xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16 
17 #include <linux/hardirq.h>
18 #include <linux/pkeys.h>
19 #include <linux/vmalloc.h>
20 
21 #include "context.h"
22 #include "internal.h"
23 #include "legacy.h"
24 #include "xstate.h"
25 
26 #define CREATE_TRACE_POINTS
27 #include <asm/trace/fpu.h>
28 
29 #ifdef CONFIG_X86_64
30 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
31 DEFINE_PER_CPU(u64, xfd_state);
32 #endif
33 
34 /* The FPU state configuration data for kernel and user space */
35 struct fpu_state_config	fpu_kernel_cfg __ro_after_init;
36 struct fpu_state_config fpu_user_cfg __ro_after_init;
37 
38 /*
39  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
40  * depending on the FPU hardware format:
41  */
42 struct fpstate init_fpstate __ro_after_init;
43 
44 /*
45  * Track whether the kernel is using the FPU state
46  * currently.
47  *
48  * This flag is used:
49  *
50  *   - by IRQ context code to potentially use the FPU
51  *     if it's unused.
52  *
53  *   - to debug kernel_fpu_begin()/end() correctness
54  */
55 static DEFINE_PER_CPU(bool, in_kernel_fpu);
56 
57 /*
58  * Track which context is using the FPU on the CPU:
59  */
60 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
61 
62 static bool kernel_fpu_disabled(void)
63 {
64 	return this_cpu_read(in_kernel_fpu);
65 }
66 
67 static bool interrupted_kernel_fpu_idle(void)
68 {
69 	return !kernel_fpu_disabled();
70 }
71 
72 /*
73  * Were we in user mode (or vm86 mode) when we were
74  * interrupted?
75  *
76  * Doing kernel_fpu_begin/end() is ok if we are running
77  * in an interrupt context from user mode - we'll just
78  * save the FPU state as required.
79  */
80 static bool interrupted_user_mode(void)
81 {
82 	struct pt_regs *regs = get_irq_regs();
83 	return regs && user_mode(regs);
84 }
85 
86 /*
87  * Can we use the FPU in kernel mode with the
88  * whole "kernel_fpu_begin/end()" sequence?
89  *
90  * It's always ok in process context (ie "not interrupt")
91  * but it is sometimes ok even from an irq.
92  */
93 bool irq_fpu_usable(void)
94 {
95 	return !in_interrupt() ||
96 		interrupted_user_mode() ||
97 		interrupted_kernel_fpu_idle();
98 }
99 EXPORT_SYMBOL(irq_fpu_usable);
100 
101 /*
102  * Track AVX512 state use because it is known to slow the max clock
103  * speed of the core.
104  */
105 static void update_avx_timestamp(struct fpu *fpu)
106 {
107 
108 #define AVX512_TRACKING_MASK	(XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
109 
110 	if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
111 		fpu->avx512_timestamp = jiffies;
112 }
113 
114 /*
115  * Save the FPU register state in fpu->fpstate->regs. The register state is
116  * preserved.
117  *
118  * Must be called with fpregs_lock() held.
119  *
120  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
121  * register state has to be reloaded. That might be a pointless exercise
122  * when the FPU is going to be used by another task right after that. But
123  * this only affects 20+ years old 32bit systems and avoids conditionals all
124  * over the place.
125  *
126  * FXSAVE and all XSAVE variants preserve the FPU register state.
127  */
128 void save_fpregs_to_fpstate(struct fpu *fpu)
129 {
130 	if (likely(use_xsave())) {
131 		os_xsave(fpu->fpstate);
132 		update_avx_timestamp(fpu);
133 		return;
134 	}
135 
136 	if (likely(use_fxsr())) {
137 		fxsave(&fpu->fpstate->regs.fxsave);
138 		return;
139 	}
140 
141 	/*
142 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
143 	 * so we have to reload them from the memory state.
144 	 */
145 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
146 	frstor(&fpu->fpstate->regs.fsave);
147 }
148 
149 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
150 {
151 	/*
152 	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
153 	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
154 	 * here by setting it to fixed values.  "m" is a random variable
155 	 * that should be in L1.
156 	 */
157 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
158 		asm volatile(
159 			"fnclex\n\t"
160 			"emms\n\t"
161 			"fildl %P[addr]"	/* set F?P to defined value */
162 			: : [addr] "m" (fpstate));
163 	}
164 
165 	if (use_xsave()) {
166 		/*
167 		 * Dynamically enabled features are enabled in XCR0, but
168 		 * usage requires also that the corresponding bits in XFD
169 		 * are cleared.  If the bits are set then using a related
170 		 * instruction will raise #NM. This allows to do the
171 		 * allocation of the larger FPU buffer lazy from #NM or if
172 		 * the task has no permission to kill it which would happen
173 		 * via #UD if the feature is disabled in XCR0.
174 		 *
175 		 * XFD state is following the same life time rules as
176 		 * XSTATE and to restore state correctly XFD has to be
177 		 * updated before XRSTORS otherwise the component would
178 		 * stay in or go into init state even if the bits are set
179 		 * in fpstate::regs::xsave::xfeatures.
180 		 */
181 		xfd_update_state(fpstate);
182 
183 		/*
184 		 * Restoring state always needs to modify all features
185 		 * which are in @mask even if the current task cannot use
186 		 * extended features.
187 		 *
188 		 * So fpstate->xfeatures cannot be used here, because then
189 		 * a feature for which the task has no permission but was
190 		 * used by the previous task would not go into init state.
191 		 */
192 		mask = fpu_kernel_cfg.max_features & mask;
193 
194 		os_xrstor(fpstate, mask);
195 	} else {
196 		if (use_fxsr())
197 			fxrstor(&fpstate->regs.fxsave);
198 		else
199 			frstor(&fpstate->regs.fsave);
200 	}
201 }
202 
203 void fpu_reset_from_exception_fixup(void)
204 {
205 	restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
206 }
207 
208 #if IS_ENABLED(CONFIG_KVM)
209 static void __fpstate_reset(struct fpstate *fpstate);
210 
211 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
212 {
213 	struct fpstate *fpstate;
214 	unsigned int size;
215 
216 	size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
217 	fpstate = vzalloc(size);
218 	if (!fpstate)
219 		return false;
220 
221 	__fpstate_reset(fpstate);
222 	fpstate_init_user(fpstate);
223 	fpstate->is_valloc	= true;
224 	fpstate->is_guest	= true;
225 
226 	gfpu->fpstate = fpstate;
227 	return true;
228 }
229 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
230 
231 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
232 {
233 	struct fpstate *fps = gfpu->fpstate;
234 
235 	if (!fps)
236 		return;
237 
238 	if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
239 		return;
240 
241 	gfpu->fpstate = NULL;
242 	vfree(fps);
243 }
244 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
245 
246 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
247 {
248 	struct fpstate *guest_fps = guest_fpu->fpstate;
249 	struct fpu *fpu = &current->thread.fpu;
250 	struct fpstate *cur_fps = fpu->fpstate;
251 
252 	fpregs_lock();
253 	if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
254 		save_fpregs_to_fpstate(fpu);
255 
256 	/* Swap fpstate */
257 	if (enter_guest) {
258 		fpu->__task_fpstate = cur_fps;
259 		fpu->fpstate = guest_fps;
260 		guest_fps->in_use = true;
261 	} else {
262 		guest_fps->in_use = false;
263 		fpu->fpstate = fpu->__task_fpstate;
264 		fpu->__task_fpstate = NULL;
265 	}
266 
267 	cur_fps = fpu->fpstate;
268 
269 	if (!cur_fps->is_confidential) {
270 		/* Includes XFD update */
271 		restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
272 	} else {
273 		/*
274 		 * XSTATE is restored by firmware from encrypted
275 		 * memory. Make sure XFD state is correct while
276 		 * running with guest fpstate
277 		 */
278 		xfd_update_state(cur_fps);
279 	}
280 
281 	fpregs_mark_activate();
282 	fpregs_unlock();
283 	return 0;
284 }
285 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
286 
287 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
288 				    unsigned int size, u32 pkru)
289 {
290 	struct fpstate *kstate = gfpu->fpstate;
291 	union fpregs_state *ustate = buf;
292 	struct membuf mb = { .p = buf, .left = size };
293 
294 	if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
295 		__copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
296 	} else {
297 		memcpy(&ustate->fxsave, &kstate->regs.fxsave,
298 		       sizeof(ustate->fxsave));
299 		/* Make it restorable on a XSAVE enabled host */
300 		ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
301 	}
302 }
303 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
304 
305 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
306 				   u64 xcr0, u32 *vpkru)
307 {
308 	struct fpstate *kstate = gfpu->fpstate;
309 	const union fpregs_state *ustate = buf;
310 	struct pkru_state *xpkru;
311 	int ret;
312 
313 	if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
314 		if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
315 			return -EINVAL;
316 		if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
317 			return -EINVAL;
318 		memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
319 		return 0;
320 	}
321 
322 	if (ustate->xsave.header.xfeatures & ~xcr0)
323 		return -EINVAL;
324 
325 	ret = copy_uabi_from_kernel_to_xstate(kstate, ustate);
326 	if (ret)
327 		return ret;
328 
329 	/* Retrieve PKRU if not in init state */
330 	if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
331 		xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU);
332 		*vpkru = xpkru->pkru;
333 	}
334 
335 	/* Ensure that XCOMP_BV is set up for XSAVES */
336 	xstate_init_xcomp_bv(&kstate->regs.xsave, kstate->xfeatures);
337 	return 0;
338 }
339 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
340 #endif /* CONFIG_KVM */
341 
342 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
343 {
344 	preempt_disable();
345 
346 	WARN_ON_FPU(!irq_fpu_usable());
347 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
348 
349 	this_cpu_write(in_kernel_fpu, true);
350 
351 	if (!(current->flags & PF_KTHREAD) &&
352 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
353 		set_thread_flag(TIF_NEED_FPU_LOAD);
354 		save_fpregs_to_fpstate(&current->thread.fpu);
355 	}
356 	__cpu_invalidate_fpregs_state();
357 
358 	/* Put sane initial values into the control registers. */
359 	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
360 		ldmxcsr(MXCSR_DEFAULT);
361 
362 	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
363 		asm volatile ("fninit");
364 }
365 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
366 
367 void kernel_fpu_end(void)
368 {
369 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
370 
371 	this_cpu_write(in_kernel_fpu, false);
372 	preempt_enable();
373 }
374 EXPORT_SYMBOL_GPL(kernel_fpu_end);
375 
376 /*
377  * Sync the FPU register state to current's memory register state when the
378  * current task owns the FPU. The hardware register state is preserved.
379  */
380 void fpu_sync_fpstate(struct fpu *fpu)
381 {
382 	WARN_ON_FPU(fpu != &current->thread.fpu);
383 
384 	fpregs_lock();
385 	trace_x86_fpu_before_save(fpu);
386 
387 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
388 		save_fpregs_to_fpstate(fpu);
389 
390 	trace_x86_fpu_after_save(fpu);
391 	fpregs_unlock();
392 }
393 
394 static inline unsigned int init_fpstate_copy_size(void)
395 {
396 	if (!use_xsave())
397 		return fpu_kernel_cfg.default_size;
398 
399 	/* XSAVE(S) just needs the legacy and the xstate header part */
400 	return sizeof(init_fpstate.regs.xsave);
401 }
402 
403 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
404 {
405 	fpstate->regs.fxsave.cwd = 0x37f;
406 	fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
407 }
408 
409 /*
410  * Legacy x87 fpstate state init:
411  */
412 static inline void fpstate_init_fstate(struct fpstate *fpstate)
413 {
414 	fpstate->regs.fsave.cwd = 0xffff037fu;
415 	fpstate->regs.fsave.swd = 0xffff0000u;
416 	fpstate->regs.fsave.twd = 0xffffffffu;
417 	fpstate->regs.fsave.fos = 0xffff0000u;
418 }
419 
420 /*
421  * Used in two places:
422  * 1) Early boot to setup init_fpstate for non XSAVE systems
423  * 2) fpu_init_fpstate_user() which is invoked from KVM
424  */
425 void fpstate_init_user(struct fpstate *fpstate)
426 {
427 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
428 		fpstate_init_soft(&fpstate->regs.soft);
429 		return;
430 	}
431 
432 	xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
433 
434 	if (cpu_feature_enabled(X86_FEATURE_FXSR))
435 		fpstate_init_fxstate(fpstate);
436 	else
437 		fpstate_init_fstate(fpstate);
438 }
439 
440 static void __fpstate_reset(struct fpstate *fpstate)
441 {
442 	/* Initialize sizes and feature masks */
443 	fpstate->size		= fpu_kernel_cfg.default_size;
444 	fpstate->user_size	= fpu_user_cfg.default_size;
445 	fpstate->xfeatures	= fpu_kernel_cfg.default_features;
446 	fpstate->user_xfeatures	= fpu_user_cfg.default_features;
447 	fpstate->xfd		= init_fpstate.xfd;
448 }
449 
450 void fpstate_reset(struct fpu *fpu)
451 {
452 	/* Set the fpstate pointer to the default fpstate */
453 	fpu->fpstate = &fpu->__fpstate;
454 	__fpstate_reset(fpu->fpstate);
455 
456 	/* Initialize the permission related info in fpu */
457 	fpu->perm.__state_perm		= fpu_kernel_cfg.default_features;
458 	fpu->perm.__state_size		= fpu_kernel_cfg.default_size;
459 	fpu->perm.__user_state_size	= fpu_user_cfg.default_size;
460 }
461 
462 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
463 {
464 	if (fpu_state_size_dynamic()) {
465 		struct fpu *src_fpu = &current->group_leader->thread.fpu;
466 
467 		spin_lock_irq(&current->sighand->siglock);
468 		/* Fork also inherits the permissions of the parent */
469 		dst_fpu->perm = src_fpu->perm;
470 		spin_unlock_irq(&current->sighand->siglock);
471 	}
472 }
473 
474 /* Clone current's FPU state on fork */
475 int fpu_clone(struct task_struct *dst, unsigned long clone_flags)
476 {
477 	struct fpu *src_fpu = &current->thread.fpu;
478 	struct fpu *dst_fpu = &dst->thread.fpu;
479 
480 	/* The new task's FPU state cannot be valid in the hardware. */
481 	dst_fpu->last_cpu = -1;
482 
483 	fpstate_reset(dst_fpu);
484 
485 	if (!cpu_feature_enabled(X86_FEATURE_FPU))
486 		return 0;
487 
488 	/*
489 	 * Enforce reload for user space tasks and prevent kernel threads
490 	 * from trying to save the FPU registers on context switch.
491 	 */
492 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
493 
494 	/*
495 	 * No FPU state inheritance for kernel threads and IO
496 	 * worker threads.
497 	 */
498 	if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
499 		/* Clear out the minimal state */
500 		memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
501 		       init_fpstate_copy_size());
502 		return 0;
503 	}
504 
505 	/*
506 	 * If a new feature is added, ensure all dynamic features are
507 	 * caller-saved from here!
508 	 */
509 	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
510 
511 	/*
512 	 * Save the default portion of the current FPU state into the
513 	 * clone. Assume all dynamic features to be defined as caller-
514 	 * saved, which enables skipping both the expansion of fpstate
515 	 * and the copying of any dynamic state.
516 	 *
517 	 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
518 	 * copying is not valid when current uses non-default states.
519 	 */
520 	fpregs_lock();
521 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
522 		fpregs_restore_userregs();
523 	save_fpregs_to_fpstate(dst_fpu);
524 	if (!(clone_flags & CLONE_THREAD))
525 		fpu_inherit_perms(dst_fpu);
526 	fpregs_unlock();
527 
528 	trace_x86_fpu_copy_src(src_fpu);
529 	trace_x86_fpu_copy_dst(dst_fpu);
530 
531 	return 0;
532 }
533 
534 /*
535  * Whitelist the FPU register state embedded into task_struct for hardened
536  * usercopy.
537  */
538 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
539 {
540 	*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
541 	*size = fpu_kernel_cfg.default_size;
542 }
543 
544 /*
545  * Drops current FPU state: deactivates the fpregs and
546  * the fpstate. NOTE: it still leaves previous contents
547  * in the fpregs in the eager-FPU case.
548  *
549  * This function can be used in cases where we know that
550  * a state-restore is coming: either an explicit one,
551  * or a reschedule.
552  */
553 void fpu__drop(struct fpu *fpu)
554 {
555 	preempt_disable();
556 
557 	if (fpu == &current->thread.fpu) {
558 		/* Ignore delayed exceptions from user space */
559 		asm volatile("1: fwait\n"
560 			     "2:\n"
561 			     _ASM_EXTABLE(1b, 2b));
562 		fpregs_deactivate(fpu);
563 	}
564 
565 	trace_x86_fpu_dropped(fpu);
566 
567 	preempt_enable();
568 }
569 
570 /*
571  * Clear FPU registers by setting them up from the init fpstate.
572  * Caller must do fpregs_[un]lock() around it.
573  */
574 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
575 {
576 	if (use_xsave())
577 		os_xrstor(&init_fpstate, features_mask);
578 	else if (use_fxsr())
579 		fxrstor(&init_fpstate.regs.fxsave);
580 	else
581 		frstor(&init_fpstate.regs.fsave);
582 
583 	pkru_write_default();
584 }
585 
586 /*
587  * Reset current->fpu memory state to the init values.
588  */
589 static void fpu_reset_fpregs(void)
590 {
591 	struct fpu *fpu = &current->thread.fpu;
592 
593 	fpregs_lock();
594 	fpu__drop(fpu);
595 	/*
596 	 * This does not change the actual hardware registers. It just
597 	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
598 	 * subsequent return to usermode will reload the registers from the
599 	 * task's memory image.
600 	 *
601 	 * Do not use fpstate_init() here. Just copy init_fpstate which has
602 	 * the correct content already except for PKRU.
603 	 *
604 	 * PKRU handling does not rely on the xstate when restoring for
605 	 * user space as PKRU is eagerly written in switch_to() and
606 	 * flush_thread().
607 	 */
608 	memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
609 	set_thread_flag(TIF_NEED_FPU_LOAD);
610 	fpregs_unlock();
611 }
612 
613 /*
614  * Reset current's user FPU states to the init states.  current's
615  * supervisor states, if any, are not modified by this function.  The
616  * caller guarantees that the XSTATE header in memory is intact.
617  */
618 void fpu__clear_user_states(struct fpu *fpu)
619 {
620 	WARN_ON_FPU(fpu != &current->thread.fpu);
621 
622 	fpregs_lock();
623 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
624 		fpu_reset_fpregs();
625 		fpregs_unlock();
626 		return;
627 	}
628 
629 	/*
630 	 * Ensure that current's supervisor states are loaded into their
631 	 * corresponding registers.
632 	 */
633 	if (xfeatures_mask_supervisor() &&
634 	    !fpregs_state_valid(fpu, smp_processor_id()))
635 		os_xrstor_supervisor(fpu->fpstate);
636 
637 	/* Reset user states in registers. */
638 	restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
639 
640 	/*
641 	 * Now all FPU registers have their desired values.  Inform the FPU
642 	 * state machine that current's FPU registers are in the hardware
643 	 * registers. The memory image does not need to be updated because
644 	 * any operation relying on it has to save the registers first when
645 	 * current's FPU is marked active.
646 	 */
647 	fpregs_mark_activate();
648 	fpregs_unlock();
649 }
650 
651 void fpu_flush_thread(void)
652 {
653 	fpstate_reset(&current->thread.fpu);
654 	fpu_reset_fpregs();
655 }
656 /*
657  * Load FPU context before returning to userspace.
658  */
659 void switch_fpu_return(void)
660 {
661 	if (!static_cpu_has(X86_FEATURE_FPU))
662 		return;
663 
664 	fpregs_restore_userregs();
665 }
666 EXPORT_SYMBOL_GPL(switch_fpu_return);
667 
668 #ifdef CONFIG_X86_DEBUG_FPU
669 /*
670  * If current FPU state according to its tracking (loaded FPU context on this
671  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
672  * loaded on return to userland.
673  */
674 void fpregs_assert_state_consistent(void)
675 {
676 	struct fpu *fpu = &current->thread.fpu;
677 
678 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
679 		return;
680 
681 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
682 }
683 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
684 #endif
685 
686 void fpregs_mark_activate(void)
687 {
688 	struct fpu *fpu = &current->thread.fpu;
689 
690 	fpregs_activate(fpu);
691 	fpu->last_cpu = smp_processor_id();
692 	clear_thread_flag(TIF_NEED_FPU_LOAD);
693 }
694 
695 /*
696  * x87 math exception handling:
697  */
698 
699 int fpu__exception_code(struct fpu *fpu, int trap_nr)
700 {
701 	int err;
702 
703 	if (trap_nr == X86_TRAP_MF) {
704 		unsigned short cwd, swd;
705 		/*
706 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
707 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
708 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
709 		 * fault bit.  We should only be taking one exception at a time,
710 		 * so if this combination doesn't produce any single exception,
711 		 * then we have a bad program that isn't synchronizing its FPU usage
712 		 * and it will suffer the consequences since we won't be able to
713 		 * fully reproduce the context of the exception.
714 		 */
715 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
716 			cwd = fpu->fpstate->regs.fxsave.cwd;
717 			swd = fpu->fpstate->regs.fxsave.swd;
718 		} else {
719 			cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
720 			swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
721 		}
722 
723 		err = swd & ~cwd;
724 	} else {
725 		/*
726 		 * The SIMD FPU exceptions are handled a little differently, as there
727 		 * is only a single status/control register.  Thus, to determine which
728 		 * unmasked exception was caught we must mask the exception mask bits
729 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
730 		 */
731 		unsigned short mxcsr = MXCSR_DEFAULT;
732 
733 		if (boot_cpu_has(X86_FEATURE_XMM))
734 			mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
735 
736 		err = ~(mxcsr >> 7) & mxcsr;
737 	}
738 
739 	if (err & 0x001) {	/* Invalid op */
740 		/*
741 		 * swd & 0x240 == 0x040: Stack Underflow
742 		 * swd & 0x240 == 0x240: Stack Overflow
743 		 * User must clear the SF bit (0x40) if set
744 		 */
745 		return FPE_FLTINV;
746 	} else if (err & 0x004) { /* Divide by Zero */
747 		return FPE_FLTDIV;
748 	} else if (err & 0x008) { /* Overflow */
749 		return FPE_FLTOVF;
750 	} else if (err & 0x012) { /* Denormal, Underflow */
751 		return FPE_FLTUND;
752 	} else if (err & 0x020) { /* Precision */
753 		return FPE_FLTRES;
754 	}
755 
756 	/*
757 	 * If we're using IRQ 13, or supposedly even some trap
758 	 * X86_TRAP_MF implementations, it's possible
759 	 * we get a spurious trap, which is not an error.
760 	 */
761 	return 0;
762 }
763