xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15 
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21 
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __ro_after_init;
27 
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 
46 static bool kernel_fpu_disabled(void)
47 {
48 	return this_cpu_read(in_kernel_fpu);
49 }
50 
51 static bool interrupted_kernel_fpu_idle(void)
52 {
53 	return !kernel_fpu_disabled();
54 }
55 
56 /*
57  * Were we in user mode (or vm86 mode) when we were
58  * interrupted?
59  *
60  * Doing kernel_fpu_begin/end() is ok if we are running
61  * in an interrupt context from user mode - we'll just
62  * save the FPU state as required.
63  */
64 static bool interrupted_user_mode(void)
65 {
66 	struct pt_regs *regs = get_irq_regs();
67 	return regs && user_mode(regs);
68 }
69 
70 /*
71  * Can we use the FPU in kernel mode with the
72  * whole "kernel_fpu_begin/end()" sequence?
73  *
74  * It's always ok in process context (ie "not interrupt")
75  * but it is sometimes ok even from an irq.
76  */
77 bool irq_fpu_usable(void)
78 {
79 	return !in_interrupt() ||
80 		interrupted_user_mode() ||
81 		interrupted_kernel_fpu_idle();
82 }
83 EXPORT_SYMBOL(irq_fpu_usable);
84 
85 /*
86  * Save the FPU register state in fpu->state. The register state is
87  * preserved.
88  *
89  * Must be called with fpregs_lock() held.
90  *
91  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
92  * register state has to be reloaded. That might be a pointless exercise
93  * when the FPU is going to be used by another task right after that. But
94  * this only affects 20+ years old 32bit systems and avoids conditionals all
95  * over the place.
96  *
97  * FXSAVE and all XSAVE variants preserve the FPU register state.
98  */
99 void save_fpregs_to_fpstate(struct fpu *fpu)
100 {
101 	if (likely(use_xsave())) {
102 		os_xsave(&fpu->state.xsave);
103 
104 		/*
105 		 * AVX512 state is tracked here because its use is
106 		 * known to slow the max clock speed of the core.
107 		 */
108 		if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
109 			fpu->avx512_timestamp = jiffies;
110 		return;
111 	}
112 
113 	if (likely(use_fxsr())) {
114 		fxsave(&fpu->state.fxsave);
115 		return;
116 	}
117 
118 	/*
119 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
120 	 * so we have to reload them from the memory state.
121 	 */
122 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
123 	frstor(&fpu->state.fsave);
124 }
125 EXPORT_SYMBOL(save_fpregs_to_fpstate);
126 
127 void __restore_fpregs_from_fpstate(union fpregs_state *fpstate, u64 mask)
128 {
129 	/*
130 	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
131 	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
132 	 * here by setting it to fixed values.  "m" is a random variable
133 	 * that should be in L1.
134 	 */
135 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
136 		asm volatile(
137 			"fnclex\n\t"
138 			"emms\n\t"
139 			"fildl %P[addr]"	/* set F?P to defined value */
140 			: : [addr] "m" (fpstate));
141 	}
142 
143 	if (use_xsave()) {
144 		os_xrstor(&fpstate->xsave, mask);
145 	} else {
146 		if (use_fxsr())
147 			fxrstor(&fpstate->fxsave);
148 		else
149 			frstor(&fpstate->fsave);
150 	}
151 }
152 EXPORT_SYMBOL_GPL(__restore_fpregs_from_fpstate);
153 
154 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
155 {
156 	preempt_disable();
157 
158 	WARN_ON_FPU(!irq_fpu_usable());
159 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
160 
161 	this_cpu_write(in_kernel_fpu, true);
162 
163 	if (!(current->flags & PF_KTHREAD) &&
164 	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
165 		set_thread_flag(TIF_NEED_FPU_LOAD);
166 		save_fpregs_to_fpstate(&current->thread.fpu);
167 	}
168 	__cpu_invalidate_fpregs_state();
169 
170 	/* Put sane initial values into the control registers. */
171 	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
172 		ldmxcsr(MXCSR_DEFAULT);
173 
174 	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
175 		asm volatile ("fninit");
176 }
177 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
178 
179 void kernel_fpu_end(void)
180 {
181 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
182 
183 	this_cpu_write(in_kernel_fpu, false);
184 	preempt_enable();
185 }
186 EXPORT_SYMBOL_GPL(kernel_fpu_end);
187 
188 /*
189  * Sync the FPU register state to current's memory register state when the
190  * current task owns the FPU. The hardware register state is preserved.
191  */
192 void fpu_sync_fpstate(struct fpu *fpu)
193 {
194 	WARN_ON_FPU(fpu != &current->thread.fpu);
195 
196 	fpregs_lock();
197 	trace_x86_fpu_before_save(fpu);
198 
199 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
200 		save_fpregs_to_fpstate(fpu);
201 
202 	trace_x86_fpu_after_save(fpu);
203 	fpregs_unlock();
204 }
205 
206 static inline void fpstate_init_xstate(struct xregs_state *xsave)
207 {
208 	/*
209 	 * XRSTORS requires these bits set in xcomp_bv, or it will
210 	 * trigger #GP:
211 	 */
212 	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all;
213 }
214 
215 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
216 {
217 	fx->cwd = 0x37f;
218 	fx->mxcsr = MXCSR_DEFAULT;
219 }
220 
221 /*
222  * Legacy x87 fpstate state init:
223  */
224 static inline void fpstate_init_fstate(struct fregs_state *fp)
225 {
226 	fp->cwd = 0xffff037fu;
227 	fp->swd = 0xffff0000u;
228 	fp->twd = 0xffffffffu;
229 	fp->fos = 0xffff0000u;
230 }
231 
232 void fpstate_init(union fpregs_state *state)
233 {
234 	if (!static_cpu_has(X86_FEATURE_FPU)) {
235 		fpstate_init_soft(&state->soft);
236 		return;
237 	}
238 
239 	memset(state, 0, fpu_kernel_xstate_size);
240 
241 	if (static_cpu_has(X86_FEATURE_XSAVES))
242 		fpstate_init_xstate(&state->xsave);
243 	if (static_cpu_has(X86_FEATURE_FXSR))
244 		fpstate_init_fxstate(&state->fxsave);
245 	else
246 		fpstate_init_fstate(&state->fsave);
247 }
248 EXPORT_SYMBOL_GPL(fpstate_init);
249 
250 /* Clone current's FPU state on fork */
251 int fpu_clone(struct task_struct *dst)
252 {
253 	struct fpu *src_fpu = &current->thread.fpu;
254 	struct fpu *dst_fpu = &dst->thread.fpu;
255 
256 	/* The new task's FPU state cannot be valid in the hardware. */
257 	dst_fpu->last_cpu = -1;
258 
259 	if (!cpu_feature_enabled(X86_FEATURE_FPU))
260 		return 0;
261 
262 	/*
263 	 * Don't let 'init optimized' areas of the XSAVE area
264 	 * leak into the child task:
265 	 */
266 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
267 
268 	/*
269 	 * If the FPU registers are not owned by current just memcpy() the
270 	 * state.  Otherwise save the FPU registers directly into the
271 	 * child's FPU context, without any memory-to-memory copying.
272 	 */
273 	fpregs_lock();
274 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
275 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
276 
277 	else
278 		save_fpregs_to_fpstate(dst_fpu);
279 	fpregs_unlock();
280 
281 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
282 
283 	trace_x86_fpu_copy_src(src_fpu);
284 	trace_x86_fpu_copy_dst(dst_fpu);
285 
286 	return 0;
287 }
288 
289 /*
290  * Drops current FPU state: deactivates the fpregs and
291  * the fpstate. NOTE: it still leaves previous contents
292  * in the fpregs in the eager-FPU case.
293  *
294  * This function can be used in cases where we know that
295  * a state-restore is coming: either an explicit one,
296  * or a reschedule.
297  */
298 void fpu__drop(struct fpu *fpu)
299 {
300 	preempt_disable();
301 
302 	if (fpu == &current->thread.fpu) {
303 		/* Ignore delayed exceptions from user space */
304 		asm volatile("1: fwait\n"
305 			     "2:\n"
306 			     _ASM_EXTABLE(1b, 2b));
307 		fpregs_deactivate(fpu);
308 	}
309 
310 	trace_x86_fpu_dropped(fpu);
311 
312 	preempt_enable();
313 }
314 
315 /*
316  * Clear FPU registers by setting them up from the init fpstate.
317  * Caller must do fpregs_[un]lock() around it.
318  */
319 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
320 {
321 	if (use_xsave())
322 		os_xrstor(&init_fpstate.xsave, features_mask);
323 	else if (use_fxsr())
324 		fxrstor(&init_fpstate.fxsave);
325 	else
326 		frstor(&init_fpstate.fsave);
327 
328 	pkru_write_default();
329 }
330 
331 static inline unsigned int init_fpstate_copy_size(void)
332 {
333 	if (!use_xsave())
334 		return fpu_kernel_xstate_size;
335 
336 	/* XSAVE(S) just needs the legacy and the xstate header part */
337 	return sizeof(init_fpstate.xsave);
338 }
339 
340 /*
341  * Reset current->fpu memory state to the init values.
342  */
343 static void fpu_reset_fpstate(void)
344 {
345 	struct fpu *fpu = &current->thread.fpu;
346 
347 	fpregs_lock();
348 	fpu__drop(fpu);
349 	/*
350 	 * This does not change the actual hardware registers. It just
351 	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
352 	 * subsequent return to usermode will reload the registers from the
353 	 * task's memory image.
354 	 *
355 	 * Do not use fpstate_init() here. Just copy init_fpstate which has
356 	 * the correct content already except for PKRU.
357 	 *
358 	 * PKRU handling does not rely on the xstate when restoring for
359 	 * user space as PKRU is eagerly written in switch_to() and
360 	 * flush_thread().
361 	 */
362 	memcpy(&fpu->state, &init_fpstate, init_fpstate_copy_size());
363 	set_thread_flag(TIF_NEED_FPU_LOAD);
364 	fpregs_unlock();
365 }
366 
367 /*
368  * Reset current's user FPU states to the init states.  current's
369  * supervisor states, if any, are not modified by this function.  The
370  * caller guarantees that the XSTATE header in memory is intact.
371  */
372 void fpu__clear_user_states(struct fpu *fpu)
373 {
374 	WARN_ON_FPU(fpu != &current->thread.fpu);
375 
376 	fpregs_lock();
377 	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
378 		fpu_reset_fpstate();
379 		fpregs_unlock();
380 		return;
381 	}
382 
383 	/*
384 	 * Ensure that current's supervisor states are loaded into their
385 	 * corresponding registers.
386 	 */
387 	if (xfeatures_mask_supervisor() &&
388 	    !fpregs_state_valid(fpu, smp_processor_id())) {
389 		os_xrstor(&fpu->state.xsave, xfeatures_mask_supervisor());
390 	}
391 
392 	/* Reset user states in registers. */
393 	restore_fpregs_from_init_fpstate(xfeatures_mask_restore_user());
394 
395 	/*
396 	 * Now all FPU registers have their desired values.  Inform the FPU
397 	 * state machine that current's FPU registers are in the hardware
398 	 * registers. The memory image does not need to be updated because
399 	 * any operation relying on it has to save the registers first when
400 	 * current's FPU is marked active.
401 	 */
402 	fpregs_mark_activate();
403 	fpregs_unlock();
404 }
405 
406 void fpu_flush_thread(void)
407 {
408 	fpu_reset_fpstate();
409 }
410 /*
411  * Load FPU context before returning to userspace.
412  */
413 void switch_fpu_return(void)
414 {
415 	if (!static_cpu_has(X86_FEATURE_FPU))
416 		return;
417 
418 	fpregs_restore_userregs();
419 }
420 EXPORT_SYMBOL_GPL(switch_fpu_return);
421 
422 #ifdef CONFIG_X86_DEBUG_FPU
423 /*
424  * If current FPU state according to its tracking (loaded FPU context on this
425  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
426  * loaded on return to userland.
427  */
428 void fpregs_assert_state_consistent(void)
429 {
430 	struct fpu *fpu = &current->thread.fpu;
431 
432 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
433 		return;
434 
435 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
436 }
437 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
438 #endif
439 
440 void fpregs_mark_activate(void)
441 {
442 	struct fpu *fpu = &current->thread.fpu;
443 
444 	fpregs_activate(fpu);
445 	fpu->last_cpu = smp_processor_id();
446 	clear_thread_flag(TIF_NEED_FPU_LOAD);
447 }
448 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
449 
450 /*
451  * x87 math exception handling:
452  */
453 
454 int fpu__exception_code(struct fpu *fpu, int trap_nr)
455 {
456 	int err;
457 
458 	if (trap_nr == X86_TRAP_MF) {
459 		unsigned short cwd, swd;
460 		/*
461 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
462 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
463 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
464 		 * fault bit.  We should only be taking one exception at a time,
465 		 * so if this combination doesn't produce any single exception,
466 		 * then we have a bad program that isn't synchronizing its FPU usage
467 		 * and it will suffer the consequences since we won't be able to
468 		 * fully reproduce the context of the exception.
469 		 */
470 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
471 			cwd = fpu->state.fxsave.cwd;
472 			swd = fpu->state.fxsave.swd;
473 		} else {
474 			cwd = (unsigned short)fpu->state.fsave.cwd;
475 			swd = (unsigned short)fpu->state.fsave.swd;
476 		}
477 
478 		err = swd & ~cwd;
479 	} else {
480 		/*
481 		 * The SIMD FPU exceptions are handled a little differently, as there
482 		 * is only a single status/control register.  Thus, to determine which
483 		 * unmasked exception was caught we must mask the exception mask bits
484 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
485 		 */
486 		unsigned short mxcsr = MXCSR_DEFAULT;
487 
488 		if (boot_cpu_has(X86_FEATURE_XMM))
489 			mxcsr = fpu->state.fxsave.mxcsr;
490 
491 		err = ~(mxcsr >> 7) & mxcsr;
492 	}
493 
494 	if (err & 0x001) {	/* Invalid op */
495 		/*
496 		 * swd & 0x240 == 0x040: Stack Underflow
497 		 * swd & 0x240 == 0x240: Stack Overflow
498 		 * User must clear the SF bit (0x40) if set
499 		 */
500 		return FPE_FLTINV;
501 	} else if (err & 0x004) { /* Divide by Zero */
502 		return FPE_FLTDIV;
503 	} else if (err & 0x008) { /* Overflow */
504 		return FPE_FLTOVF;
505 	} else if (err & 0x012) { /* Denormal, Underflow */
506 		return FPE_FLTUND;
507 	} else if (err & 0x020) { /* Precision */
508 		return FPE_FLTRES;
509 	}
510 
511 	/*
512 	 * If we're using IRQ 13, or supposedly even some trap
513 	 * X86_TRAP_MF implementations, it's possible
514 	 * we get a spurious trap, which is not an error.
515 	 */
516 	return 0;
517 }
518