xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision b52455a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16 
17 #include <linux/hardirq.h>
18 #include <linux/pkeys.h>
19 #include <linux/vmalloc.h>
20 
21 #include "context.h"
22 #include "internal.h"
23 #include "legacy.h"
24 #include "xstate.h"
25 
26 #define CREATE_TRACE_POINTS
27 #include <asm/trace/fpu.h>
28 
29 #ifdef CONFIG_X86_64
30 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
31 DEFINE_PER_CPU(u64, xfd_state);
32 #endif
33 
34 /* The FPU state configuration data for kernel and user space */
35 struct fpu_state_config	fpu_kernel_cfg __ro_after_init;
36 struct fpu_state_config fpu_user_cfg __ro_after_init;
37 
38 /*
39  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
40  * depending on the FPU hardware format:
41  */
42 struct fpstate init_fpstate __ro_after_init;
43 
44 /*
45  * Track whether the kernel is using the FPU state
46  * currently.
47  *
48  * This flag is used:
49  *
50  *   - by IRQ context code to potentially use the FPU
51  *     if it's unused.
52  *
53  *   - to debug kernel_fpu_begin()/end() correctness
54  */
55 static DEFINE_PER_CPU(bool, in_kernel_fpu);
56 
57 /*
58  * Track which context is using the FPU on the CPU:
59  */
60 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
61 
62 static bool kernel_fpu_disabled(void)
63 {
64 	return this_cpu_read(in_kernel_fpu);
65 }
66 
67 static bool interrupted_kernel_fpu_idle(void)
68 {
69 	return !kernel_fpu_disabled();
70 }
71 
72 /*
73  * Were we in user mode (or vm86 mode) when we were
74  * interrupted?
75  *
76  * Doing kernel_fpu_begin/end() is ok if we are running
77  * in an interrupt context from user mode - we'll just
78  * save the FPU state as required.
79  */
80 static bool interrupted_user_mode(void)
81 {
82 	struct pt_regs *regs = get_irq_regs();
83 	return regs && user_mode(regs);
84 }
85 
86 /*
87  * Can we use the FPU in kernel mode with the
88  * whole "kernel_fpu_begin/end()" sequence?
89  *
90  * It's always ok in process context (ie "not interrupt")
91  * but it is sometimes ok even from an irq.
92  */
93 bool irq_fpu_usable(void)
94 {
95 	return !in_interrupt() ||
96 		interrupted_user_mode() ||
97 		interrupted_kernel_fpu_idle();
98 }
99 EXPORT_SYMBOL(irq_fpu_usable);
100 
101 /*
102  * Track AVX512 state use because it is known to slow the max clock
103  * speed of the core.
104  */
105 static void update_avx_timestamp(struct fpu *fpu)
106 {
107 
108 #define AVX512_TRACKING_MASK	(XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
109 
110 	if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
111 		fpu->avx512_timestamp = jiffies;
112 }
113 
114 /*
115  * Save the FPU register state in fpu->fpstate->regs. The register state is
116  * preserved.
117  *
118  * Must be called with fpregs_lock() held.
119  *
120  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
121  * register state has to be reloaded. That might be a pointless exercise
122  * when the FPU is going to be used by another task right after that. But
123  * this only affects 20+ years old 32bit systems and avoids conditionals all
124  * over the place.
125  *
126  * FXSAVE and all XSAVE variants preserve the FPU register state.
127  */
128 void save_fpregs_to_fpstate(struct fpu *fpu)
129 {
130 	if (likely(use_xsave())) {
131 		os_xsave(fpu->fpstate);
132 		update_avx_timestamp(fpu);
133 		return;
134 	}
135 
136 	if (likely(use_fxsr())) {
137 		fxsave(&fpu->fpstate->regs.fxsave);
138 		return;
139 	}
140 
141 	/*
142 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
143 	 * so we have to reload them from the memory state.
144 	 */
145 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
146 	frstor(&fpu->fpstate->regs.fsave);
147 }
148 
149 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
150 {
151 	/*
152 	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
153 	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
154 	 * here by setting it to fixed values.  "m" is a random variable
155 	 * that should be in L1.
156 	 */
157 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
158 		asm volatile(
159 			"fnclex\n\t"
160 			"emms\n\t"
161 			"fildl %P[addr]"	/* set F?P to defined value */
162 			: : [addr] "m" (fpstate));
163 	}
164 
165 	if (use_xsave()) {
166 		/*
167 		 * Dynamically enabled features are enabled in XCR0, but
168 		 * usage requires also that the corresponding bits in XFD
169 		 * are cleared.  If the bits are set then using a related
170 		 * instruction will raise #NM. This allows to do the
171 		 * allocation of the larger FPU buffer lazy from #NM or if
172 		 * the task has no permission to kill it which would happen
173 		 * via #UD if the feature is disabled in XCR0.
174 		 *
175 		 * XFD state is following the same life time rules as
176 		 * XSTATE and to restore state correctly XFD has to be
177 		 * updated before XRSTORS otherwise the component would
178 		 * stay in or go into init state even if the bits are set
179 		 * in fpstate::regs::xsave::xfeatures.
180 		 */
181 		xfd_update_state(fpstate);
182 
183 		/*
184 		 * Restoring state always needs to modify all features
185 		 * which are in @mask even if the current task cannot use
186 		 * extended features.
187 		 *
188 		 * So fpstate->xfeatures cannot be used here, because then
189 		 * a feature for which the task has no permission but was
190 		 * used by the previous task would not go into init state.
191 		 */
192 		mask = fpu_kernel_cfg.max_features & mask;
193 
194 		os_xrstor(fpstate, mask);
195 	} else {
196 		if (use_fxsr())
197 			fxrstor(&fpstate->regs.fxsave);
198 		else
199 			frstor(&fpstate->regs.fsave);
200 	}
201 }
202 
203 void fpu_reset_from_exception_fixup(void)
204 {
205 	restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
206 }
207 
208 #if IS_ENABLED(CONFIG_KVM)
209 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
210 
211 static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
212 {
213 	struct fpu_state_perm *fpuperm;
214 	u64 perm;
215 
216 	if (!IS_ENABLED(CONFIG_X86_64))
217 		return;
218 
219 	spin_lock_irq(&current->sighand->siglock);
220 	fpuperm = &current->group_leader->thread.fpu.guest_perm;
221 	perm = fpuperm->__state_perm;
222 
223 	/* First fpstate allocation locks down permissions. */
224 	WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
225 
226 	spin_unlock_irq(&current->sighand->siglock);
227 
228 	gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
229 }
230 
231 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
232 {
233 	struct fpstate *fpstate;
234 	unsigned int size;
235 
236 	size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
237 	fpstate = vzalloc(size);
238 	if (!fpstate)
239 		return false;
240 
241 	/* Leave xfd to 0 (the reset value defined by spec) */
242 	__fpstate_reset(fpstate, 0);
243 	fpstate_init_user(fpstate);
244 	fpstate->is_valloc	= true;
245 	fpstate->is_guest	= true;
246 
247 	gfpu->fpstate		= fpstate;
248 	gfpu->xfeatures		= fpu_user_cfg.default_features;
249 	gfpu->perm		= fpu_user_cfg.default_features;
250 	gfpu->uabi_size		= fpu_user_cfg.default_size;
251 	fpu_init_guest_permissions(gfpu);
252 
253 	return true;
254 }
255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
256 
257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
258 {
259 	struct fpstate *fps = gfpu->fpstate;
260 
261 	if (!fps)
262 		return;
263 
264 	if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
265 		return;
266 
267 	gfpu->fpstate = NULL;
268 	vfree(fps);
269 }
270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
271 
272 /*
273   * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
274   * @guest_fpu:         Pointer to the guest FPU container
275   * @xfeatures:         Features requested by guest CPUID
276   *
277   * Enable all dynamic xfeatures according to guest perm and requested CPUID.
278   *
279   * Return: 0 on success, error code otherwise
280   */
281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
282 {
283 	lockdep_assert_preemption_enabled();
284 
285 	/* Nothing to do if all requested features are already enabled. */
286 	xfeatures &= ~guest_fpu->xfeatures;
287 	if (!xfeatures)
288 		return 0;
289 
290 	return __xfd_enable_feature(xfeatures, guest_fpu);
291 }
292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
293 
294 #ifdef CONFIG_X86_64
295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
296 {
297 	fpregs_lock();
298 	guest_fpu->fpstate->xfd = xfd;
299 	if (guest_fpu->fpstate->in_use)
300 		xfd_update_state(guest_fpu->fpstate);
301 	fpregs_unlock();
302 }
303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
304 
305 /**
306  * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
307  *
308  * Must be invoked from KVM after a VMEXIT before enabling interrupts when
309  * XFD write emulation is disabled. This is required because the guest can
310  * freely modify XFD and the state at VMEXIT is not guaranteed to be the
311  * same as the state on VMENTER. So software state has to be udpated before
312  * any operation which depends on it can take place.
313  *
314  * Note: It can be invoked unconditionally even when write emulation is
315  * enabled for the price of a then pointless MSR read.
316  */
317 void fpu_sync_guest_vmexit_xfd_state(void)
318 {
319 	struct fpstate *fps = current->thread.fpu.fpstate;
320 
321 	lockdep_assert_irqs_disabled();
322 	if (fpu_state_size_dynamic()) {
323 		rdmsrl(MSR_IA32_XFD, fps->xfd);
324 		__this_cpu_write(xfd_state, fps->xfd);
325 	}
326 }
327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
328 #endif /* CONFIG_X86_64 */
329 
330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
331 {
332 	struct fpstate *guest_fps = guest_fpu->fpstate;
333 	struct fpu *fpu = &current->thread.fpu;
334 	struct fpstate *cur_fps = fpu->fpstate;
335 
336 	fpregs_lock();
337 	if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
338 		save_fpregs_to_fpstate(fpu);
339 
340 	/* Swap fpstate */
341 	if (enter_guest) {
342 		fpu->__task_fpstate = cur_fps;
343 		fpu->fpstate = guest_fps;
344 		guest_fps->in_use = true;
345 	} else {
346 		guest_fps->in_use = false;
347 		fpu->fpstate = fpu->__task_fpstate;
348 		fpu->__task_fpstate = NULL;
349 	}
350 
351 	cur_fps = fpu->fpstate;
352 
353 	if (!cur_fps->is_confidential) {
354 		/* Includes XFD update */
355 		restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
356 	} else {
357 		/*
358 		 * XSTATE is restored by firmware from encrypted
359 		 * memory. Make sure XFD state is correct while
360 		 * running with guest fpstate
361 		 */
362 		xfd_update_state(cur_fps);
363 	}
364 
365 	fpregs_mark_activate();
366 	fpregs_unlock();
367 	return 0;
368 }
369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
370 
371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
372 				    unsigned int size, u32 pkru)
373 {
374 	struct fpstate *kstate = gfpu->fpstate;
375 	union fpregs_state *ustate = buf;
376 	struct membuf mb = { .p = buf, .left = size };
377 
378 	if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
379 		__copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
380 	} else {
381 		memcpy(&ustate->fxsave, &kstate->regs.fxsave,
382 		       sizeof(ustate->fxsave));
383 		/* Make it restorable on a XSAVE enabled host */
384 		ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
385 	}
386 }
387 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
388 
389 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
390 				   u64 xcr0, u32 *vpkru)
391 {
392 	struct fpstate *kstate = gfpu->fpstate;
393 	const union fpregs_state *ustate = buf;
394 	struct pkru_state *xpkru;
395 	int ret;
396 
397 	if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
398 		if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
399 			return -EINVAL;
400 		if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
401 			return -EINVAL;
402 		memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
403 		return 0;
404 	}
405 
406 	if (ustate->xsave.header.xfeatures & ~xcr0)
407 		return -EINVAL;
408 
409 	ret = copy_uabi_from_kernel_to_xstate(kstate, ustate);
410 	if (ret)
411 		return ret;
412 
413 	/* Retrieve PKRU if not in init state */
414 	if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
415 		xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU);
416 		*vpkru = xpkru->pkru;
417 	}
418 	return 0;
419 }
420 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
421 #endif /* CONFIG_KVM */
422 
423 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
424 {
425 	preempt_disable();
426 
427 	WARN_ON_FPU(!irq_fpu_usable());
428 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
429 
430 	this_cpu_write(in_kernel_fpu, true);
431 
432 	if (!(current->flags & PF_KTHREAD) &&
433 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
434 		set_thread_flag(TIF_NEED_FPU_LOAD);
435 		save_fpregs_to_fpstate(&current->thread.fpu);
436 	}
437 	__cpu_invalidate_fpregs_state();
438 
439 	/* Put sane initial values into the control registers. */
440 	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
441 		ldmxcsr(MXCSR_DEFAULT);
442 
443 	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
444 		asm volatile ("fninit");
445 }
446 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
447 
448 void kernel_fpu_end(void)
449 {
450 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
451 
452 	this_cpu_write(in_kernel_fpu, false);
453 	preempt_enable();
454 }
455 EXPORT_SYMBOL_GPL(kernel_fpu_end);
456 
457 /*
458  * Sync the FPU register state to current's memory register state when the
459  * current task owns the FPU. The hardware register state is preserved.
460  */
461 void fpu_sync_fpstate(struct fpu *fpu)
462 {
463 	WARN_ON_FPU(fpu != &current->thread.fpu);
464 
465 	fpregs_lock();
466 	trace_x86_fpu_before_save(fpu);
467 
468 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
469 		save_fpregs_to_fpstate(fpu);
470 
471 	trace_x86_fpu_after_save(fpu);
472 	fpregs_unlock();
473 }
474 
475 static inline unsigned int init_fpstate_copy_size(void)
476 {
477 	if (!use_xsave())
478 		return fpu_kernel_cfg.default_size;
479 
480 	/* XSAVE(S) just needs the legacy and the xstate header part */
481 	return sizeof(init_fpstate.regs.xsave);
482 }
483 
484 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
485 {
486 	fpstate->regs.fxsave.cwd = 0x37f;
487 	fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
488 }
489 
490 /*
491  * Legacy x87 fpstate state init:
492  */
493 static inline void fpstate_init_fstate(struct fpstate *fpstate)
494 {
495 	fpstate->regs.fsave.cwd = 0xffff037fu;
496 	fpstate->regs.fsave.swd = 0xffff0000u;
497 	fpstate->regs.fsave.twd = 0xffffffffu;
498 	fpstate->regs.fsave.fos = 0xffff0000u;
499 }
500 
501 /*
502  * Used in two places:
503  * 1) Early boot to setup init_fpstate for non XSAVE systems
504  * 2) fpu_init_fpstate_user() which is invoked from KVM
505  */
506 void fpstate_init_user(struct fpstate *fpstate)
507 {
508 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
509 		fpstate_init_soft(&fpstate->regs.soft);
510 		return;
511 	}
512 
513 	xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
514 
515 	if (cpu_feature_enabled(X86_FEATURE_FXSR))
516 		fpstate_init_fxstate(fpstate);
517 	else
518 		fpstate_init_fstate(fpstate);
519 }
520 
521 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
522 {
523 	/* Initialize sizes and feature masks */
524 	fpstate->size		= fpu_kernel_cfg.default_size;
525 	fpstate->user_size	= fpu_user_cfg.default_size;
526 	fpstate->xfeatures	= fpu_kernel_cfg.default_features;
527 	fpstate->user_xfeatures	= fpu_user_cfg.default_features;
528 	fpstate->xfd		= xfd;
529 }
530 
531 void fpstate_reset(struct fpu *fpu)
532 {
533 	/* Set the fpstate pointer to the default fpstate */
534 	fpu->fpstate = &fpu->__fpstate;
535 	__fpstate_reset(fpu->fpstate, init_fpstate.xfd);
536 
537 	/* Initialize the permission related info in fpu */
538 	fpu->perm.__state_perm		= fpu_kernel_cfg.default_features;
539 	fpu->perm.__state_size		= fpu_kernel_cfg.default_size;
540 	fpu->perm.__user_state_size	= fpu_user_cfg.default_size;
541 	/* Same defaults for guests */
542 	fpu->guest_perm = fpu->perm;
543 }
544 
545 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
546 {
547 	if (fpu_state_size_dynamic()) {
548 		struct fpu *src_fpu = &current->group_leader->thread.fpu;
549 
550 		spin_lock_irq(&current->sighand->siglock);
551 		/* Fork also inherits the permissions of the parent */
552 		dst_fpu->perm = src_fpu->perm;
553 		dst_fpu->guest_perm = src_fpu->guest_perm;
554 		spin_unlock_irq(&current->sighand->siglock);
555 	}
556 }
557 
558 /* Clone current's FPU state on fork */
559 int fpu_clone(struct task_struct *dst, unsigned long clone_flags)
560 {
561 	struct fpu *src_fpu = &current->thread.fpu;
562 	struct fpu *dst_fpu = &dst->thread.fpu;
563 
564 	/* The new task's FPU state cannot be valid in the hardware. */
565 	dst_fpu->last_cpu = -1;
566 
567 	fpstate_reset(dst_fpu);
568 
569 	if (!cpu_feature_enabled(X86_FEATURE_FPU))
570 		return 0;
571 
572 	/*
573 	 * Enforce reload for user space tasks and prevent kernel threads
574 	 * from trying to save the FPU registers on context switch.
575 	 */
576 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
577 
578 	/*
579 	 * No FPU state inheritance for kernel threads and IO
580 	 * worker threads.
581 	 */
582 	if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
583 		/* Clear out the minimal state */
584 		memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
585 		       init_fpstate_copy_size());
586 		return 0;
587 	}
588 
589 	/*
590 	 * If a new feature is added, ensure all dynamic features are
591 	 * caller-saved from here!
592 	 */
593 	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
594 
595 	/*
596 	 * Save the default portion of the current FPU state into the
597 	 * clone. Assume all dynamic features to be defined as caller-
598 	 * saved, which enables skipping both the expansion of fpstate
599 	 * and the copying of any dynamic state.
600 	 *
601 	 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
602 	 * copying is not valid when current uses non-default states.
603 	 */
604 	fpregs_lock();
605 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
606 		fpregs_restore_userregs();
607 	save_fpregs_to_fpstate(dst_fpu);
608 	if (!(clone_flags & CLONE_THREAD))
609 		fpu_inherit_perms(dst_fpu);
610 	fpregs_unlock();
611 
612 	/*
613 	 * Children never inherit PASID state.
614 	 * Force it to have its init value:
615 	 */
616 	if (use_xsave())
617 		dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
618 
619 	trace_x86_fpu_copy_src(src_fpu);
620 	trace_x86_fpu_copy_dst(dst_fpu);
621 
622 	return 0;
623 }
624 
625 /*
626  * Whitelist the FPU register state embedded into task_struct for hardened
627  * usercopy.
628  */
629 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
630 {
631 	*offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
632 	*size = fpu_kernel_cfg.default_size;
633 }
634 
635 /*
636  * Drops current FPU state: deactivates the fpregs and
637  * the fpstate. NOTE: it still leaves previous contents
638  * in the fpregs in the eager-FPU case.
639  *
640  * This function can be used in cases where we know that
641  * a state-restore is coming: either an explicit one,
642  * or a reschedule.
643  */
644 void fpu__drop(struct fpu *fpu)
645 {
646 	preempt_disable();
647 
648 	if (fpu == &current->thread.fpu) {
649 		/* Ignore delayed exceptions from user space */
650 		asm volatile("1: fwait\n"
651 			     "2:\n"
652 			     _ASM_EXTABLE(1b, 2b));
653 		fpregs_deactivate(fpu);
654 	}
655 
656 	trace_x86_fpu_dropped(fpu);
657 
658 	preempt_enable();
659 }
660 
661 /*
662  * Clear FPU registers by setting them up from the init fpstate.
663  * Caller must do fpregs_[un]lock() around it.
664  */
665 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
666 {
667 	if (use_xsave())
668 		os_xrstor(&init_fpstate, features_mask);
669 	else if (use_fxsr())
670 		fxrstor(&init_fpstate.regs.fxsave);
671 	else
672 		frstor(&init_fpstate.regs.fsave);
673 
674 	pkru_write_default();
675 }
676 
677 /*
678  * Reset current->fpu memory state to the init values.
679  */
680 static void fpu_reset_fpregs(void)
681 {
682 	struct fpu *fpu = &current->thread.fpu;
683 
684 	fpregs_lock();
685 	fpu__drop(fpu);
686 	/*
687 	 * This does not change the actual hardware registers. It just
688 	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
689 	 * subsequent return to usermode will reload the registers from the
690 	 * task's memory image.
691 	 *
692 	 * Do not use fpstate_init() here. Just copy init_fpstate which has
693 	 * the correct content already except for PKRU.
694 	 *
695 	 * PKRU handling does not rely on the xstate when restoring for
696 	 * user space as PKRU is eagerly written in switch_to() and
697 	 * flush_thread().
698 	 */
699 	memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
700 	set_thread_flag(TIF_NEED_FPU_LOAD);
701 	fpregs_unlock();
702 }
703 
704 /*
705  * Reset current's user FPU states to the init states.  current's
706  * supervisor states, if any, are not modified by this function.  The
707  * caller guarantees that the XSTATE header in memory is intact.
708  */
709 void fpu__clear_user_states(struct fpu *fpu)
710 {
711 	WARN_ON_FPU(fpu != &current->thread.fpu);
712 
713 	fpregs_lock();
714 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
715 		fpu_reset_fpregs();
716 		fpregs_unlock();
717 		return;
718 	}
719 
720 	/*
721 	 * Ensure that current's supervisor states are loaded into their
722 	 * corresponding registers.
723 	 */
724 	if (xfeatures_mask_supervisor() &&
725 	    !fpregs_state_valid(fpu, smp_processor_id()))
726 		os_xrstor_supervisor(fpu->fpstate);
727 
728 	/* Reset user states in registers. */
729 	restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
730 
731 	/*
732 	 * Now all FPU registers have their desired values.  Inform the FPU
733 	 * state machine that current's FPU registers are in the hardware
734 	 * registers. The memory image does not need to be updated because
735 	 * any operation relying on it has to save the registers first when
736 	 * current's FPU is marked active.
737 	 */
738 	fpregs_mark_activate();
739 	fpregs_unlock();
740 }
741 
742 void fpu_flush_thread(void)
743 {
744 	fpstate_reset(&current->thread.fpu);
745 	fpu_reset_fpregs();
746 }
747 /*
748  * Load FPU context before returning to userspace.
749  */
750 void switch_fpu_return(void)
751 {
752 	if (!static_cpu_has(X86_FEATURE_FPU))
753 		return;
754 
755 	fpregs_restore_userregs();
756 }
757 EXPORT_SYMBOL_GPL(switch_fpu_return);
758 
759 #ifdef CONFIG_X86_DEBUG_FPU
760 /*
761  * If current FPU state according to its tracking (loaded FPU context on this
762  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
763  * loaded on return to userland.
764  */
765 void fpregs_assert_state_consistent(void)
766 {
767 	struct fpu *fpu = &current->thread.fpu;
768 
769 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
770 		return;
771 
772 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
773 }
774 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
775 #endif
776 
777 void fpregs_mark_activate(void)
778 {
779 	struct fpu *fpu = &current->thread.fpu;
780 
781 	fpregs_activate(fpu);
782 	fpu->last_cpu = smp_processor_id();
783 	clear_thread_flag(TIF_NEED_FPU_LOAD);
784 }
785 
786 /*
787  * x87 math exception handling:
788  */
789 
790 int fpu__exception_code(struct fpu *fpu, int trap_nr)
791 {
792 	int err;
793 
794 	if (trap_nr == X86_TRAP_MF) {
795 		unsigned short cwd, swd;
796 		/*
797 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
798 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
799 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
800 		 * fault bit.  We should only be taking one exception at a time,
801 		 * so if this combination doesn't produce any single exception,
802 		 * then we have a bad program that isn't synchronizing its FPU usage
803 		 * and it will suffer the consequences since we won't be able to
804 		 * fully reproduce the context of the exception.
805 		 */
806 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
807 			cwd = fpu->fpstate->regs.fxsave.cwd;
808 			swd = fpu->fpstate->regs.fxsave.swd;
809 		} else {
810 			cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
811 			swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
812 		}
813 
814 		err = swd & ~cwd;
815 	} else {
816 		/*
817 		 * The SIMD FPU exceptions are handled a little differently, as there
818 		 * is only a single status/control register.  Thus, to determine which
819 		 * unmasked exception was caught we must mask the exception mask bits
820 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
821 		 */
822 		unsigned short mxcsr = MXCSR_DEFAULT;
823 
824 		if (boot_cpu_has(X86_FEATURE_XMM))
825 			mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
826 
827 		err = ~(mxcsr >> 7) & mxcsr;
828 	}
829 
830 	if (err & 0x001) {	/* Invalid op */
831 		/*
832 		 * swd & 0x240 == 0x040: Stack Underflow
833 		 * swd & 0x240 == 0x240: Stack Overflow
834 		 * User must clear the SF bit (0x40) if set
835 		 */
836 		return FPE_FLTINV;
837 	} else if (err & 0x004) { /* Divide by Zero */
838 		return FPE_FLTDIV;
839 	} else if (err & 0x008) { /* Overflow */
840 		return FPE_FLTOVF;
841 	} else if (err & 0x012) { /* Denormal, Underflow */
842 		return FPE_FLTUND;
843 	} else if (err & 0x020) { /* Precision */
844 		return FPE_FLTRES;
845 	}
846 
847 	/*
848 	 * If we're using IRQ 13, or supposedly even some trap
849 	 * X86_TRAP_MF implementations, it's possible
850 	 * we get a spurious trap, which is not an error.
851 	 */
852 	return 0;
853 }
854