xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
14 
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
20 
21 /*
22  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23  * depending on the FPU hardware format:
24  */
25 union fpregs_state init_fpstate __read_mostly;
26 
27 /*
28  * Track whether the kernel is using the FPU state
29  * currently.
30  *
31  * This flag is used:
32  *
33  *   - by IRQ context code to potentially use the FPU
34  *     if it's unused.
35  *
36  *   - to debug kernel_fpu_begin()/end() correctness
37  */
38 static DEFINE_PER_CPU(bool, in_kernel_fpu);
39 
40 /*
41  * Track which context is using the FPU on the CPU:
42  */
43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
44 
45 static void kernel_fpu_disable(void)
46 {
47 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
48 	this_cpu_write(in_kernel_fpu, true);
49 }
50 
51 static void kernel_fpu_enable(void)
52 {
53 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
54 	this_cpu_write(in_kernel_fpu, false);
55 }
56 
57 static bool kernel_fpu_disabled(void)
58 {
59 	return this_cpu_read(in_kernel_fpu);
60 }
61 
62 static bool interrupted_kernel_fpu_idle(void)
63 {
64 	return !kernel_fpu_disabled();
65 }
66 
67 /*
68  * Were we in user mode (or vm86 mode) when we were
69  * interrupted?
70  *
71  * Doing kernel_fpu_begin/end() is ok if we are running
72  * in an interrupt context from user mode - we'll just
73  * save the FPU state as required.
74  */
75 static bool interrupted_user_mode(void)
76 {
77 	struct pt_regs *regs = get_irq_regs();
78 	return regs && user_mode(regs);
79 }
80 
81 /*
82  * Can we use the FPU in kernel mode with the
83  * whole "kernel_fpu_begin/end()" sequence?
84  *
85  * It's always ok in process context (ie "not interrupt")
86  * but it is sometimes ok even from an irq.
87  */
88 bool irq_fpu_usable(void)
89 {
90 	return !in_interrupt() ||
91 		interrupted_user_mode() ||
92 		interrupted_kernel_fpu_idle();
93 }
94 EXPORT_SYMBOL(irq_fpu_usable);
95 
96 static void __kernel_fpu_begin(void)
97 {
98 	struct fpu *fpu = &current->thread.fpu;
99 
100 	WARN_ON_FPU(!irq_fpu_usable());
101 
102 	kernel_fpu_disable();
103 
104 	if (fpu->initialized) {
105 		/*
106 		 * Ignore return value -- we don't care if reg state
107 		 * is clobbered.
108 		 */
109 		copy_fpregs_to_fpstate(fpu);
110 	} else {
111 		__cpu_invalidate_fpregs_state();
112 	}
113 }
114 
115 static void __kernel_fpu_end(void)
116 {
117 	struct fpu *fpu = &current->thread.fpu;
118 
119 	if (fpu->initialized)
120 		copy_kernel_to_fpregs(&fpu->state);
121 
122 	kernel_fpu_enable();
123 }
124 
125 void kernel_fpu_begin(void)
126 {
127 	preempt_disable();
128 	__kernel_fpu_begin();
129 }
130 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
131 
132 void kernel_fpu_end(void)
133 {
134 	__kernel_fpu_end();
135 	preempt_enable();
136 }
137 EXPORT_SYMBOL_GPL(kernel_fpu_end);
138 
139 /*
140  * Save the FPU state (mark it for reload if necessary):
141  *
142  * This only ever gets called for the current task.
143  */
144 void fpu__save(struct fpu *fpu)
145 {
146 	WARN_ON_FPU(fpu != &current->thread.fpu);
147 
148 	preempt_disable();
149 	trace_x86_fpu_before_save(fpu);
150 	if (fpu->initialized) {
151 		if (!copy_fpregs_to_fpstate(fpu)) {
152 			copy_kernel_to_fpregs(&fpu->state);
153 		}
154 	}
155 	trace_x86_fpu_after_save(fpu);
156 	preempt_enable();
157 }
158 EXPORT_SYMBOL_GPL(fpu__save);
159 
160 /*
161  * Legacy x87 fpstate state init:
162  */
163 static inline void fpstate_init_fstate(struct fregs_state *fp)
164 {
165 	fp->cwd = 0xffff037fu;
166 	fp->swd = 0xffff0000u;
167 	fp->twd = 0xffffffffu;
168 	fp->fos = 0xffff0000u;
169 }
170 
171 void fpstate_init(union fpregs_state *state)
172 {
173 	if (!static_cpu_has(X86_FEATURE_FPU)) {
174 		fpstate_init_soft(&state->soft);
175 		return;
176 	}
177 
178 	memset(state, 0, fpu_kernel_xstate_size);
179 
180 	if (static_cpu_has(X86_FEATURE_XSAVES))
181 		fpstate_init_xstate(&state->xsave);
182 	if (static_cpu_has(X86_FEATURE_FXSR))
183 		fpstate_init_fxstate(&state->fxsave);
184 	else
185 		fpstate_init_fstate(&state->fsave);
186 }
187 EXPORT_SYMBOL_GPL(fpstate_init);
188 
189 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
190 {
191 	dst_fpu->last_cpu = -1;
192 
193 	if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
194 		return 0;
195 
196 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
197 
198 	/*
199 	 * Don't let 'init optimized' areas of the XSAVE area
200 	 * leak into the child task:
201 	 */
202 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
203 
204 	/*
205 	 * Save current FPU registers directly into the child
206 	 * FPU context, without any memory-to-memory copying.
207 	 *
208 	 * ( The function 'fails' in the FNSAVE case, which destroys
209 	 *   register contents so we have to copy them back. )
210 	 */
211 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
212 		memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
213 		copy_kernel_to_fpregs(&src_fpu->state);
214 	}
215 
216 	trace_x86_fpu_copy_src(src_fpu);
217 	trace_x86_fpu_copy_dst(dst_fpu);
218 
219 	return 0;
220 }
221 
222 /*
223  * Activate the current task's in-memory FPU context,
224  * if it has not been used before:
225  */
226 void fpu__initialize(struct fpu *fpu)
227 {
228 	WARN_ON_FPU(fpu != &current->thread.fpu);
229 
230 	if (!fpu->initialized) {
231 		fpstate_init(&fpu->state);
232 		trace_x86_fpu_init_state(fpu);
233 
234 		trace_x86_fpu_activate_state(fpu);
235 		/* Safe to do for the current task: */
236 		fpu->initialized = 1;
237 	}
238 }
239 EXPORT_SYMBOL_GPL(fpu__initialize);
240 
241 /*
242  * This function must be called before we read a task's fpstate.
243  *
244  * There's two cases where this gets called:
245  *
246  * - for the current task (when coredumping), in which case we have
247  *   to save the latest FPU registers into the fpstate,
248  *
249  * - or it's called for stopped tasks (ptrace), in which case the
250  *   registers were already saved by the context-switch code when
251  *   the task scheduled out - we only have to initialize the registers
252  *   if they've never been initialized.
253  *
254  * If the task has used the FPU before then save it.
255  */
256 void fpu__prepare_read(struct fpu *fpu)
257 {
258 	if (fpu == &current->thread.fpu) {
259 		fpu__save(fpu);
260 	} else {
261 		if (!fpu->initialized) {
262 			fpstate_init(&fpu->state);
263 			trace_x86_fpu_init_state(fpu);
264 
265 			trace_x86_fpu_activate_state(fpu);
266 			/* Safe to do for current and for stopped child tasks: */
267 			fpu->initialized = 1;
268 		}
269 	}
270 }
271 
272 /*
273  * This function must be called before we write a task's fpstate.
274  *
275  * If the task has used the FPU before then invalidate any cached FPU registers.
276  * If the task has not used the FPU before then initialize its fpstate.
277  *
278  * After this function call, after registers in the fpstate are
279  * modified and the child task has woken up, the child task will
280  * restore the modified FPU state from the modified context. If we
281  * didn't clear its cached status here then the cached in-registers
282  * state pending on its former CPU could be restored, corrupting
283  * the modifications.
284  */
285 void fpu__prepare_write(struct fpu *fpu)
286 {
287 	/*
288 	 * Only stopped child tasks can be used to modify the FPU
289 	 * state in the fpstate buffer:
290 	 */
291 	WARN_ON_FPU(fpu == &current->thread.fpu);
292 
293 	if (fpu->initialized) {
294 		/* Invalidate any cached state: */
295 		__fpu_invalidate_fpregs_state(fpu);
296 	} else {
297 		fpstate_init(&fpu->state);
298 		trace_x86_fpu_init_state(fpu);
299 
300 		trace_x86_fpu_activate_state(fpu);
301 		/* Safe to do for stopped child tasks: */
302 		fpu->initialized = 1;
303 	}
304 }
305 
306 /*
307  * 'fpu__restore()' is called to copy FPU registers from
308  * the FPU fpstate to the live hw registers and to activate
309  * access to the hardware registers, so that FPU instructions
310  * can be used afterwards.
311  *
312  * Must be called with kernel preemption disabled (for example
313  * with local interrupts disabled, as it is in the case of
314  * do_device_not_available()).
315  */
316 void fpu__restore(struct fpu *fpu)
317 {
318 	fpu__initialize(fpu);
319 
320 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
321 	kernel_fpu_disable();
322 	trace_x86_fpu_before_restore(fpu);
323 	fpregs_activate(fpu);
324 	copy_kernel_to_fpregs(&fpu->state);
325 	trace_x86_fpu_after_restore(fpu);
326 	kernel_fpu_enable();
327 }
328 EXPORT_SYMBOL_GPL(fpu__restore);
329 
330 /*
331  * Drops current FPU state: deactivates the fpregs and
332  * the fpstate. NOTE: it still leaves previous contents
333  * in the fpregs in the eager-FPU case.
334  *
335  * This function can be used in cases where we know that
336  * a state-restore is coming: either an explicit one,
337  * or a reschedule.
338  */
339 void fpu__drop(struct fpu *fpu)
340 {
341 	preempt_disable();
342 
343 	if (fpu == &current->thread.fpu) {
344 		if (fpu->initialized) {
345 			/* Ignore delayed exceptions from user space */
346 			asm volatile("1: fwait\n"
347 				     "2:\n"
348 				     _ASM_EXTABLE(1b, 2b));
349 			fpregs_deactivate(fpu);
350 		}
351 	}
352 
353 	fpu->initialized = 0;
354 
355 	trace_x86_fpu_dropped(fpu);
356 
357 	preempt_enable();
358 }
359 
360 /*
361  * Clear FPU registers by setting them up from
362  * the init fpstate:
363  */
364 static inline void copy_init_fpstate_to_fpregs(void)
365 {
366 	if (use_xsave())
367 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
368 	else if (static_cpu_has(X86_FEATURE_FXSR))
369 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
370 	else
371 		copy_kernel_to_fregs(&init_fpstate.fsave);
372 
373 	if (boot_cpu_has(X86_FEATURE_OSPKE))
374 		copy_init_pkru_to_fpregs();
375 }
376 
377 /*
378  * Clear the FPU state back to init state.
379  *
380  * Called by sys_execve(), by the signal handler code and by various
381  * error paths.
382  */
383 void fpu__clear(struct fpu *fpu)
384 {
385 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
386 
387 	fpu__drop(fpu);
388 
389 	/*
390 	 * Make sure fpstate is cleared and initialized.
391 	 */
392 	if (static_cpu_has(X86_FEATURE_FPU)) {
393 		preempt_disable();
394 		fpu__initialize(fpu);
395 		user_fpu_begin();
396 		copy_init_fpstate_to_fpregs();
397 		preempt_enable();
398 	}
399 }
400 
401 /*
402  * x87 math exception handling:
403  */
404 
405 int fpu__exception_code(struct fpu *fpu, int trap_nr)
406 {
407 	int err;
408 
409 	if (trap_nr == X86_TRAP_MF) {
410 		unsigned short cwd, swd;
411 		/*
412 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
413 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
414 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
415 		 * fault bit.  We should only be taking one exception at a time,
416 		 * so if this combination doesn't produce any single exception,
417 		 * then we have a bad program that isn't synchronizing its FPU usage
418 		 * and it will suffer the consequences since we won't be able to
419 		 * fully reproduce the context of the exception.
420 		 */
421 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
422 			cwd = fpu->state.fxsave.cwd;
423 			swd = fpu->state.fxsave.swd;
424 		} else {
425 			cwd = (unsigned short)fpu->state.fsave.cwd;
426 			swd = (unsigned short)fpu->state.fsave.swd;
427 		}
428 
429 		err = swd & ~cwd;
430 	} else {
431 		/*
432 		 * The SIMD FPU exceptions are handled a little differently, as there
433 		 * is only a single status/control register.  Thus, to determine which
434 		 * unmasked exception was caught we must mask the exception mask bits
435 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
436 		 */
437 		unsigned short mxcsr = MXCSR_DEFAULT;
438 
439 		if (boot_cpu_has(X86_FEATURE_XMM))
440 			mxcsr = fpu->state.fxsave.mxcsr;
441 
442 		err = ~(mxcsr >> 7) & mxcsr;
443 	}
444 
445 	if (err & 0x001) {	/* Invalid op */
446 		/*
447 		 * swd & 0x240 == 0x040: Stack Underflow
448 		 * swd & 0x240 == 0x240: Stack Overflow
449 		 * User must clear the SF bit (0x40) if set
450 		 */
451 		return FPE_FLTINV;
452 	} else if (err & 0x004) { /* Divide by Zero */
453 		return FPE_FLTDIV;
454 	} else if (err & 0x008) { /* Overflow */
455 		return FPE_FLTOVF;
456 	} else if (err & 0x012) { /* Denormal, Underflow */
457 		return FPE_FLTUND;
458 	} else if (err & 0x020) { /* Precision */
459 		return FPE_FLTRES;
460 	}
461 
462 	/*
463 	 * If we're using IRQ 13, or supposedly even some trap
464 	 * X86_TRAP_MF implementations, it's possible
465 	 * we get a spurious trap, which is not an error.
466 	 */
467 	return 0;
468 }
469