xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision ccd51b9f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15 
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21 
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __read_mostly;
27 
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 
46 static bool kernel_fpu_disabled(void)
47 {
48 	return this_cpu_read(in_kernel_fpu);
49 }
50 
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53 	return !kernel_fpu_disabled();
54 }
55 
56 /*
57  * Were we in user mode (or vm86 mode) when we were
58  * interrupted?
59  *
60  * Doing kernel_fpu_begin/end() is ok if we are running
61  * in an interrupt context from user mode - we'll just
62  * save the FPU state as required.
63  */
64 static bool interrupted_user_mode(void)
65 {
66 	struct pt_regs *regs = get_irq_regs();
67 	return regs && user_mode(regs);
68 }
69 
70 /*
71  * Can we use the FPU in kernel mode with the
72  * whole "kernel_fpu_begin/end()" sequence?
73  *
74  * It's always ok in process context (ie "not interrupt")
75  * but it is sometimes ok even from an irq.
76  */
77 bool irq_fpu_usable(void)
78 {
79 	return !in_interrupt() ||
80 		interrupted_user_mode() ||
81 		interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84 
85 void kernel_fpu_begin(void)
86 {
87 	preempt_disable();
88 
89 	WARN_ON_FPU(!irq_fpu_usable());
90 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
91 
92 	this_cpu_write(in_kernel_fpu, true);
93 
94 	if (!(current->flags & PF_KTHREAD) &&
95 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
96 		set_thread_flag(TIF_NEED_FPU_LOAD);
97 		/*
98 		 * Ignore return value -- we don't care if reg state
99 		 * is clobbered.
100 		 */
101 		copy_fpregs_to_fpstate(&current->thread.fpu);
102 	}
103 	__cpu_invalidate_fpregs_state();
104 }
105 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
106 
107 void kernel_fpu_end(void)
108 {
109 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
110 
111 	this_cpu_write(in_kernel_fpu, false);
112 	preempt_enable();
113 }
114 EXPORT_SYMBOL_GPL(kernel_fpu_end);
115 
116 /*
117  * Save the FPU state (mark it for reload if necessary):
118  *
119  * This only ever gets called for the current task.
120  */
121 void fpu__save(struct fpu *fpu)
122 {
123 	WARN_ON_FPU(fpu != &current->thread.fpu);
124 
125 	fpregs_lock();
126 	trace_x86_fpu_before_save(fpu);
127 
128 	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
129 		if (!copy_fpregs_to_fpstate(fpu)) {
130 			copy_kernel_to_fpregs(&fpu->state);
131 		}
132 	}
133 
134 	trace_x86_fpu_after_save(fpu);
135 	fpregs_unlock();
136 }
137 
138 /*
139  * Legacy x87 fpstate state init:
140  */
141 static inline void fpstate_init_fstate(struct fregs_state *fp)
142 {
143 	fp->cwd = 0xffff037fu;
144 	fp->swd = 0xffff0000u;
145 	fp->twd = 0xffffffffu;
146 	fp->fos = 0xffff0000u;
147 }
148 
149 void fpstate_init(union fpregs_state *state)
150 {
151 	if (!static_cpu_has(X86_FEATURE_FPU)) {
152 		fpstate_init_soft(&state->soft);
153 		return;
154 	}
155 
156 	memset(state, 0, fpu_kernel_xstate_size);
157 
158 	if (static_cpu_has(X86_FEATURE_XSAVES))
159 		fpstate_init_xstate(&state->xsave);
160 	if (static_cpu_has(X86_FEATURE_FXSR))
161 		fpstate_init_fxstate(&state->fxsave);
162 	else
163 		fpstate_init_fstate(&state->fsave);
164 }
165 EXPORT_SYMBOL_GPL(fpstate_init);
166 
167 int fpu__copy(struct task_struct *dst, struct task_struct *src)
168 {
169 	struct fpu *dst_fpu = &dst->thread.fpu;
170 	struct fpu *src_fpu = &src->thread.fpu;
171 
172 	dst_fpu->last_cpu = -1;
173 
174 	if (!static_cpu_has(X86_FEATURE_FPU))
175 		return 0;
176 
177 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
178 
179 	/*
180 	 * Don't let 'init optimized' areas of the XSAVE area
181 	 * leak into the child task:
182 	 */
183 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
184 
185 	/*
186 	 * If the FPU registers are not current just memcpy() the state.
187 	 * Otherwise save current FPU registers directly into the child's FPU
188 	 * context, without any memory-to-memory copying.
189 	 *
190 	 * ( The function 'fails' in the FNSAVE case, which destroys
191 	 *   register contents so we have to load them back. )
192 	 */
193 	fpregs_lock();
194 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
195 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
196 
197 	else if (!copy_fpregs_to_fpstate(dst_fpu))
198 		copy_kernel_to_fpregs(&dst_fpu->state);
199 
200 	fpregs_unlock();
201 
202 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
203 
204 	trace_x86_fpu_copy_src(src_fpu);
205 	trace_x86_fpu_copy_dst(dst_fpu);
206 
207 	return 0;
208 }
209 
210 /*
211  * Activate the current task's in-memory FPU context,
212  * if it has not been used before:
213  */
214 static void fpu__initialize(struct fpu *fpu)
215 {
216 	WARN_ON_FPU(fpu != &current->thread.fpu);
217 
218 	set_thread_flag(TIF_NEED_FPU_LOAD);
219 	fpstate_init(&fpu->state);
220 	trace_x86_fpu_init_state(fpu);
221 }
222 
223 /*
224  * This function must be called before we read a task's fpstate.
225  *
226  * There's two cases where this gets called:
227  *
228  * - for the current task (when coredumping), in which case we have
229  *   to save the latest FPU registers into the fpstate,
230  *
231  * - or it's called for stopped tasks (ptrace), in which case the
232  *   registers were already saved by the context-switch code when
233  *   the task scheduled out.
234  *
235  * If the task has used the FPU before then save it.
236  */
237 void fpu__prepare_read(struct fpu *fpu)
238 {
239 	if (fpu == &current->thread.fpu)
240 		fpu__save(fpu);
241 }
242 
243 /*
244  * This function must be called before we write a task's fpstate.
245  *
246  * Invalidate any cached FPU registers.
247  *
248  * After this function call, after registers in the fpstate are
249  * modified and the child task has woken up, the child task will
250  * restore the modified FPU state from the modified context. If we
251  * didn't clear its cached status here then the cached in-registers
252  * state pending on its former CPU could be restored, corrupting
253  * the modifications.
254  */
255 void fpu__prepare_write(struct fpu *fpu)
256 {
257 	/*
258 	 * Only stopped child tasks can be used to modify the FPU
259 	 * state in the fpstate buffer:
260 	 */
261 	WARN_ON_FPU(fpu == &current->thread.fpu);
262 
263 	/* Invalidate any cached state: */
264 	__fpu_invalidate_fpregs_state(fpu);
265 }
266 
267 /*
268  * Drops current FPU state: deactivates the fpregs and
269  * the fpstate. NOTE: it still leaves previous contents
270  * in the fpregs in the eager-FPU case.
271  *
272  * This function can be used in cases where we know that
273  * a state-restore is coming: either an explicit one,
274  * or a reschedule.
275  */
276 void fpu__drop(struct fpu *fpu)
277 {
278 	preempt_disable();
279 
280 	if (fpu == &current->thread.fpu) {
281 		/* Ignore delayed exceptions from user space */
282 		asm volatile("1: fwait\n"
283 			     "2:\n"
284 			     _ASM_EXTABLE(1b, 2b));
285 		fpregs_deactivate(fpu);
286 	}
287 
288 	trace_x86_fpu_dropped(fpu);
289 
290 	preempt_enable();
291 }
292 
293 /*
294  * Clear FPU registers by setting them up from
295  * the init fpstate:
296  */
297 static inline void copy_init_fpstate_to_fpregs(void)
298 {
299 	fpregs_lock();
300 
301 	if (use_xsave())
302 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
303 	else if (static_cpu_has(X86_FEATURE_FXSR))
304 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
305 	else
306 		copy_kernel_to_fregs(&init_fpstate.fsave);
307 
308 	if (boot_cpu_has(X86_FEATURE_OSPKE))
309 		copy_init_pkru_to_fpregs();
310 
311 	fpregs_mark_activate();
312 	fpregs_unlock();
313 }
314 
315 /*
316  * Clear the FPU state back to init state.
317  *
318  * Called by sys_execve(), by the signal handler code and by various
319  * error paths.
320  */
321 void fpu__clear(struct fpu *fpu)
322 {
323 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
324 
325 	fpu__drop(fpu);
326 
327 	/*
328 	 * Make sure fpstate is cleared and initialized.
329 	 */
330 	fpu__initialize(fpu);
331 	if (static_cpu_has(X86_FEATURE_FPU))
332 		copy_init_fpstate_to_fpregs();
333 }
334 
335 /*
336  * Load FPU context before returning to userspace.
337  */
338 void switch_fpu_return(void)
339 {
340 	if (!static_cpu_has(X86_FEATURE_FPU))
341 		return;
342 
343 	__fpregs_load_activate();
344 }
345 EXPORT_SYMBOL_GPL(switch_fpu_return);
346 
347 #ifdef CONFIG_X86_DEBUG_FPU
348 /*
349  * If current FPU state according to its tracking (loaded FPU context on this
350  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
351  * loaded on return to userland.
352  */
353 void fpregs_assert_state_consistent(void)
354 {
355 	struct fpu *fpu = &current->thread.fpu;
356 
357 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
358 		return;
359 
360 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
361 }
362 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
363 #endif
364 
365 void fpregs_mark_activate(void)
366 {
367 	struct fpu *fpu = &current->thread.fpu;
368 
369 	fpregs_activate(fpu);
370 	fpu->last_cpu = smp_processor_id();
371 	clear_thread_flag(TIF_NEED_FPU_LOAD);
372 }
373 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
374 
375 /*
376  * x87 math exception handling:
377  */
378 
379 int fpu__exception_code(struct fpu *fpu, int trap_nr)
380 {
381 	int err;
382 
383 	if (trap_nr == X86_TRAP_MF) {
384 		unsigned short cwd, swd;
385 		/*
386 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
387 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
388 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
389 		 * fault bit.  We should only be taking one exception at a time,
390 		 * so if this combination doesn't produce any single exception,
391 		 * then we have a bad program that isn't synchronizing its FPU usage
392 		 * and it will suffer the consequences since we won't be able to
393 		 * fully reproduce the context of the exception.
394 		 */
395 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
396 			cwd = fpu->state.fxsave.cwd;
397 			swd = fpu->state.fxsave.swd;
398 		} else {
399 			cwd = (unsigned short)fpu->state.fsave.cwd;
400 			swd = (unsigned short)fpu->state.fsave.swd;
401 		}
402 
403 		err = swd & ~cwd;
404 	} else {
405 		/*
406 		 * The SIMD FPU exceptions are handled a little differently, as there
407 		 * is only a single status/control register.  Thus, to determine which
408 		 * unmasked exception was caught we must mask the exception mask bits
409 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
410 		 */
411 		unsigned short mxcsr = MXCSR_DEFAULT;
412 
413 		if (boot_cpu_has(X86_FEATURE_XMM))
414 			mxcsr = fpu->state.fxsave.mxcsr;
415 
416 		err = ~(mxcsr >> 7) & mxcsr;
417 	}
418 
419 	if (err & 0x001) {	/* Invalid op */
420 		/*
421 		 * swd & 0x240 == 0x040: Stack Underflow
422 		 * swd & 0x240 == 0x240: Stack Overflow
423 		 * User must clear the SF bit (0x40) if set
424 		 */
425 		return FPE_FLTINV;
426 	} else if (err & 0x004) { /* Divide by Zero */
427 		return FPE_FLTDIV;
428 	} else if (err & 0x008) { /* Overflow */
429 		return FPE_FLTOVF;
430 	} else if (err & 0x012) { /* Denormal, Underflow */
431 		return FPE_FLTUND;
432 	} else if (err & 0x020) { /* Precision */
433 		return FPE_FLTRES;
434 	}
435 
436 	/*
437 	 * If we're using IRQ 13, or supposedly even some trap
438 	 * X86_TRAP_MF implementations, it's possible
439 	 * we get a spurious trap, which is not an error.
440 	 */
441 	return 0;
442 }
443