1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/internal.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/signal.h> 12 #include <asm/fpu/types.h> 13 #include <asm/traps.h> 14 #include <asm/irq_regs.h> 15 16 #include <linux/hardirq.h> 17 #include <linux/pkeys.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <asm/trace/fpu.h> 21 22 /* 23 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 24 * depending on the FPU hardware format: 25 */ 26 union fpregs_state init_fpstate __read_mostly; 27 28 /* 29 * Track whether the kernel is using the FPU state 30 * currently. 31 * 32 * This flag is used: 33 * 34 * - by IRQ context code to potentially use the FPU 35 * if it's unused. 36 * 37 * - to debug kernel_fpu_begin()/end() correctness 38 */ 39 static DEFINE_PER_CPU(bool, in_kernel_fpu); 40 41 /* 42 * Track which context is using the FPU on the CPU: 43 */ 44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 45 46 static bool kernel_fpu_disabled(void) 47 { 48 return this_cpu_read(in_kernel_fpu); 49 } 50 51 static bool interrupted_kernel_fpu_idle(void) 52 { 53 return !kernel_fpu_disabled(); 54 } 55 56 /* 57 * Were we in user mode (or vm86 mode) when we were 58 * interrupted? 59 * 60 * Doing kernel_fpu_begin/end() is ok if we are running 61 * in an interrupt context from user mode - we'll just 62 * save the FPU state as required. 63 */ 64 static bool interrupted_user_mode(void) 65 { 66 struct pt_regs *regs = get_irq_regs(); 67 return regs && user_mode(regs); 68 } 69 70 /* 71 * Can we use the FPU in kernel mode with the 72 * whole "kernel_fpu_begin/end()" sequence? 73 * 74 * It's always ok in process context (ie "not interrupt") 75 * but it is sometimes ok even from an irq. 76 */ 77 bool irq_fpu_usable(void) 78 { 79 return !in_interrupt() || 80 interrupted_user_mode() || 81 interrupted_kernel_fpu_idle(); 82 } 83 EXPORT_SYMBOL(irq_fpu_usable); 84 85 /* 86 * These must be called with preempt disabled. Returns 87 * 'true' if the FPU state is still intact and we can 88 * keep registers active. 89 * 90 * The legacy FNSAVE instruction cleared all FPU state 91 * unconditionally, so registers are essentially destroyed. 92 * Modern FPU state can be kept in registers, if there are 93 * no pending FP exceptions. 94 */ 95 int copy_fpregs_to_fpstate(struct fpu *fpu) 96 { 97 if (likely(use_xsave())) { 98 copy_xregs_to_kernel(&fpu->state.xsave); 99 100 /* 101 * AVX512 state is tracked here because its use is 102 * known to slow the max clock speed of the core. 103 */ 104 if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) 105 fpu->avx512_timestamp = jiffies; 106 return 1; 107 } 108 109 if (likely(use_fxsr())) { 110 copy_fxregs_to_kernel(fpu); 111 return 1; 112 } 113 114 /* 115 * Legacy FPU register saving, FNSAVE always clears FPU registers, 116 * so we have to mark them inactive: 117 */ 118 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); 119 120 return 0; 121 } 122 EXPORT_SYMBOL(copy_fpregs_to_fpstate); 123 124 void kernel_fpu_begin(void) 125 { 126 preempt_disable(); 127 128 WARN_ON_FPU(!irq_fpu_usable()); 129 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 130 131 this_cpu_write(in_kernel_fpu, true); 132 133 if (!(current->flags & PF_KTHREAD) && 134 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 135 set_thread_flag(TIF_NEED_FPU_LOAD); 136 /* 137 * Ignore return value -- we don't care if reg state 138 * is clobbered. 139 */ 140 copy_fpregs_to_fpstate(¤t->thread.fpu); 141 } 142 __cpu_invalidate_fpregs_state(); 143 144 if (boot_cpu_has(X86_FEATURE_XMM)) 145 ldmxcsr(MXCSR_DEFAULT); 146 147 if (boot_cpu_has(X86_FEATURE_FPU)) 148 asm volatile ("fninit"); 149 } 150 EXPORT_SYMBOL_GPL(kernel_fpu_begin); 151 152 void kernel_fpu_end(void) 153 { 154 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 155 156 this_cpu_write(in_kernel_fpu, false); 157 preempt_enable(); 158 } 159 EXPORT_SYMBOL_GPL(kernel_fpu_end); 160 161 /* 162 * Save the FPU state (mark it for reload if necessary): 163 * 164 * This only ever gets called for the current task. 165 */ 166 void fpu__save(struct fpu *fpu) 167 { 168 WARN_ON_FPU(fpu != ¤t->thread.fpu); 169 170 fpregs_lock(); 171 trace_x86_fpu_before_save(fpu); 172 173 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { 174 if (!copy_fpregs_to_fpstate(fpu)) { 175 copy_kernel_to_fpregs(&fpu->state); 176 } 177 } 178 179 trace_x86_fpu_after_save(fpu); 180 fpregs_unlock(); 181 } 182 183 /* 184 * Legacy x87 fpstate state init: 185 */ 186 static inline void fpstate_init_fstate(struct fregs_state *fp) 187 { 188 fp->cwd = 0xffff037fu; 189 fp->swd = 0xffff0000u; 190 fp->twd = 0xffffffffu; 191 fp->fos = 0xffff0000u; 192 } 193 194 void fpstate_init(union fpregs_state *state) 195 { 196 if (!static_cpu_has(X86_FEATURE_FPU)) { 197 fpstate_init_soft(&state->soft); 198 return; 199 } 200 201 memset(state, 0, fpu_kernel_xstate_size); 202 203 if (static_cpu_has(X86_FEATURE_XSAVES)) 204 fpstate_init_xstate(&state->xsave); 205 if (static_cpu_has(X86_FEATURE_FXSR)) 206 fpstate_init_fxstate(&state->fxsave); 207 else 208 fpstate_init_fstate(&state->fsave); 209 } 210 EXPORT_SYMBOL_GPL(fpstate_init); 211 212 int fpu__copy(struct task_struct *dst, struct task_struct *src) 213 { 214 struct fpu *dst_fpu = &dst->thread.fpu; 215 struct fpu *src_fpu = &src->thread.fpu; 216 217 dst_fpu->last_cpu = -1; 218 219 if (!static_cpu_has(X86_FEATURE_FPU)) 220 return 0; 221 222 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 223 224 /* 225 * Don't let 'init optimized' areas of the XSAVE area 226 * leak into the child task: 227 */ 228 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 229 230 /* 231 * If the FPU registers are not current just memcpy() the state. 232 * Otherwise save current FPU registers directly into the child's FPU 233 * context, without any memory-to-memory copying. 234 * 235 * ( The function 'fails' in the FNSAVE case, which destroys 236 * register contents so we have to load them back. ) 237 */ 238 fpregs_lock(); 239 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 240 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); 241 242 else if (!copy_fpregs_to_fpstate(dst_fpu)) 243 copy_kernel_to_fpregs(&dst_fpu->state); 244 245 fpregs_unlock(); 246 247 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 248 249 trace_x86_fpu_copy_src(src_fpu); 250 trace_x86_fpu_copy_dst(dst_fpu); 251 252 return 0; 253 } 254 255 /* 256 * Activate the current task's in-memory FPU context, 257 * if it has not been used before: 258 */ 259 static void fpu__initialize(struct fpu *fpu) 260 { 261 WARN_ON_FPU(fpu != ¤t->thread.fpu); 262 263 set_thread_flag(TIF_NEED_FPU_LOAD); 264 fpstate_init(&fpu->state); 265 trace_x86_fpu_init_state(fpu); 266 } 267 268 /* 269 * This function must be called before we read a task's fpstate. 270 * 271 * There's two cases where this gets called: 272 * 273 * - for the current task (when coredumping), in which case we have 274 * to save the latest FPU registers into the fpstate, 275 * 276 * - or it's called for stopped tasks (ptrace), in which case the 277 * registers were already saved by the context-switch code when 278 * the task scheduled out. 279 * 280 * If the task has used the FPU before then save it. 281 */ 282 void fpu__prepare_read(struct fpu *fpu) 283 { 284 if (fpu == ¤t->thread.fpu) 285 fpu__save(fpu); 286 } 287 288 /* 289 * This function must be called before we write a task's fpstate. 290 * 291 * Invalidate any cached FPU registers. 292 * 293 * After this function call, after registers in the fpstate are 294 * modified and the child task has woken up, the child task will 295 * restore the modified FPU state from the modified context. If we 296 * didn't clear its cached status here then the cached in-registers 297 * state pending on its former CPU could be restored, corrupting 298 * the modifications. 299 */ 300 void fpu__prepare_write(struct fpu *fpu) 301 { 302 /* 303 * Only stopped child tasks can be used to modify the FPU 304 * state in the fpstate buffer: 305 */ 306 WARN_ON_FPU(fpu == ¤t->thread.fpu); 307 308 /* Invalidate any cached state: */ 309 __fpu_invalidate_fpregs_state(fpu); 310 } 311 312 /* 313 * Drops current FPU state: deactivates the fpregs and 314 * the fpstate. NOTE: it still leaves previous contents 315 * in the fpregs in the eager-FPU case. 316 * 317 * This function can be used in cases where we know that 318 * a state-restore is coming: either an explicit one, 319 * or a reschedule. 320 */ 321 void fpu__drop(struct fpu *fpu) 322 { 323 preempt_disable(); 324 325 if (fpu == ¤t->thread.fpu) { 326 /* Ignore delayed exceptions from user space */ 327 asm volatile("1: fwait\n" 328 "2:\n" 329 _ASM_EXTABLE(1b, 2b)); 330 fpregs_deactivate(fpu); 331 } 332 333 trace_x86_fpu_dropped(fpu); 334 335 preempt_enable(); 336 } 337 338 /* 339 * Clear FPU registers by setting them up from the init fpstate. 340 * Caller must do fpregs_[un]lock() around it. 341 */ 342 static inline void copy_init_fpstate_to_fpregs(u64 features_mask) 343 { 344 if (use_xsave()) 345 copy_kernel_to_xregs(&init_fpstate.xsave, features_mask); 346 else if (static_cpu_has(X86_FEATURE_FXSR)) 347 copy_kernel_to_fxregs(&init_fpstate.fxsave); 348 else 349 copy_kernel_to_fregs(&init_fpstate.fsave); 350 351 if (boot_cpu_has(X86_FEATURE_OSPKE)) 352 copy_init_pkru_to_fpregs(); 353 } 354 355 /* 356 * Clear the FPU state back to init state. 357 * 358 * Called by sys_execve(), by the signal handler code and by various 359 * error paths. 360 */ 361 static void fpu__clear(struct fpu *fpu, bool user_only) 362 { 363 WARN_ON_FPU(fpu != ¤t->thread.fpu); 364 365 if (!static_cpu_has(X86_FEATURE_FPU)) { 366 fpu__drop(fpu); 367 fpu__initialize(fpu); 368 return; 369 } 370 371 fpregs_lock(); 372 373 if (user_only) { 374 if (!fpregs_state_valid(fpu, smp_processor_id()) && 375 xfeatures_mask_supervisor()) 376 copy_kernel_to_xregs(&fpu->state.xsave, 377 xfeatures_mask_supervisor()); 378 copy_init_fpstate_to_fpregs(xfeatures_mask_user()); 379 } else { 380 copy_init_fpstate_to_fpregs(xfeatures_mask_all); 381 } 382 383 fpregs_mark_activate(); 384 fpregs_unlock(); 385 } 386 387 void fpu__clear_user_states(struct fpu *fpu) 388 { 389 fpu__clear(fpu, true); 390 } 391 392 void fpu__clear_all(struct fpu *fpu) 393 { 394 fpu__clear(fpu, false); 395 } 396 397 /* 398 * Load FPU context before returning to userspace. 399 */ 400 void switch_fpu_return(void) 401 { 402 if (!static_cpu_has(X86_FEATURE_FPU)) 403 return; 404 405 __fpregs_load_activate(); 406 } 407 EXPORT_SYMBOL_GPL(switch_fpu_return); 408 409 #ifdef CONFIG_X86_DEBUG_FPU 410 /* 411 * If current FPU state according to its tracking (loaded FPU context on this 412 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 413 * loaded on return to userland. 414 */ 415 void fpregs_assert_state_consistent(void) 416 { 417 struct fpu *fpu = ¤t->thread.fpu; 418 419 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 420 return; 421 422 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 423 } 424 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 425 #endif 426 427 void fpregs_mark_activate(void) 428 { 429 struct fpu *fpu = ¤t->thread.fpu; 430 431 fpregs_activate(fpu); 432 fpu->last_cpu = smp_processor_id(); 433 clear_thread_flag(TIF_NEED_FPU_LOAD); 434 } 435 EXPORT_SYMBOL_GPL(fpregs_mark_activate); 436 437 /* 438 * x87 math exception handling: 439 */ 440 441 int fpu__exception_code(struct fpu *fpu, int trap_nr) 442 { 443 int err; 444 445 if (trap_nr == X86_TRAP_MF) { 446 unsigned short cwd, swd; 447 /* 448 * (~cwd & swd) will mask out exceptions that are not set to unmasked 449 * status. 0x3f is the exception bits in these regs, 0x200 is the 450 * C1 reg you need in case of a stack fault, 0x040 is the stack 451 * fault bit. We should only be taking one exception at a time, 452 * so if this combination doesn't produce any single exception, 453 * then we have a bad program that isn't synchronizing its FPU usage 454 * and it will suffer the consequences since we won't be able to 455 * fully reproduce the context of the exception. 456 */ 457 if (boot_cpu_has(X86_FEATURE_FXSR)) { 458 cwd = fpu->state.fxsave.cwd; 459 swd = fpu->state.fxsave.swd; 460 } else { 461 cwd = (unsigned short)fpu->state.fsave.cwd; 462 swd = (unsigned short)fpu->state.fsave.swd; 463 } 464 465 err = swd & ~cwd; 466 } else { 467 /* 468 * The SIMD FPU exceptions are handled a little differently, as there 469 * is only a single status/control register. Thus, to determine which 470 * unmasked exception was caught we must mask the exception mask bits 471 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 472 */ 473 unsigned short mxcsr = MXCSR_DEFAULT; 474 475 if (boot_cpu_has(X86_FEATURE_XMM)) 476 mxcsr = fpu->state.fxsave.mxcsr; 477 478 err = ~(mxcsr >> 7) & mxcsr; 479 } 480 481 if (err & 0x001) { /* Invalid op */ 482 /* 483 * swd & 0x240 == 0x040: Stack Underflow 484 * swd & 0x240 == 0x240: Stack Overflow 485 * User must clear the SF bit (0x40) if set 486 */ 487 return FPE_FLTINV; 488 } else if (err & 0x004) { /* Divide by Zero */ 489 return FPE_FLTDIV; 490 } else if (err & 0x008) { /* Overflow */ 491 return FPE_FLTOVF; 492 } else if (err & 0x012) { /* Denormal, Underflow */ 493 return FPE_FLTUND; 494 } else if (err & 0x020) { /* Precision */ 495 return FPE_FLTRES; 496 } 497 498 /* 499 * If we're using IRQ 13, or supposedly even some trap 500 * X86_TRAP_MF implementations, it's possible 501 * we get a spurious trap, which is not an error. 502 */ 503 return 0; 504 } 505