asm/fpu/internal.h>
5 #include <asm/tlbflush.h>
6 
7 #include <linux/sched.h>
8 
9 /*
10  * Initialize the TS bit in CR0 according to the style of context-switches
11  * we are using:
12  */
13 static void fpu__init_cpu_ctx_switch(void)
14 {
15 	if (!cpu_has_eager_fpu)
16 		stts();
17 	else
18 		clts();
19 }
20 
21 /*
22  * Initialize the registers found in all CPUs, CR0 and CR4:
23  */
24 static void fpu__init_cpu_generic(void)
25 {
26 	unsigned long cr0;
27 	unsigned long cr4_mask = 0;
28 
29 	if (cpu_has_fxsr)
30 		cr4_mask |= X86_CR4_OSFXSR;
31 	if (cpu_has_xmm)
32 		cr4_mask |= X86_CR4_OSXMMEXCPT;
33 	if (cr4_mask)
34 		cr4_set_bits(cr4_mask);
35 
36 	cr0 = read_cr0();
37 	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
38 	if (!cpu_has_fpu)
39 		cr0 |= X86_CR0_EM;
40 	write_cr0(cr0);
41 
42 	/* Flush out any pending x87 state: */
43 	asm volatile ("fninit");
44 }
45 
46 /*
47  * Enable all supported FPU features. Called when a CPU is brought online:
48  */
49 void fpu__init_cpu(void)
50 {
51 	fpu__init_cpu_generic();
52 	fpu__init_cpu_xstate();
53 	fpu__init_cpu_ctx_switch();
54 }
55 
56 /*
57  * The earliest FPU detection code.
58  *
59  * Set the X86_FEATURE_FPU CPU-capability bit based on
60  * trying to execute an actual sequence of FPU instructions:
61  */
62 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
63 {
64 	unsigned long cr0;
65 	u16 fsw, fcw;
66 
67 	fsw = fcw = 0xffff;
68 
69 	cr0 = read_cr0();
70 	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
71 	write_cr0(cr0);
72 
73 	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
74 		     : "+m" (fsw), "+m" (fcw));
75 
76 	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
77 		set_cpu_cap(c, X86_FEATURE_FPU);
78 	else
79 		clear_cpu_cap(c, X86_FEATURE_FPU);
80 
81 #ifndef CONFIG_MATH_EMULATION
82 	if (!cpu_has_fpu) {
83 		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
84 		for (;;)
85 			asm volatile("hlt");
86 	}
87 #endif
88 }
89 
90 /*
91  * Boot time FPU feature detection code:
92  */
93 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
94 
95 static void __init fpu__init_system_mxcsr(void)
96 {
97 	unsigned int mask = 0;
98 
99 	if (cpu_has_fxsr) {
100 		/* Static because GCC does not get 16-byte stack alignment right: */
101 		static struct fxregs_state fxregs __initdata;
102 
103 		asm volatile("fxsave %0" : "+m" (fxregs));
104 
105 		mask = fxregs.mxcsr_mask;
106 
107 		/*
108 		 * If zero then use the default features mask,
109 		 * which has all features set, except the
110 		 * denormals-are-zero feature bit:
111 		 */
112 		if (mask == 0)
113 			mask = 0x0000ffbf;
114 	}
115 	mxcsr_feature_mask &= mask;
116 }
117 
118 /*
119  * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
120  */
121 static void __init fpu__init_system_generic(void)
122 {
123 	/*
124 	 * Set up the legacy init FPU context. (xstate init might overwrite this
125 	 * with a more modern format, if the CPU supports it.)
126 	 */
127 	fpstate_init_fxstate(&init_fpstate.fxsave);
128 
129 	fpu__init_system_mxcsr();
130 }
131 
132 /*
133  * Size of the FPU context state. All tasks in the system use the
134  * same context size, regardless of what portion they use.
135  * This is inherent to the XSAVE architecture which puts all state
136  * components into a single, continuous memory block:
137  */
138 unsigned int xstate_size;
139 EXPORT_SYMBOL_GPL(xstate_size);
140 
141 /* Enforce that 'MEMBER' is the last field of 'TYPE': */
142 #define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
143 	BUILD_BUG_ON(sizeof(TYPE) != offsetofend(TYPE, MEMBER))
144 
145 /*
146  * We append the 'struct fpu' to the task_struct:
147  */
148 static void __init fpu__init_task_struct_size(void)
149 {
150 	int task_size = sizeof(struct task_struct);
151 
152 	/*
153 	 * Subtract off the static size of the register state.
154 	 * It potentially has a bunch of padding.
155 	 */
156 	task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
157 
158 	/*
159 	 * Add back the dynamically-calculated register state
160 	 * size.
161 	 */
162 	task_size += xstate_size;
163 
164 	/*
165 	 * We dynamically size 'struct fpu', so we require that
166 	 * it be at the end of 'thread_struct' and that
167 	 * 'thread_struct' be at the end of 'task_struct'.  If
168 	 * you hit a compile error here, check the structure to
169 	 * see if something got added to the end.
170 	 */
171 	CHECK_MEMBER_AT_END_OF(struct fpu, state);
172 	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
173 	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
174 
175 	arch_task_struct_size = task_size;
176 }
177 
178 /*
179  * Set up the xstate_size based on the legacy FPU context size.
180  *
181  * We set this up first, and later it will be overwritten by
182  * fpu__init_system_xstate() if the CPU knows about xstates.
183  */
184 static void __init fpu__init_system_xstate_size_legacy(void)
185 {
186 	static int on_boot_cpu = 1;
187 
188 	WARN_ON_FPU(!on_boot_cpu);
189 	on_boot_cpu = 0;
190 
191 	/*
192 	 * Note that xstate_size might be overwriten later during
193 	 * fpu__init_system_xstate().
194 	 */
195 
196 	if (!cpu_has_fpu) {
197 		/*
198 		 * Disable xsave as we do not support it if i387
199 		 * emulation is enabled.
200 		 */
201 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
202 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
203 		xstate_size = sizeof(struct swregs_state);
204 	} else {
205 		if (cpu_has_fxsr)
206 			xstate_size = sizeof(struct fxregs_state);
207 		else
208 			xstate_size = sizeof(struct fregs_state);
209 	}
210 	/*
211 	 * Quirk: we don't yet handle the XSAVES* instructions
212 	 * correctly, as we don't correctly convert between
213 	 * standard and compacted format when interfacing
214 	 * with user-space - so disable it for now.
215 	 *
216 	 * The difference is small: with recent CPUs the
217 	 * compacted format is only marginally smaller than
218 	 * the standard FPU state format.
219 	 *
220 	 * ( This is easy to backport while we are fixing
221 	 *   XSAVES* support. )
222 	 */
223 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
224 }
225 
226 /*
227  * FPU context switching strategies:
228  *
229  * Against popular belief, we don't do lazy FPU saves, due to the
230  * task migration complications it brings on SMP - we only do
231  * lazy FPU restores.
232  *
233  * 'lazy' is the traditional strategy, which is based on setting
234  * CR0::TS to 1 during context-switch (instead of doing a full
235  * restore of the FPU state), which causes the first FPU instruction
236  * after the context switch (whenever it is executed) to fault - at
237  * which point we lazily restore the FPU state into FPU registers.
238  *
239  * Tasks are of course under no obligation to execute FPU instructions,
240  * so it can easily happen that another context-switch occurs without
241  * a single FPU instruction being executed. If we eventually switch
242  * back to the original task (that still owns the FPU) then we have
243  * not only saved the restores along the way, but we also have the
244  * FPU ready to be used for the original task.
245  *
246  * 'eager' switching is used on modern CPUs, there we switch the FPU
247  * state during every context switch, regardless of whether the task
248  * has used FPU instructions in that time slice or not. This is done
249  * because modern FPU context saving instructions are able to optimize
250  * state saving and restoration in hardware: they can detect both
251  * unused and untouched FPU state and optimize accordingly.
252  *
253  * [ Note that even in 'lazy' mode we might optimize context switches
254  *   to use 'eager' restores, if we detect that a task is using the FPU
255  *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
256  */
257 static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
258 
259 static int __init eager_fpu_setup(char *s)
260 {
261 	if (!strcmp(s, "on"))
262 		eagerfpu = ENABLE;
263 	else if (!strcmp(s, "off"))
264 		eagerfpu = DISABLE;
265 	else if (!strcmp(s, "auto"))
266 		eagerfpu = AUTO;
267 	return 1;
268 }
269 __setup("eagerfpu=", eager_fpu_setup);
270 
271 /*
272  * Pick the FPU context switching strategy:
273  */
274 static void __init fpu__init_system_ctx_switch(void)
275 {
276 	static bool on_boot_cpu = 1;
277 
278 	WARN_ON_FPU(!on_boot_cpu);
279 	on_boot_cpu = 0;
280 
281 	WARN_ON_FPU(current->thread.fpu.fpstate_active);
282 	current_thread_info()->status = 0;
283 
284 	/* Auto enable eagerfpu for xsaveopt */
285 	if (cpu_has_xsaveopt && eagerfpu != DISABLE)
286 		eagerfpu = ENABLE;
287 
288 	if (xfeatures_mask & XSTATE_EAGER) {
289 		if (eagerfpu == DISABLE) {
290 			pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
291 			       xfeatures_mask & XSTATE_EAGER);
292 			xfeatures_mask &= ~XSTATE_EAGER;
293 		} else {
294 			eagerfpu = ENABLE;
295 		}
296 	}
297 
298 	if (eagerfpu == ENABLE)
299 		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
300 
301 	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
302 }
303 
304 /*
305  * Called on the boot CPU once per system bootup, to set up the initial
306  * FPU state that is later cloned into all processes:
307  */
308 void __init fpu__init_system(struct cpuinfo_x86 *c)
309 {
310 	fpu__init_system_early_generic(c);
311 
312 	/*
313 	 * The FPU has to be operational for some of the
314 	 * later FPU init activities:
315 	 */
316 	fpu__init_cpu();
317 
318 	/*
319 	 * But don't leave CR0::TS set yet, as some of the FPU setup
320 	 * methods depend on being able to execute FPU instructions
321 	 * that will fault on a set TS, such as the FXSAVE in
322 	 * fpu__init_system_mxcsr().
323 	 */
324 	clts();
325 
326 	fpu__init_system_generic();
327 	fpu__init_system_xstate_size_legacy();
328 	fpu__init_system_xstate();
329 	fpu__init_task_struct_size();
330 
331 	fpu__init_system_ctx_switch();
332 }
333 
334 /*
335  * Boot parameter to turn off FPU support and fall back to math-emu:
336  */
337 static int __init no_387(char *s)
338 {
339 	setup_clear_cpu_cap(X86_FEATURE_FPU);
340 	return 1;
341 }
342 __setup("no387", no_387);
343 
344 /*
345  * Disable all xstate CPU features:
346  */
347 static int __init x86_noxsave_setup(char *s)
348 {
349 	if (strlen(s))
350 		return 0;
351 
352 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
353 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
354 	setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
355 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
356 	setup_clear_cpu_cap(X86_FEATURE_AVX);
357 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
358 	setup_clear_cpu_cap(X86_FEATURE_AVX512F);
359 	setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
360 	setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
361 	setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
362 	setup_clear_cpu_cap(X86_FEATURE_MPX);
363 
364 	return 1;
365 }
366 __setup("noxsave", x86_noxsave_setup);
367 
368 /*
369  * Disable the XSAVEOPT instruction specifically:
370  */
371 static int __init x86_noxsaveopt_setup(char *s)
372 {
373 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
374 
375 	return 1;
376 }
377 __setup("noxsaveopt", x86_noxsaveopt_setup);
378 
379 /*
380  * Disable the XSAVES instruction:
381  */
382 static int __init x86_noxsaves_setup(char *s)
383 {
384 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
385 
386 	return 1;
387 }
388 __setup("noxsaves", x86_noxsaves_setup);
389 
390 /*
391  * Disable FX save/restore and SSE support:
392  */
393 static int __init x86_nofxsr_setup(char *s)
394 {
395 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
396 	setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
397 	setup_clear_cpu_cap(X86_FEATURE_XMM);
398 
399 	return 1;
400 }
401 __setup("nofxsr", x86_nofxsr_setup);
402