xref: /openbmc/linux/arch/x86/kernel/fpu/init.c (revision 45471cd98decae5fced8b38e46c223f54a924814)
1 /*
2  * x86 FPU boot time init code:
3  */
4 #include <asm/fpu/internal.h>
5 #include <asm/tlbflush.h>
6 
7 /*
8  * Initialize the TS bit in CR0 according to the style of context-switches
9  * we are using:
10  */
11 static void fpu__init_cpu_ctx_switch(void)
12 {
13 	if (!cpu_has_eager_fpu)
14 		stts();
15 	else
16 		clts();
17 }
18 
19 /*
20  * Initialize the registers found in all CPUs, CR0 and CR4:
21  */
22 static void fpu__init_cpu_generic(void)
23 {
24 	unsigned long cr0;
25 	unsigned long cr4_mask = 0;
26 
27 	if (cpu_has_fxsr)
28 		cr4_mask |= X86_CR4_OSFXSR;
29 	if (cpu_has_xmm)
30 		cr4_mask |= X86_CR4_OSXMMEXCPT;
31 	if (cr4_mask)
32 		cr4_set_bits(cr4_mask);
33 
34 	cr0 = read_cr0();
35 	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
36 	if (!cpu_has_fpu)
37 		cr0 |= X86_CR0_EM;
38 	write_cr0(cr0);
39 
40 	/* Flush out any pending x87 state: */
41 	asm volatile ("fninit");
42 }
43 
44 /*
45  * Enable all supported FPU features. Called when a CPU is brought online:
46  */
47 void fpu__init_cpu(void)
48 {
49 	fpu__init_cpu_generic();
50 	fpu__init_cpu_xstate();
51 	fpu__init_cpu_ctx_switch();
52 }
53 
54 /*
55  * The earliest FPU detection code.
56  *
57  * Set the X86_FEATURE_FPU CPU-capability bit based on
58  * trying to execute an actual sequence of FPU instructions:
59  */
60 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
61 {
62 	unsigned long cr0;
63 	u16 fsw, fcw;
64 
65 	fsw = fcw = 0xffff;
66 
67 	cr0 = read_cr0();
68 	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
69 	write_cr0(cr0);
70 
71 	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
72 		     : "+m" (fsw), "+m" (fcw));
73 
74 	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
75 		set_cpu_cap(c, X86_FEATURE_FPU);
76 	else
77 		clear_cpu_cap(c, X86_FEATURE_FPU);
78 
79 #ifndef CONFIG_MATH_EMULATION
80 	if (!cpu_has_fpu) {
81 		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
82 		for (;;)
83 			asm volatile("hlt");
84 	}
85 #endif
86 }
87 
88 /*
89  * Boot time FPU feature detection code:
90  */
91 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
92 
93 static void __init fpu__init_system_mxcsr(void)
94 {
95 	unsigned int mask = 0;
96 
97 	if (cpu_has_fxsr) {
98 		struct fxregs_state fx_tmp __aligned(32) = { };
99 
100 		asm volatile("fxsave %0" : "+m" (fx_tmp));
101 
102 		mask = fx_tmp.mxcsr_mask;
103 
104 		/*
105 		 * If zero then use the default features mask,
106 		 * which has all features set, except the
107 		 * denormals-are-zero feature bit:
108 		 */
109 		if (mask == 0)
110 			mask = 0x0000ffbf;
111 	}
112 	mxcsr_feature_mask &= mask;
113 }
114 
115 /*
116  * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
117  */
118 static void __init fpu__init_system_generic(void)
119 {
120 	/*
121 	 * Set up the legacy init FPU context. (xstate init might overwrite this
122 	 * with a more modern format, if the CPU supports it.)
123 	 */
124 	fpstate_init_fxstate(&init_fpstate.fxsave);
125 
126 	fpu__init_system_mxcsr();
127 }
128 
129 /*
130  * Size of the FPU context state. All tasks in the system use the
131  * same context size, regardless of what portion they use.
132  * This is inherent to the XSAVE architecture which puts all state
133  * components into a single, continuous memory block:
134  */
135 unsigned int xstate_size;
136 EXPORT_SYMBOL_GPL(xstate_size);
137 
138 /*
139  * Set up the xstate_size based on the legacy FPU context size.
140  *
141  * We set this up first, and later it will be overwritten by
142  * fpu__init_system_xstate() if the CPU knows about xstates.
143  */
144 static void __init fpu__init_system_xstate_size_legacy(void)
145 {
146 	static int on_boot_cpu = 1;
147 
148 	WARN_ON_FPU(!on_boot_cpu);
149 	on_boot_cpu = 0;
150 
151 	/*
152 	 * Note that xstate_size might be overwriten later during
153 	 * fpu__init_system_xstate().
154 	 */
155 
156 	if (!cpu_has_fpu) {
157 		/*
158 		 * Disable xsave as we do not support it if i387
159 		 * emulation is enabled.
160 		 */
161 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
162 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
163 		xstate_size = sizeof(struct swregs_state);
164 	} else {
165 		if (cpu_has_fxsr)
166 			xstate_size = sizeof(struct fxregs_state);
167 		else
168 			xstate_size = sizeof(struct fregs_state);
169 	}
170 	/*
171 	 * Quirk: we don't yet handle the XSAVES* instructions
172 	 * correctly, as we don't correctly convert between
173 	 * standard and compacted format when interfacing
174 	 * with user-space - so disable it for now.
175 	 *
176 	 * The difference is small: with recent CPUs the
177 	 * compacted format is only marginally smaller than
178 	 * the standard FPU state format.
179 	 *
180 	 * ( This is easy to backport while we are fixing
181 	 *   XSAVES* support. )
182 	 */
183 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
184 }
185 
186 /*
187  * FPU context switching strategies:
188  *
189  * Against popular belief, we don't do lazy FPU saves, due to the
190  * task migration complications it brings on SMP - we only do
191  * lazy FPU restores.
192  *
193  * 'lazy' is the traditional strategy, which is based on setting
194  * CR0::TS to 1 during context-switch (instead of doing a full
195  * restore of the FPU state), which causes the first FPU instruction
196  * after the context switch (whenever it is executed) to fault - at
197  * which point we lazily restore the FPU state into FPU registers.
198  *
199  * Tasks are of course under no obligation to execute FPU instructions,
200  * so it can easily happen that another context-switch occurs without
201  * a single FPU instruction being executed. If we eventually switch
202  * back to the original task (that still owns the FPU) then we have
203  * not only saved the restores along the way, but we also have the
204  * FPU ready to be used for the original task.
205  *
206  * 'eager' switching is used on modern CPUs, there we switch the FPU
207  * state during every context switch, regardless of whether the task
208  * has used FPU instructions in that time slice or not. This is done
209  * because modern FPU context saving instructions are able to optimize
210  * state saving and restoration in hardware: they can detect both
211  * unused and untouched FPU state and optimize accordingly.
212  *
213  * [ Note that even in 'lazy' mode we might optimize context switches
214  *   to use 'eager' restores, if we detect that a task is using the FPU
215  *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
216  */
217 static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
218 
219 static int __init eager_fpu_setup(char *s)
220 {
221 	if (!strcmp(s, "on"))
222 		eagerfpu = ENABLE;
223 	else if (!strcmp(s, "off"))
224 		eagerfpu = DISABLE;
225 	else if (!strcmp(s, "auto"))
226 		eagerfpu = AUTO;
227 	return 1;
228 }
229 __setup("eagerfpu=", eager_fpu_setup);
230 
231 /*
232  * Pick the FPU context switching strategy:
233  */
234 static void __init fpu__init_system_ctx_switch(void)
235 {
236 	static bool on_boot_cpu = 1;
237 
238 	WARN_ON_FPU(!on_boot_cpu);
239 	on_boot_cpu = 0;
240 
241 	WARN_ON_FPU(current->thread.fpu.fpstate_active);
242 	current_thread_info()->status = 0;
243 
244 	/* Auto enable eagerfpu for xsaveopt */
245 	if (cpu_has_xsaveopt && eagerfpu != DISABLE)
246 		eagerfpu = ENABLE;
247 
248 	if (xfeatures_mask & XSTATE_EAGER) {
249 		if (eagerfpu == DISABLE) {
250 			pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
251 			       xfeatures_mask & XSTATE_EAGER);
252 			xfeatures_mask &= ~XSTATE_EAGER;
253 		} else {
254 			eagerfpu = ENABLE;
255 		}
256 	}
257 
258 	if (eagerfpu == ENABLE)
259 		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
260 
261 	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
262 }
263 
264 /*
265  * Called on the boot CPU once per system bootup, to set up the initial
266  * FPU state that is later cloned into all processes:
267  */
268 void __init fpu__init_system(struct cpuinfo_x86 *c)
269 {
270 	fpu__init_system_early_generic(c);
271 
272 	/*
273 	 * The FPU has to be operational for some of the
274 	 * later FPU init activities:
275 	 */
276 	fpu__init_cpu();
277 
278 	/*
279 	 * But don't leave CR0::TS set yet, as some of the FPU setup
280 	 * methods depend on being able to execute FPU instructions
281 	 * that will fault on a set TS, such as the FXSAVE in
282 	 * fpu__init_system_mxcsr().
283 	 */
284 	clts();
285 
286 	fpu__init_system_generic();
287 	fpu__init_system_xstate_size_legacy();
288 	fpu__init_system_xstate();
289 
290 	fpu__init_system_ctx_switch();
291 }
292 
293 /*
294  * Boot parameter to turn off FPU support and fall back to math-emu:
295  */
296 static int __init no_387(char *s)
297 {
298 	setup_clear_cpu_cap(X86_FEATURE_FPU);
299 	return 1;
300 }
301 __setup("no387", no_387);
302 
303 /*
304  * Disable all xstate CPU features:
305  */
306 static int __init x86_noxsave_setup(char *s)
307 {
308 	if (strlen(s))
309 		return 0;
310 
311 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
312 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
313 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
314 	setup_clear_cpu_cap(X86_FEATURE_AVX);
315 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
316 
317 	return 1;
318 }
319 __setup("noxsave", x86_noxsave_setup);
320 
321 /*
322  * Disable the XSAVEOPT instruction specifically:
323  */
324 static int __init x86_noxsaveopt_setup(char *s)
325 {
326 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
327 
328 	return 1;
329 }
330 __setup("noxsaveopt", x86_noxsaveopt_setup);
331 
332 /*
333  * Disable the XSAVES instruction:
334  */
335 static int __init x86_noxsaves_setup(char *s)
336 {
337 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
338 
339 	return 1;
340 }
341 __setup("noxsaves", x86_noxsaves_setup);
342 
343 /*
344  * Disable FX save/restore and SSE support:
345  */
346 static int __init x86_nofxsr_setup(char *s)
347 {
348 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
349 	setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
350 	setup_clear_cpu_cap(X86_FEATURE_XMM);
351 
352 	return 1;
353 }
354 __setup("nofxsr", x86_nofxsr_setup);
355