xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15 
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21 
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __read_mostly;
27 
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 
46 static bool kernel_fpu_disabled(void)
47 {
48 	return this_cpu_read(in_kernel_fpu);
49 }
50 
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53 	return !kernel_fpu_disabled();
54 }
55 
56 /*
57  * Were we in user mode (or vm86 mode) when we were
58  * interrupted?
59  *
60  * Doing kernel_fpu_begin/end() is ok if we are running
61  * in an interrupt context from user mode - we'll just
62  * save the FPU state as required.
63  */
64 static bool interrupted_user_mode(void)
65 {
66 	struct pt_regs *regs = get_irq_regs();
67 	return regs && user_mode(regs);
68 }
69 
70 /*
71  * Can we use the FPU in kernel mode with the
72  * whole "kernel_fpu_begin/end()" sequence?
73  *
74  * It's always ok in process context (ie "not interrupt")
75  * but it is sometimes ok even from an irq.
76  */
77 bool irq_fpu_usable(void)
78 {
79 	return !in_interrupt() ||
80 		interrupted_user_mode() ||
81 		interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84 
85 /*
86  * These must be called with preempt disabled. Returns
87  * 'true' if the FPU state is still intact and we can
88  * keep registers active.
89  *
90  * The legacy FNSAVE instruction cleared all FPU state
91  * unconditionally, so registers are essentially destroyed.
92  * Modern FPU state can be kept in registers, if there are
93  * no pending FP exceptions.
94  */
95 int copy_fpregs_to_fpstate(struct fpu *fpu)
96 {
97 	if (likely(use_xsave())) {
98 		copy_xregs_to_kernel(&fpu->state.xsave);
99 
100 		/*
101 		 * AVX512 state is tracked here because its use is
102 		 * known to slow the max clock speed of the core.
103 		 */
104 		if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
105 			fpu->avx512_timestamp = jiffies;
106 		return 1;
107 	}
108 
109 	if (likely(use_fxsr())) {
110 		copy_fxregs_to_kernel(fpu);
111 		return 1;
112 	}
113 
114 	/*
115 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
116 	 * so we have to mark them inactive:
117 	 */
118 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
119 
120 	return 0;
121 }
122 EXPORT_SYMBOL(copy_fpregs_to_fpstate);
123 
124 void kernel_fpu_begin(void)
125 {
126 	preempt_disable();
127 
128 	WARN_ON_FPU(!irq_fpu_usable());
129 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
130 
131 	this_cpu_write(in_kernel_fpu, true);
132 
133 	if (!(current->flags & PF_KTHREAD) &&
134 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
135 		set_thread_flag(TIF_NEED_FPU_LOAD);
136 		/*
137 		 * Ignore return value -- we don't care if reg state
138 		 * is clobbered.
139 		 */
140 		copy_fpregs_to_fpstate(&current->thread.fpu);
141 	}
142 	__cpu_invalidate_fpregs_state();
143 
144 	if (boot_cpu_has(X86_FEATURE_XMM))
145 		ldmxcsr(MXCSR_DEFAULT);
146 
147 	if (boot_cpu_has(X86_FEATURE_FPU))
148 		asm volatile ("fninit");
149 }
150 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
151 
152 void kernel_fpu_end(void)
153 {
154 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
155 
156 	this_cpu_write(in_kernel_fpu, false);
157 	preempt_enable();
158 }
159 EXPORT_SYMBOL_GPL(kernel_fpu_end);
160 
161 /*
162  * Save the FPU state (mark it for reload if necessary):
163  *
164  * This only ever gets called for the current task.
165  */
166 void fpu__save(struct fpu *fpu)
167 {
168 	WARN_ON_FPU(fpu != &current->thread.fpu);
169 
170 	fpregs_lock();
171 	trace_x86_fpu_before_save(fpu);
172 
173 	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
174 		if (!copy_fpregs_to_fpstate(fpu)) {
175 			copy_kernel_to_fpregs(&fpu->state);
176 		}
177 	}
178 
179 	trace_x86_fpu_after_save(fpu);
180 	fpregs_unlock();
181 }
182 
183 /*
184  * Legacy x87 fpstate state init:
185  */
186 static inline void fpstate_init_fstate(struct fregs_state *fp)
187 {
188 	fp->cwd = 0xffff037fu;
189 	fp->swd = 0xffff0000u;
190 	fp->twd = 0xffffffffu;
191 	fp->fos = 0xffff0000u;
192 }
193 
194 void fpstate_init(union fpregs_state *state)
195 {
196 	if (!static_cpu_has(X86_FEATURE_FPU)) {
197 		fpstate_init_soft(&state->soft);
198 		return;
199 	}
200 
201 	memset(state, 0, fpu_kernel_xstate_size);
202 
203 	if (static_cpu_has(X86_FEATURE_XSAVES))
204 		fpstate_init_xstate(&state->xsave);
205 	if (static_cpu_has(X86_FEATURE_FXSR))
206 		fpstate_init_fxstate(&state->fxsave);
207 	else
208 		fpstate_init_fstate(&state->fsave);
209 }
210 EXPORT_SYMBOL_GPL(fpstate_init);
211 
212 int fpu__copy(struct task_struct *dst, struct task_struct *src)
213 {
214 	struct fpu *dst_fpu = &dst->thread.fpu;
215 	struct fpu *src_fpu = &src->thread.fpu;
216 
217 	dst_fpu->last_cpu = -1;
218 
219 	if (!static_cpu_has(X86_FEATURE_FPU))
220 		return 0;
221 
222 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
223 
224 	/*
225 	 * Don't let 'init optimized' areas of the XSAVE area
226 	 * leak into the child task:
227 	 */
228 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
229 
230 	/*
231 	 * If the FPU registers are not current just memcpy() the state.
232 	 * Otherwise save current FPU registers directly into the child's FPU
233 	 * context, without any memory-to-memory copying.
234 	 *
235 	 * ( The function 'fails' in the FNSAVE case, which destroys
236 	 *   register contents so we have to load them back. )
237 	 */
238 	fpregs_lock();
239 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
240 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
241 
242 	else if (!copy_fpregs_to_fpstate(dst_fpu))
243 		copy_kernel_to_fpregs(&dst_fpu->state);
244 
245 	fpregs_unlock();
246 
247 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
248 
249 	trace_x86_fpu_copy_src(src_fpu);
250 	trace_x86_fpu_copy_dst(dst_fpu);
251 
252 	return 0;
253 }
254 
255 /*
256  * Activate the current task's in-memory FPU context,
257  * if it has not been used before:
258  */
259 static void fpu__initialize(struct fpu *fpu)
260 {
261 	WARN_ON_FPU(fpu != &current->thread.fpu);
262 
263 	set_thread_flag(TIF_NEED_FPU_LOAD);
264 	fpstate_init(&fpu->state);
265 	trace_x86_fpu_init_state(fpu);
266 }
267 
268 /*
269  * This function must be called before we read a task's fpstate.
270  *
271  * There's two cases where this gets called:
272  *
273  * - for the current task (when coredumping), in which case we have
274  *   to save the latest FPU registers into the fpstate,
275  *
276  * - or it's called for stopped tasks (ptrace), in which case the
277  *   registers were already saved by the context-switch code when
278  *   the task scheduled out.
279  *
280  * If the task has used the FPU before then save it.
281  */
282 void fpu__prepare_read(struct fpu *fpu)
283 {
284 	if (fpu == &current->thread.fpu)
285 		fpu__save(fpu);
286 }
287 
288 /*
289  * This function must be called before we write a task's fpstate.
290  *
291  * Invalidate any cached FPU registers.
292  *
293  * After this function call, after registers in the fpstate are
294  * modified and the child task has woken up, the child task will
295  * restore the modified FPU state from the modified context. If we
296  * didn't clear its cached status here then the cached in-registers
297  * state pending on its former CPU could be restored, corrupting
298  * the modifications.
299  */
300 void fpu__prepare_write(struct fpu *fpu)
301 {
302 	/*
303 	 * Only stopped child tasks can be used to modify the FPU
304 	 * state in the fpstate buffer:
305 	 */
306 	WARN_ON_FPU(fpu == &current->thread.fpu);
307 
308 	/* Invalidate any cached state: */
309 	__fpu_invalidate_fpregs_state(fpu);
310 }
311 
312 /*
313  * Drops current FPU state: deactivates the fpregs and
314  * the fpstate. NOTE: it still leaves previous contents
315  * in the fpregs in the eager-FPU case.
316  *
317  * This function can be used in cases where we know that
318  * a state-restore is coming: either an explicit one,
319  * or a reschedule.
320  */
321 void fpu__drop(struct fpu *fpu)
322 {
323 	preempt_disable();
324 
325 	if (fpu == &current->thread.fpu) {
326 		/* Ignore delayed exceptions from user space */
327 		asm volatile("1: fwait\n"
328 			     "2:\n"
329 			     _ASM_EXTABLE(1b, 2b));
330 		fpregs_deactivate(fpu);
331 	}
332 
333 	trace_x86_fpu_dropped(fpu);
334 
335 	preempt_enable();
336 }
337 
338 /*
339  * Clear FPU registers by setting them up from the init fpstate.
340  * Caller must do fpregs_[un]lock() around it.
341  */
342 static inline void copy_init_fpstate_to_fpregs(u64 features_mask)
343 {
344 	if (use_xsave())
345 		copy_kernel_to_xregs(&init_fpstate.xsave, features_mask);
346 	else if (static_cpu_has(X86_FEATURE_FXSR))
347 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
348 	else
349 		copy_kernel_to_fregs(&init_fpstate.fsave);
350 
351 	if (boot_cpu_has(X86_FEATURE_OSPKE))
352 		copy_init_pkru_to_fpregs();
353 }
354 
355 /*
356  * Clear the FPU state back to init state.
357  *
358  * Called by sys_execve(), by the signal handler code and by various
359  * error paths.
360  */
361 static void fpu__clear(struct fpu *fpu, bool user_only)
362 {
363 	WARN_ON_FPU(fpu != &current->thread.fpu);
364 
365 	if (!static_cpu_has(X86_FEATURE_FPU)) {
366 		fpu__drop(fpu);
367 		fpu__initialize(fpu);
368 		return;
369 	}
370 
371 	fpregs_lock();
372 
373 	if (user_only) {
374 		if (!fpregs_state_valid(fpu, smp_processor_id()) &&
375 		    xfeatures_mask_supervisor())
376 			copy_kernel_to_xregs(&fpu->state.xsave,
377 					     xfeatures_mask_supervisor());
378 		copy_init_fpstate_to_fpregs(xfeatures_mask_user());
379 	} else {
380 		copy_init_fpstate_to_fpregs(xfeatures_mask_all);
381 	}
382 
383 	fpregs_mark_activate();
384 	fpregs_unlock();
385 }
386 
387 void fpu__clear_user_states(struct fpu *fpu)
388 {
389 	fpu__clear(fpu, true);
390 }
391 
392 void fpu__clear_all(struct fpu *fpu)
393 {
394 	fpu__clear(fpu, false);
395 }
396 
397 /*
398  * Load FPU context before returning to userspace.
399  */
400 void switch_fpu_return(void)
401 {
402 	if (!static_cpu_has(X86_FEATURE_FPU))
403 		return;
404 
405 	__fpregs_load_activate();
406 }
407 EXPORT_SYMBOL_GPL(switch_fpu_return);
408 
409 #ifdef CONFIG_X86_DEBUG_FPU
410 /*
411  * If current FPU state according to its tracking (loaded FPU context on this
412  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
413  * loaded on return to userland.
414  */
415 void fpregs_assert_state_consistent(void)
416 {
417 	struct fpu *fpu = &current->thread.fpu;
418 
419 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
420 		return;
421 
422 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
423 }
424 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
425 #endif
426 
427 void fpregs_mark_activate(void)
428 {
429 	struct fpu *fpu = &current->thread.fpu;
430 
431 	fpregs_activate(fpu);
432 	fpu->last_cpu = smp_processor_id();
433 	clear_thread_flag(TIF_NEED_FPU_LOAD);
434 }
435 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
436 
437 /*
438  * x87 math exception handling:
439  */
440 
441 int fpu__exception_code(struct fpu *fpu, int trap_nr)
442 {
443 	int err;
444 
445 	if (trap_nr == X86_TRAP_MF) {
446 		unsigned short cwd, swd;
447 		/*
448 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
449 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
450 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
451 		 * fault bit.  We should only be taking one exception at a time,
452 		 * so if this combination doesn't produce any single exception,
453 		 * then we have a bad program that isn't synchronizing its FPU usage
454 		 * and it will suffer the consequences since we won't be able to
455 		 * fully reproduce the context of the exception.
456 		 */
457 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
458 			cwd = fpu->state.fxsave.cwd;
459 			swd = fpu->state.fxsave.swd;
460 		} else {
461 			cwd = (unsigned short)fpu->state.fsave.cwd;
462 			swd = (unsigned short)fpu->state.fsave.swd;
463 		}
464 
465 		err = swd & ~cwd;
466 	} else {
467 		/*
468 		 * The SIMD FPU exceptions are handled a little differently, as there
469 		 * is only a single status/control register.  Thus, to determine which
470 		 * unmasked exception was caught we must mask the exception mask bits
471 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
472 		 */
473 		unsigned short mxcsr = MXCSR_DEFAULT;
474 
475 		if (boot_cpu_has(X86_FEATURE_XMM))
476 			mxcsr = fpu->state.fxsave.mxcsr;
477 
478 		err = ~(mxcsr >> 7) & mxcsr;
479 	}
480 
481 	if (err & 0x001) {	/* Invalid op */
482 		/*
483 		 * swd & 0x240 == 0x040: Stack Underflow
484 		 * swd & 0x240 == 0x240: Stack Overflow
485 		 * User must clear the SF bit (0x40) if set
486 		 */
487 		return FPE_FLTINV;
488 	} else if (err & 0x004) { /* Divide by Zero */
489 		return FPE_FLTDIV;
490 	} else if (err & 0x008) { /* Overflow */
491 		return FPE_FLTOVF;
492 	} else if (err & 0x012) { /* Denormal, Underflow */
493 		return FPE_FLTUND;
494 	} else if (err & 0x020) { /* Precision */
495 		return FPE_FLTRES;
496 	}
497 
498 	/*
499 	 * If we're using IRQ 13, or supposedly even some trap
500 	 * X86_TRAP_MF implementations, it's possible
501 	 * we get a spurious trap, which is not an error.
502 	 */
503 	return 0;
504 }
505