1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/traps.h> 15 #include <asm/irq_regs.h> 16 17 #include <linux/hardirq.h> 18 #include <linux/pkeys.h> 19 #include <linux/vmalloc.h> 20 21 #include "context.h" 22 #include "internal.h" 23 #include "legacy.h" 24 #include "xstate.h" 25 26 #define CREATE_TRACE_POINTS 27 #include <asm/trace/fpu.h> 28 29 #ifdef CONFIG_X86_64 30 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 31 DEFINE_PER_CPU(u64, xfd_state); 32 #endif 33 34 /* The FPU state configuration data for kernel and user space */ 35 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 36 struct fpu_state_config fpu_user_cfg __ro_after_init; 37 38 /* 39 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 40 * depending on the FPU hardware format: 41 */ 42 struct fpstate init_fpstate __ro_after_init; 43 44 /* 45 * Track whether the kernel is using the FPU state 46 * currently. 47 * 48 * This flag is used: 49 * 50 * - by IRQ context code to potentially use the FPU 51 * if it's unused. 52 * 53 * - to debug kernel_fpu_begin()/end() correctness 54 */ 55 static DEFINE_PER_CPU(bool, in_kernel_fpu); 56 57 /* 58 * Track which context is using the FPU on the CPU: 59 */ 60 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 61 62 static bool kernel_fpu_disabled(void) 63 { 64 return this_cpu_read(in_kernel_fpu); 65 } 66 67 static bool interrupted_kernel_fpu_idle(void) 68 { 69 return !kernel_fpu_disabled(); 70 } 71 72 /* 73 * Were we in user mode (or vm86 mode) when we were 74 * interrupted? 75 * 76 * Doing kernel_fpu_begin/end() is ok if we are running 77 * in an interrupt context from user mode - we'll just 78 * save the FPU state as required. 79 */ 80 static bool interrupted_user_mode(void) 81 { 82 struct pt_regs *regs = get_irq_regs(); 83 return regs && user_mode(regs); 84 } 85 86 /* 87 * Can we use the FPU in kernel mode with the 88 * whole "kernel_fpu_begin/end()" sequence? 89 * 90 * It's always ok in process context (ie "not interrupt") 91 * but it is sometimes ok even from an irq. 92 */ 93 bool irq_fpu_usable(void) 94 { 95 return !in_interrupt() || 96 interrupted_user_mode() || 97 interrupted_kernel_fpu_idle(); 98 } 99 EXPORT_SYMBOL(irq_fpu_usable); 100 101 /* 102 * Track AVX512 state use because it is known to slow the max clock 103 * speed of the core. 104 */ 105 static void update_avx_timestamp(struct fpu *fpu) 106 { 107 108 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 109 110 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 111 fpu->avx512_timestamp = jiffies; 112 } 113 114 /* 115 * Save the FPU register state in fpu->fpstate->regs. The register state is 116 * preserved. 117 * 118 * Must be called with fpregs_lock() held. 119 * 120 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 121 * register state has to be reloaded. That might be a pointless exercise 122 * when the FPU is going to be used by another task right after that. But 123 * this only affects 20+ years old 32bit systems and avoids conditionals all 124 * over the place. 125 * 126 * FXSAVE and all XSAVE variants preserve the FPU register state. 127 */ 128 void save_fpregs_to_fpstate(struct fpu *fpu) 129 { 130 if (likely(use_xsave())) { 131 os_xsave(fpu->fpstate); 132 update_avx_timestamp(fpu); 133 return; 134 } 135 136 if (likely(use_fxsr())) { 137 fxsave(&fpu->fpstate->regs.fxsave); 138 return; 139 } 140 141 /* 142 * Legacy FPU register saving, FNSAVE always clears FPU registers, 143 * so we have to reload them from the memory state. 144 */ 145 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 146 frstor(&fpu->fpstate->regs.fsave); 147 } 148 149 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 150 { 151 /* 152 * AMD K7/K8 and later CPUs up to Zen don't save/restore 153 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 154 * here by setting it to fixed values. "m" is a random variable 155 * that should be in L1. 156 */ 157 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 158 asm volatile( 159 "fnclex\n\t" 160 "emms\n\t" 161 "fildl %P[addr]" /* set F?P to defined value */ 162 : : [addr] "m" (fpstate)); 163 } 164 165 if (use_xsave()) { 166 /* 167 * Dynamically enabled features are enabled in XCR0, but 168 * usage requires also that the corresponding bits in XFD 169 * are cleared. If the bits are set then using a related 170 * instruction will raise #NM. This allows to do the 171 * allocation of the larger FPU buffer lazy from #NM or if 172 * the task has no permission to kill it which would happen 173 * via #UD if the feature is disabled in XCR0. 174 * 175 * XFD state is following the same life time rules as 176 * XSTATE and to restore state correctly XFD has to be 177 * updated before XRSTORS otherwise the component would 178 * stay in or go into init state even if the bits are set 179 * in fpstate::regs::xsave::xfeatures. 180 */ 181 xfd_update_state(fpstate); 182 183 /* 184 * Restoring state always needs to modify all features 185 * which are in @mask even if the current task cannot use 186 * extended features. 187 * 188 * So fpstate->xfeatures cannot be used here, because then 189 * a feature for which the task has no permission but was 190 * used by the previous task would not go into init state. 191 */ 192 mask = fpu_kernel_cfg.max_features & mask; 193 194 os_xrstor(fpstate, mask); 195 } else { 196 if (use_fxsr()) 197 fxrstor(&fpstate->regs.fxsave); 198 else 199 frstor(&fpstate->regs.fsave); 200 } 201 } 202 203 void fpu_reset_from_exception_fixup(void) 204 { 205 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 206 } 207 208 #if IS_ENABLED(CONFIG_KVM) 209 static void __fpstate_reset(struct fpstate *fpstate); 210 211 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 212 { 213 struct fpstate *fpstate; 214 unsigned int size; 215 216 size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64); 217 fpstate = vzalloc(size); 218 if (!fpstate) 219 return false; 220 221 __fpstate_reset(fpstate); 222 fpstate_init_user(fpstate); 223 fpstate->is_valloc = true; 224 fpstate->is_guest = true; 225 226 gfpu->fpstate = fpstate; 227 return true; 228 } 229 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate); 230 231 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 232 { 233 struct fpstate *fps = gfpu->fpstate; 234 235 if (!fps) 236 return; 237 238 if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use)) 239 return; 240 241 gfpu->fpstate = NULL; 242 vfree(fps); 243 } 244 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate); 245 246 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 247 { 248 struct fpstate *guest_fps = guest_fpu->fpstate; 249 struct fpu *fpu = ¤t->thread.fpu; 250 struct fpstate *cur_fps = fpu->fpstate; 251 252 fpregs_lock(); 253 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 254 save_fpregs_to_fpstate(fpu); 255 256 /* Swap fpstate */ 257 if (enter_guest) { 258 fpu->__task_fpstate = cur_fps; 259 fpu->fpstate = guest_fps; 260 guest_fps->in_use = true; 261 } else { 262 guest_fps->in_use = false; 263 fpu->fpstate = fpu->__task_fpstate; 264 fpu->__task_fpstate = NULL; 265 } 266 267 cur_fps = fpu->fpstate; 268 269 if (!cur_fps->is_confidential) { 270 /* Includes XFD update */ 271 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 272 } else { 273 /* 274 * XSTATE is restored by firmware from encrypted 275 * memory. Make sure XFD state is correct while 276 * running with guest fpstate 277 */ 278 xfd_update_state(cur_fps); 279 } 280 281 fpregs_mark_activate(); 282 fpregs_unlock(); 283 return 0; 284 } 285 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate); 286 287 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 288 unsigned int size, u32 pkru) 289 { 290 struct fpstate *kstate = gfpu->fpstate; 291 union fpregs_state *ustate = buf; 292 struct membuf mb = { .p = buf, .left = size }; 293 294 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 295 __copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE); 296 } else { 297 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 298 sizeof(ustate->fxsave)); 299 /* Make it restorable on a XSAVE enabled host */ 300 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 301 } 302 } 303 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi); 304 305 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 306 u64 xcr0, u32 *vpkru) 307 { 308 struct fpstate *kstate = gfpu->fpstate; 309 const union fpregs_state *ustate = buf; 310 struct pkru_state *xpkru; 311 int ret; 312 313 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 314 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 315 return -EINVAL; 316 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 317 return -EINVAL; 318 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 319 return 0; 320 } 321 322 if (ustate->xsave.header.xfeatures & ~xcr0) 323 return -EINVAL; 324 325 ret = copy_uabi_from_kernel_to_xstate(kstate, ustate); 326 if (ret) 327 return ret; 328 329 /* Retrieve PKRU if not in init state */ 330 if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) { 331 xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU); 332 *vpkru = xpkru->pkru; 333 } 334 335 /* Ensure that XCOMP_BV is set up for XSAVES */ 336 xstate_init_xcomp_bv(&kstate->regs.xsave, kstate->xfeatures); 337 return 0; 338 } 339 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate); 340 #endif /* CONFIG_KVM */ 341 342 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 343 { 344 preempt_disable(); 345 346 WARN_ON_FPU(!irq_fpu_usable()); 347 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 348 349 this_cpu_write(in_kernel_fpu, true); 350 351 if (!(current->flags & PF_KTHREAD) && 352 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 353 set_thread_flag(TIF_NEED_FPU_LOAD); 354 save_fpregs_to_fpstate(¤t->thread.fpu); 355 } 356 __cpu_invalidate_fpregs_state(); 357 358 /* Put sane initial values into the control registers. */ 359 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 360 ldmxcsr(MXCSR_DEFAULT); 361 362 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 363 asm volatile ("fninit"); 364 } 365 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 366 367 void kernel_fpu_end(void) 368 { 369 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 370 371 this_cpu_write(in_kernel_fpu, false); 372 preempt_enable(); 373 } 374 EXPORT_SYMBOL_GPL(kernel_fpu_end); 375 376 /* 377 * Sync the FPU register state to current's memory register state when the 378 * current task owns the FPU. The hardware register state is preserved. 379 */ 380 void fpu_sync_fpstate(struct fpu *fpu) 381 { 382 WARN_ON_FPU(fpu != ¤t->thread.fpu); 383 384 fpregs_lock(); 385 trace_x86_fpu_before_save(fpu); 386 387 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 388 save_fpregs_to_fpstate(fpu); 389 390 trace_x86_fpu_after_save(fpu); 391 fpregs_unlock(); 392 } 393 394 static inline unsigned int init_fpstate_copy_size(void) 395 { 396 if (!use_xsave()) 397 return fpu_kernel_cfg.default_size; 398 399 /* XSAVE(S) just needs the legacy and the xstate header part */ 400 return sizeof(init_fpstate.regs.xsave); 401 } 402 403 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 404 { 405 fpstate->regs.fxsave.cwd = 0x37f; 406 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 407 } 408 409 /* 410 * Legacy x87 fpstate state init: 411 */ 412 static inline void fpstate_init_fstate(struct fpstate *fpstate) 413 { 414 fpstate->regs.fsave.cwd = 0xffff037fu; 415 fpstate->regs.fsave.swd = 0xffff0000u; 416 fpstate->regs.fsave.twd = 0xffffffffu; 417 fpstate->regs.fsave.fos = 0xffff0000u; 418 } 419 420 /* 421 * Used in two places: 422 * 1) Early boot to setup init_fpstate for non XSAVE systems 423 * 2) fpu_init_fpstate_user() which is invoked from KVM 424 */ 425 void fpstate_init_user(struct fpstate *fpstate) 426 { 427 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 428 fpstate_init_soft(&fpstate->regs.soft); 429 return; 430 } 431 432 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 433 434 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 435 fpstate_init_fxstate(fpstate); 436 else 437 fpstate_init_fstate(fpstate); 438 } 439 440 static void __fpstate_reset(struct fpstate *fpstate) 441 { 442 /* Initialize sizes and feature masks */ 443 fpstate->size = fpu_kernel_cfg.default_size; 444 fpstate->user_size = fpu_user_cfg.default_size; 445 fpstate->xfeatures = fpu_kernel_cfg.default_features; 446 fpstate->user_xfeatures = fpu_user_cfg.default_features; 447 fpstate->xfd = init_fpstate.xfd; 448 } 449 450 void fpstate_reset(struct fpu *fpu) 451 { 452 /* Set the fpstate pointer to the default fpstate */ 453 fpu->fpstate = &fpu->__fpstate; 454 __fpstate_reset(fpu->fpstate); 455 456 /* Initialize the permission related info in fpu */ 457 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 458 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 459 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 460 } 461 462 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 463 { 464 if (fpu_state_size_dynamic()) { 465 struct fpu *src_fpu = ¤t->group_leader->thread.fpu; 466 467 spin_lock_irq(¤t->sighand->siglock); 468 /* Fork also inherits the permissions of the parent */ 469 dst_fpu->perm = src_fpu->perm; 470 spin_unlock_irq(¤t->sighand->siglock); 471 } 472 } 473 474 /* Clone current's FPU state on fork */ 475 int fpu_clone(struct task_struct *dst, unsigned long clone_flags) 476 { 477 struct fpu *src_fpu = ¤t->thread.fpu; 478 struct fpu *dst_fpu = &dst->thread.fpu; 479 480 /* The new task's FPU state cannot be valid in the hardware. */ 481 dst_fpu->last_cpu = -1; 482 483 fpstate_reset(dst_fpu); 484 485 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 486 return 0; 487 488 /* 489 * Enforce reload for user space tasks and prevent kernel threads 490 * from trying to save the FPU registers on context switch. 491 */ 492 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 493 494 /* 495 * No FPU state inheritance for kernel threads and IO 496 * worker threads. 497 */ 498 if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) { 499 /* Clear out the minimal state */ 500 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 501 init_fpstate_copy_size()); 502 return 0; 503 } 504 505 /* 506 * If a new feature is added, ensure all dynamic features are 507 * caller-saved from here! 508 */ 509 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 510 511 /* 512 * Save the default portion of the current FPU state into the 513 * clone. Assume all dynamic features to be defined as caller- 514 * saved, which enables skipping both the expansion of fpstate 515 * and the copying of any dynamic state. 516 * 517 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 518 * copying is not valid when current uses non-default states. 519 */ 520 fpregs_lock(); 521 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 522 fpregs_restore_userregs(); 523 save_fpregs_to_fpstate(dst_fpu); 524 if (!(clone_flags & CLONE_THREAD)) 525 fpu_inherit_perms(dst_fpu); 526 fpregs_unlock(); 527 528 trace_x86_fpu_copy_src(src_fpu); 529 trace_x86_fpu_copy_dst(dst_fpu); 530 531 return 0; 532 } 533 534 /* 535 * Whitelist the FPU register state embedded into task_struct for hardened 536 * usercopy. 537 */ 538 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 539 { 540 *offset = offsetof(struct thread_struct, fpu.__fpstate.regs); 541 *size = fpu_kernel_cfg.default_size; 542 } 543 544 /* 545 * Drops current FPU state: deactivates the fpregs and 546 * the fpstate. NOTE: it still leaves previous contents 547 * in the fpregs in the eager-FPU case. 548 * 549 * This function can be used in cases where we know that 550 * a state-restore is coming: either an explicit one, 551 * or a reschedule. 552 */ 553 void fpu__drop(struct fpu *fpu) 554 { 555 preempt_disable(); 556 557 if (fpu == ¤t->thread.fpu) { 558 /* Ignore delayed exceptions from user space */ 559 asm volatile("1: fwait\n" 560 "2:\n" 561 _ASM_EXTABLE(1b, 2b)); 562 fpregs_deactivate(fpu); 563 } 564 565 trace_x86_fpu_dropped(fpu); 566 567 preempt_enable(); 568 } 569 570 /* 571 * Clear FPU registers by setting them up from the init fpstate. 572 * Caller must do fpregs_[un]lock() around it. 573 */ 574 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 575 { 576 if (use_xsave()) 577 os_xrstor(&init_fpstate, features_mask); 578 else if (use_fxsr()) 579 fxrstor(&init_fpstate.regs.fxsave); 580 else 581 frstor(&init_fpstate.regs.fsave); 582 583 pkru_write_default(); 584 } 585 586 /* 587 * Reset current->fpu memory state to the init values. 588 */ 589 static void fpu_reset_fpregs(void) 590 { 591 struct fpu *fpu = ¤t->thread.fpu; 592 593 fpregs_lock(); 594 fpu__drop(fpu); 595 /* 596 * This does not change the actual hardware registers. It just 597 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 598 * subsequent return to usermode will reload the registers from the 599 * task's memory image. 600 * 601 * Do not use fpstate_init() here. Just copy init_fpstate which has 602 * the correct content already except for PKRU. 603 * 604 * PKRU handling does not rely on the xstate when restoring for 605 * user space as PKRU is eagerly written in switch_to() and 606 * flush_thread(). 607 */ 608 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 609 set_thread_flag(TIF_NEED_FPU_LOAD); 610 fpregs_unlock(); 611 } 612 613 /* 614 * Reset current's user FPU states to the init states. current's 615 * supervisor states, if any, are not modified by this function. The 616 * caller guarantees that the XSTATE header in memory is intact. 617 */ 618 void fpu__clear_user_states(struct fpu *fpu) 619 { 620 WARN_ON_FPU(fpu != ¤t->thread.fpu); 621 622 fpregs_lock(); 623 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 624 fpu_reset_fpregs(); 625 fpregs_unlock(); 626 return; 627 } 628 629 /* 630 * Ensure that current's supervisor states are loaded into their 631 * corresponding registers. 632 */ 633 if (xfeatures_mask_supervisor() && 634 !fpregs_state_valid(fpu, smp_processor_id())) 635 os_xrstor_supervisor(fpu->fpstate); 636 637 /* Reset user states in registers. */ 638 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 639 640 /* 641 * Now all FPU registers have their desired values. Inform the FPU 642 * state machine that current's FPU registers are in the hardware 643 * registers. The memory image does not need to be updated because 644 * any operation relying on it has to save the registers first when 645 * current's FPU is marked active. 646 */ 647 fpregs_mark_activate(); 648 fpregs_unlock(); 649 } 650 651 void fpu_flush_thread(void) 652 { 653 fpstate_reset(¤t->thread.fpu); 654 fpu_reset_fpregs(); 655 } 656 /* 657 * Load FPU context before returning to userspace. 658 */ 659 void switch_fpu_return(void) 660 { 661 if (!static_cpu_has(X86_FEATURE_FPU)) 662 return; 663 664 fpregs_restore_userregs(); 665 } 666 EXPORT_SYMBOL_GPL(switch_fpu_return); 667 668 #ifdef CONFIG_X86_DEBUG_FPU 669 /* 670 * If current FPU state according to its tracking (loaded FPU context on this 671 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 672 * loaded on return to userland. 673 */ 674 void fpregs_assert_state_consistent(void) 675 { 676 struct fpu *fpu = ¤t->thread.fpu; 677 678 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 679 return; 680 681 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 682 } 683 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 684 #endif 685 686 void fpregs_mark_activate(void) 687 { 688 struct fpu *fpu = ¤t->thread.fpu; 689 690 fpregs_activate(fpu); 691 fpu->last_cpu = smp_processor_id(); 692 clear_thread_flag(TIF_NEED_FPU_LOAD); 693 } 694 695 /* 696 * x87 math exception handling: 697 */ 698 699 int fpu__exception_code(struct fpu *fpu, int trap_nr) 700 { 701 int err; 702 703 if (trap_nr == X86_TRAP_MF) { 704 unsigned short cwd, swd; 705 /* 706 * (~cwd & swd) will mask out exceptions that are not set to unmasked 707 * status. 0x3f is the exception bits in these regs, 0x200 is the 708 * C1 reg you need in case of a stack fault, 0x040 is the stack 709 * fault bit. We should only be taking one exception at a time, 710 * so if this combination doesn't produce any single exception, 711 * then we have a bad program that isn't synchronizing its FPU usage 712 * and it will suffer the consequences since we won't be able to 713 * fully reproduce the context of the exception. 714 */ 715 if (boot_cpu_has(X86_FEATURE_FXSR)) { 716 cwd = fpu->fpstate->regs.fxsave.cwd; 717 swd = fpu->fpstate->regs.fxsave.swd; 718 } else { 719 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 720 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 721 } 722 723 err = swd & ~cwd; 724 } else { 725 /* 726 * The SIMD FPU exceptions are handled a little differently, as there 727 * is only a single status/control register. Thus, to determine which 728 * unmasked exception was caught we must mask the exception mask bits 729 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 730 */ 731 unsigned short mxcsr = MXCSR_DEFAULT; 732 733 if (boot_cpu_has(X86_FEATURE_XMM)) 734 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 735 736 err = ~(mxcsr >> 7) & mxcsr; 737 } 738 739 if (err & 0x001) { /* Invalid op */ 740 /* 741 * swd & 0x240 == 0x040: Stack Underflow 742 * swd & 0x240 == 0x240: Stack Overflow 743 * User must clear the SF bit (0x40) if set 744 */ 745 return FPE_FLTINV; 746 } else if (err & 0x004) { /* Divide by Zero */ 747 return FPE_FLTDIV; 748 } else if (err & 0x008) { /* Overflow */ 749 return FPE_FLTOVF; 750 } else if (err & 0x012) { /* Denormal, Underflow */ 751 return FPE_FLTUND; 752 } else if (err & 0x020) { /* Precision */ 753 return FPE_FLTRES; 754 } 755 756 /* 757 * If we're using IRQ 13, or supposedly even some trap 758 * X86_TRAP_MF implementations, it's possible 759 * we get a spurious trap, which is not an error. 760 */ 761 return 0; 762 } 763