xref: /openbmc/linux/arch/x86/kernel/fpu/init.c (revision 179dd8c0)
1 /*
2  * x86 FPU boot time init code:
3  */
4 #include <asm/fpu/internal.h>
5 #include <asm/tlbflush.h>
6 
7 /*
8  * Initialize the TS bit in CR0 according to the style of context-switches
9  * we are using:
10  */
11 static void fpu__init_cpu_ctx_switch(void)
12 {
13 	if (!cpu_has_eager_fpu)
14 		stts();
15 	else
16 		clts();
17 }
18 
19 /*
20  * Initialize the registers found in all CPUs, CR0 and CR4:
21  */
22 static void fpu__init_cpu_generic(void)
23 {
24 	unsigned long cr0;
25 	unsigned long cr4_mask = 0;
26 
27 	if (cpu_has_fxsr)
28 		cr4_mask |= X86_CR4_OSFXSR;
29 	if (cpu_has_xmm)
30 		cr4_mask |= X86_CR4_OSXMMEXCPT;
31 	if (cr4_mask)
32 		cr4_set_bits(cr4_mask);
33 
34 	cr0 = read_cr0();
35 	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
36 	if (!cpu_has_fpu)
37 		cr0 |= X86_CR0_EM;
38 	write_cr0(cr0);
39 
40 	/* Flush out any pending x87 state: */
41 	asm volatile ("fninit");
42 }
43 
44 /*
45  * Enable all supported FPU features. Called when a CPU is brought online:
46  */
47 void fpu__init_cpu(void)
48 {
49 	fpu__init_cpu_generic();
50 	fpu__init_cpu_xstate();
51 	fpu__init_cpu_ctx_switch();
52 }
53 
54 /*
55  * The earliest FPU detection code.
56  *
57  * Set the X86_FEATURE_FPU CPU-capability bit based on
58  * trying to execute an actual sequence of FPU instructions:
59  */
60 static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
61 {
62 	unsigned long cr0;
63 	u16 fsw, fcw;
64 
65 	fsw = fcw = 0xffff;
66 
67 	cr0 = read_cr0();
68 	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
69 	write_cr0(cr0);
70 
71 	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
72 		     : "+m" (fsw), "+m" (fcw));
73 
74 	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
75 		set_cpu_cap(c, X86_FEATURE_FPU);
76 	else
77 		clear_cpu_cap(c, X86_FEATURE_FPU);
78 
79 #ifndef CONFIG_MATH_EMULATION
80 	if (!cpu_has_fpu) {
81 		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
82 		for (;;)
83 			asm volatile("hlt");
84 	}
85 #endif
86 }
87 
88 /*
89  * Boot time FPU feature detection code:
90  */
91 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
92 
93 static void __init fpu__init_system_mxcsr(void)
94 {
95 	unsigned int mask = 0;
96 
97 	if (cpu_has_fxsr) {
98 		/* Static because GCC does not get 16-byte stack alignment right: */
99 		static struct fxregs_state fxregs __initdata;
100 
101 		asm volatile("fxsave %0" : "+m" (fxregs));
102 
103 		mask = fxregs.mxcsr_mask;
104 
105 		/*
106 		 * If zero then use the default features mask,
107 		 * which has all features set, except the
108 		 * denormals-are-zero feature bit:
109 		 */
110 		if (mask == 0)
111 			mask = 0x0000ffbf;
112 	}
113 	mxcsr_feature_mask &= mask;
114 }
115 
116 /*
117  * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
118  */
119 static void __init fpu__init_system_generic(void)
120 {
121 	/*
122 	 * Set up the legacy init FPU context. (xstate init might overwrite this
123 	 * with a more modern format, if the CPU supports it.)
124 	 */
125 	fpstate_init_fxstate(&init_fpstate.fxsave);
126 
127 	fpu__init_system_mxcsr();
128 }
129 
130 /*
131  * Size of the FPU context state. All tasks in the system use the
132  * same context size, regardless of what portion they use.
133  * This is inherent to the XSAVE architecture which puts all state
134  * components into a single, continuous memory block:
135  */
136 unsigned int xstate_size;
137 EXPORT_SYMBOL_GPL(xstate_size);
138 
139 /*
140  * Set up the xstate_size based on the legacy FPU context size.
141  *
142  * We set this up first, and later it will be overwritten by
143  * fpu__init_system_xstate() if the CPU knows about xstates.
144  */
145 static void __init fpu__init_system_xstate_size_legacy(void)
146 {
147 	static int on_boot_cpu = 1;
148 
149 	WARN_ON_FPU(!on_boot_cpu);
150 	on_boot_cpu = 0;
151 
152 	/*
153 	 * Note that xstate_size might be overwriten later during
154 	 * fpu__init_system_xstate().
155 	 */
156 
157 	if (!cpu_has_fpu) {
158 		/*
159 		 * Disable xsave as we do not support it if i387
160 		 * emulation is enabled.
161 		 */
162 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
163 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
164 		xstate_size = sizeof(struct swregs_state);
165 	} else {
166 		if (cpu_has_fxsr)
167 			xstate_size = sizeof(struct fxregs_state);
168 		else
169 			xstate_size = sizeof(struct fregs_state);
170 	}
171 	/*
172 	 * Quirk: we don't yet handle the XSAVES* instructions
173 	 * correctly, as we don't correctly convert between
174 	 * standard and compacted format when interfacing
175 	 * with user-space - so disable it for now.
176 	 *
177 	 * The difference is small: with recent CPUs the
178 	 * compacted format is only marginally smaller than
179 	 * the standard FPU state format.
180 	 *
181 	 * ( This is easy to backport while we are fixing
182 	 *   XSAVES* support. )
183 	 */
184 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
185 }
186 
187 /*
188  * FPU context switching strategies:
189  *
190  * Against popular belief, we don't do lazy FPU saves, due to the
191  * task migration complications it brings on SMP - we only do
192  * lazy FPU restores.
193  *
194  * 'lazy' is the traditional strategy, which is based on setting
195  * CR0::TS to 1 during context-switch (instead of doing a full
196  * restore of the FPU state), which causes the first FPU instruction
197  * after the context switch (whenever it is executed) to fault - at
198  * which point we lazily restore the FPU state into FPU registers.
199  *
200  * Tasks are of course under no obligation to execute FPU instructions,
201  * so it can easily happen that another context-switch occurs without
202  * a single FPU instruction being executed. If we eventually switch
203  * back to the original task (that still owns the FPU) then we have
204  * not only saved the restores along the way, but we also have the
205  * FPU ready to be used for the original task.
206  *
207  * 'eager' switching is used on modern CPUs, there we switch the FPU
208  * state during every context switch, regardless of whether the task
209  * has used FPU instructions in that time slice or not. This is done
210  * because modern FPU context saving instructions are able to optimize
211  * state saving and restoration in hardware: they can detect both
212  * unused and untouched FPU state and optimize accordingly.
213  *
214  * [ Note that even in 'lazy' mode we might optimize context switches
215  *   to use 'eager' restores, if we detect that a task is using the FPU
216  *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
217  */
218 static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
219 
220 static int __init eager_fpu_setup(char *s)
221 {
222 	if (!strcmp(s, "on"))
223 		eagerfpu = ENABLE;
224 	else if (!strcmp(s, "off"))
225 		eagerfpu = DISABLE;
226 	else if (!strcmp(s, "auto"))
227 		eagerfpu = AUTO;
228 	return 1;
229 }
230 __setup("eagerfpu=", eager_fpu_setup);
231 
232 /*
233  * Pick the FPU context switching strategy:
234  */
235 static void __init fpu__init_system_ctx_switch(void)
236 {
237 	static bool on_boot_cpu = 1;
238 
239 	WARN_ON_FPU(!on_boot_cpu);
240 	on_boot_cpu = 0;
241 
242 	WARN_ON_FPU(current->thread.fpu.fpstate_active);
243 	current_thread_info()->status = 0;
244 
245 	/* Auto enable eagerfpu for xsaveopt */
246 	if (cpu_has_xsaveopt && eagerfpu != DISABLE)
247 		eagerfpu = ENABLE;
248 
249 	if (xfeatures_mask & XSTATE_EAGER) {
250 		if (eagerfpu == DISABLE) {
251 			pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
252 			       xfeatures_mask & XSTATE_EAGER);
253 			xfeatures_mask &= ~XSTATE_EAGER;
254 		} else {
255 			eagerfpu = ENABLE;
256 		}
257 	}
258 
259 	if (eagerfpu == ENABLE)
260 		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
261 
262 	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
263 }
264 
265 /*
266  * Called on the boot CPU once per system bootup, to set up the initial
267  * FPU state that is later cloned into all processes:
268  */
269 void __init fpu__init_system(struct cpuinfo_x86 *c)
270 {
271 	fpu__init_system_early_generic(c);
272 
273 	/*
274 	 * The FPU has to be operational for some of the
275 	 * later FPU init activities:
276 	 */
277 	fpu__init_cpu();
278 
279 	/*
280 	 * But don't leave CR0::TS set yet, as some of the FPU setup
281 	 * methods depend on being able to execute FPU instructions
282 	 * that will fault on a set TS, such as the FXSAVE in
283 	 * fpu__init_system_mxcsr().
284 	 */
285 	clts();
286 
287 	fpu__init_system_generic();
288 	fpu__init_system_xstate_size_legacy();
289 	fpu__init_system_xstate();
290 
291 	fpu__init_system_ctx_switch();
292 }
293 
294 /*
295  * Boot parameter to turn off FPU support and fall back to math-emu:
296  */
297 static int __init no_387(char *s)
298 {
299 	setup_clear_cpu_cap(X86_FEATURE_FPU);
300 	return 1;
301 }
302 __setup("no387", no_387);
303 
304 /*
305  * Disable all xstate CPU features:
306  */
307 static int __init x86_noxsave_setup(char *s)
308 {
309 	if (strlen(s))
310 		return 0;
311 
312 	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
313 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
314 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
315 	setup_clear_cpu_cap(X86_FEATURE_AVX);
316 	setup_clear_cpu_cap(X86_FEATURE_AVX2);
317 
318 	return 1;
319 }
320 __setup("noxsave", x86_noxsave_setup);
321 
322 /*
323  * Disable the XSAVEOPT instruction specifically:
324  */
325 static int __init x86_noxsaveopt_setup(char *s)
326 {
327 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
328 
329 	return 1;
330 }
331 __setup("noxsaveopt", x86_noxsaveopt_setup);
332 
333 /*
334  * Disable the XSAVES instruction:
335  */
336 static int __init x86_noxsaves_setup(char *s)
337 {
338 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
339 
340 	return 1;
341 }
342 __setup("noxsaves", x86_noxsaves_setup);
343 
344 /*
345  * Disable FX save/restore and SSE support:
346  */
347 static int __init x86_nofxsr_setup(char *s)
348 {
349 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
350 	setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
351 	setup_clear_cpu_cap(X86_FEATURE_XMM);
352 
353 	return 1;
354 }
355 __setup("nofxsr", x86_nofxsr_setup);
356