1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/internal.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/signal.h> 12 #include <asm/fpu/types.h> 13 #include <asm/traps.h> 14 #include <asm/irq_regs.h> 15 16 #include <linux/hardirq.h> 17 #include <linux/pkeys.h> 18 19 #define CREATE_TRACE_POINTS 20 #include <asm/trace/fpu.h> 21 22 /* 23 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 24 * depending on the FPU hardware format: 25 */ 26 union fpregs_state init_fpstate __ro_after_init; 27 28 /* 29 * Track whether the kernel is using the FPU state 30 * currently. 31 * 32 * This flag is used: 33 * 34 * - by IRQ context code to potentially use the FPU 35 * if it's unused. 36 * 37 * - to debug kernel_fpu_begin()/end() correctness 38 */ 39 static DEFINE_PER_CPU(bool, in_kernel_fpu); 40 41 /* 42 * Track which context is using the FPU on the CPU: 43 */ 44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 45 46 static bool kernel_fpu_disabled(void) 47 { 48 return this_cpu_read(in_kernel_fpu); 49 } 50 51 static bool interrupted_kernel_fpu_idle(void) 52 { 53 return !kernel_fpu_disabled(); 54 } 55 56 /* 57 * Were we in user mode (or vm86 mode) when we were 58 * interrupted? 59 * 60 * Doing kernel_fpu_begin/end() is ok if we are running 61 * in an interrupt context from user mode - we'll just 62 * save the FPU state as required. 63 */ 64 static bool interrupted_user_mode(void) 65 { 66 struct pt_regs *regs = get_irq_regs(); 67 return regs && user_mode(regs); 68 } 69 70 /* 71 * Can we use the FPU in kernel mode with the 72 * whole "kernel_fpu_begin/end()" sequence? 73 * 74 * It's always ok in process context (ie "not interrupt") 75 * but it is sometimes ok even from an irq. 76 */ 77 bool irq_fpu_usable(void) 78 { 79 return !in_interrupt() || 80 interrupted_user_mode() || 81 interrupted_kernel_fpu_idle(); 82 } 83 EXPORT_SYMBOL(irq_fpu_usable); 84 85 /* 86 * Save the FPU register state in fpu->state. The register state is 87 * preserved. 88 * 89 * Must be called with fpregs_lock() held. 90 * 91 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 92 * register state has to be reloaded. That might be a pointless exercise 93 * when the FPU is going to be used by another task right after that. But 94 * this only affects 20+ years old 32bit systems and avoids conditionals all 95 * over the place. 96 * 97 * FXSAVE and all XSAVE variants preserve the FPU register state. 98 */ 99 void save_fpregs_to_fpstate(struct fpu *fpu) 100 { 101 if (likely(use_xsave())) { 102 os_xsave(&fpu->state.xsave); 103 104 /* 105 * AVX512 state is tracked here because its use is 106 * known to slow the max clock speed of the core. 107 */ 108 if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) 109 fpu->avx512_timestamp = jiffies; 110 return; 111 } 112 113 if (likely(use_fxsr())) { 114 fxsave(&fpu->state.fxsave); 115 return; 116 } 117 118 /* 119 * Legacy FPU register saving, FNSAVE always clears FPU registers, 120 * so we have to reload them from the memory state. 121 */ 122 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); 123 frstor(&fpu->state.fsave); 124 } 125 EXPORT_SYMBOL(save_fpregs_to_fpstate); 126 127 void __restore_fpregs_from_fpstate(union fpregs_state *fpstate, u64 mask) 128 { 129 /* 130 * AMD K7/K8 and later CPUs up to Zen don't save/restore 131 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 132 * here by setting it to fixed values. "m" is a random variable 133 * that should be in L1. 134 */ 135 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 136 asm volatile( 137 "fnclex\n\t" 138 "emms\n\t" 139 "fildl %P[addr]" /* set F?P to defined value */ 140 : : [addr] "m" (fpstate)); 141 } 142 143 if (use_xsave()) { 144 os_xrstor(&fpstate->xsave, mask); 145 } else { 146 if (use_fxsr()) 147 fxrstor(&fpstate->fxsave); 148 else 149 frstor(&fpstate->fsave); 150 } 151 } 152 EXPORT_SYMBOL_GPL(__restore_fpregs_from_fpstate); 153 154 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 155 { 156 preempt_disable(); 157 158 WARN_ON_FPU(!irq_fpu_usable()); 159 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 160 161 this_cpu_write(in_kernel_fpu, true); 162 163 if (!(current->flags & PF_KTHREAD) && 164 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 165 set_thread_flag(TIF_NEED_FPU_LOAD); 166 save_fpregs_to_fpstate(¤t->thread.fpu); 167 } 168 __cpu_invalidate_fpregs_state(); 169 170 /* Put sane initial values into the control registers. */ 171 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 172 ldmxcsr(MXCSR_DEFAULT); 173 174 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 175 asm volatile ("fninit"); 176 } 177 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 178 179 void kernel_fpu_end(void) 180 { 181 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 182 183 this_cpu_write(in_kernel_fpu, false); 184 preempt_enable(); 185 } 186 EXPORT_SYMBOL_GPL(kernel_fpu_end); 187 188 /* 189 * Sync the FPU register state to current's memory register state when the 190 * current task owns the FPU. The hardware register state is preserved. 191 */ 192 void fpu_sync_fpstate(struct fpu *fpu) 193 { 194 WARN_ON_FPU(fpu != ¤t->thread.fpu); 195 196 fpregs_lock(); 197 trace_x86_fpu_before_save(fpu); 198 199 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 200 save_fpregs_to_fpstate(fpu); 201 202 trace_x86_fpu_after_save(fpu); 203 fpregs_unlock(); 204 } 205 206 static inline void fpstate_init_xstate(struct xregs_state *xsave) 207 { 208 /* 209 * XRSTORS requires these bits set in xcomp_bv, or it will 210 * trigger #GP: 211 */ 212 xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; 213 } 214 215 static inline void fpstate_init_fxstate(struct fxregs_state *fx) 216 { 217 fx->cwd = 0x37f; 218 fx->mxcsr = MXCSR_DEFAULT; 219 } 220 221 /* 222 * Legacy x87 fpstate state init: 223 */ 224 static inline void fpstate_init_fstate(struct fregs_state *fp) 225 { 226 fp->cwd = 0xffff037fu; 227 fp->swd = 0xffff0000u; 228 fp->twd = 0xffffffffu; 229 fp->fos = 0xffff0000u; 230 } 231 232 void fpstate_init(union fpregs_state *state) 233 { 234 if (!static_cpu_has(X86_FEATURE_FPU)) { 235 fpstate_init_soft(&state->soft); 236 return; 237 } 238 239 memset(state, 0, fpu_kernel_xstate_size); 240 241 if (static_cpu_has(X86_FEATURE_XSAVES)) 242 fpstate_init_xstate(&state->xsave); 243 if (static_cpu_has(X86_FEATURE_FXSR)) 244 fpstate_init_fxstate(&state->fxsave); 245 else 246 fpstate_init_fstate(&state->fsave); 247 } 248 EXPORT_SYMBOL_GPL(fpstate_init); 249 250 /* Clone current's FPU state on fork */ 251 int fpu_clone(struct task_struct *dst) 252 { 253 struct fpu *src_fpu = ¤t->thread.fpu; 254 struct fpu *dst_fpu = &dst->thread.fpu; 255 256 /* The new task's FPU state cannot be valid in the hardware. */ 257 dst_fpu->last_cpu = -1; 258 259 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 260 return 0; 261 262 /* 263 * Don't let 'init optimized' areas of the XSAVE area 264 * leak into the child task: 265 */ 266 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 267 268 /* 269 * If the FPU registers are not owned by current just memcpy() the 270 * state. Otherwise save the FPU registers directly into the 271 * child's FPU context, without any memory-to-memory copying. 272 */ 273 fpregs_lock(); 274 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 275 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); 276 277 else 278 save_fpregs_to_fpstate(dst_fpu); 279 fpregs_unlock(); 280 281 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 282 283 trace_x86_fpu_copy_src(src_fpu); 284 trace_x86_fpu_copy_dst(dst_fpu); 285 286 return 0; 287 } 288 289 /* 290 * Drops current FPU state: deactivates the fpregs and 291 * the fpstate. NOTE: it still leaves previous contents 292 * in the fpregs in the eager-FPU case. 293 * 294 * This function can be used in cases where we know that 295 * a state-restore is coming: either an explicit one, 296 * or a reschedule. 297 */ 298 void fpu__drop(struct fpu *fpu) 299 { 300 preempt_disable(); 301 302 if (fpu == ¤t->thread.fpu) { 303 /* Ignore delayed exceptions from user space */ 304 asm volatile("1: fwait\n" 305 "2:\n" 306 _ASM_EXTABLE(1b, 2b)); 307 fpregs_deactivate(fpu); 308 } 309 310 trace_x86_fpu_dropped(fpu); 311 312 preempt_enable(); 313 } 314 315 /* 316 * Clear FPU registers by setting them up from the init fpstate. 317 * Caller must do fpregs_[un]lock() around it. 318 */ 319 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 320 { 321 if (use_xsave()) 322 os_xrstor(&init_fpstate.xsave, features_mask); 323 else if (use_fxsr()) 324 fxrstor(&init_fpstate.fxsave); 325 else 326 frstor(&init_fpstate.fsave); 327 328 pkru_write_default(); 329 } 330 331 static inline unsigned int init_fpstate_copy_size(void) 332 { 333 if (!use_xsave()) 334 return fpu_kernel_xstate_size; 335 336 /* XSAVE(S) just needs the legacy and the xstate header part */ 337 return sizeof(init_fpstate.xsave); 338 } 339 340 /* 341 * Reset current->fpu memory state to the init values. 342 */ 343 static void fpu_reset_fpstate(void) 344 { 345 struct fpu *fpu = ¤t->thread.fpu; 346 347 fpregs_lock(); 348 fpu__drop(fpu); 349 /* 350 * This does not change the actual hardware registers. It just 351 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 352 * subsequent return to usermode will reload the registers from the 353 * task's memory image. 354 * 355 * Do not use fpstate_init() here. Just copy init_fpstate which has 356 * the correct content already except for PKRU. 357 * 358 * PKRU handling does not rely on the xstate when restoring for 359 * user space as PKRU is eagerly written in switch_to() and 360 * flush_thread(). 361 */ 362 memcpy(&fpu->state, &init_fpstate, init_fpstate_copy_size()); 363 set_thread_flag(TIF_NEED_FPU_LOAD); 364 fpregs_unlock(); 365 } 366 367 /* 368 * Reset current's user FPU states to the init states. current's 369 * supervisor states, if any, are not modified by this function. The 370 * caller guarantees that the XSTATE header in memory is intact. 371 */ 372 void fpu__clear_user_states(struct fpu *fpu) 373 { 374 WARN_ON_FPU(fpu != ¤t->thread.fpu); 375 376 fpregs_lock(); 377 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 378 fpu_reset_fpstate(); 379 fpregs_unlock(); 380 return; 381 } 382 383 /* 384 * Ensure that current's supervisor states are loaded into their 385 * corresponding registers. 386 */ 387 if (xfeatures_mask_supervisor() && 388 !fpregs_state_valid(fpu, smp_processor_id())) { 389 os_xrstor(&fpu->state.xsave, xfeatures_mask_supervisor()); 390 } 391 392 /* Reset user states in registers. */ 393 restore_fpregs_from_init_fpstate(xfeatures_mask_restore_user()); 394 395 /* 396 * Now all FPU registers have their desired values. Inform the FPU 397 * state machine that current's FPU registers are in the hardware 398 * registers. The memory image does not need to be updated because 399 * any operation relying on it has to save the registers first when 400 * current's FPU is marked active. 401 */ 402 fpregs_mark_activate(); 403 fpregs_unlock(); 404 } 405 406 void fpu_flush_thread(void) 407 { 408 fpu_reset_fpstate(); 409 } 410 /* 411 * Load FPU context before returning to userspace. 412 */ 413 void switch_fpu_return(void) 414 { 415 if (!static_cpu_has(X86_FEATURE_FPU)) 416 return; 417 418 fpregs_restore_userregs(); 419 } 420 EXPORT_SYMBOL_GPL(switch_fpu_return); 421 422 #ifdef CONFIG_X86_DEBUG_FPU 423 /* 424 * If current FPU state according to its tracking (loaded FPU context on this 425 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 426 * loaded on return to userland. 427 */ 428 void fpregs_assert_state_consistent(void) 429 { 430 struct fpu *fpu = ¤t->thread.fpu; 431 432 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 433 return; 434 435 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 436 } 437 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 438 #endif 439 440 void fpregs_mark_activate(void) 441 { 442 struct fpu *fpu = ¤t->thread.fpu; 443 444 fpregs_activate(fpu); 445 fpu->last_cpu = smp_processor_id(); 446 clear_thread_flag(TIF_NEED_FPU_LOAD); 447 } 448 EXPORT_SYMBOL_GPL(fpregs_mark_activate); 449 450 /* 451 * x87 math exception handling: 452 */ 453 454 int fpu__exception_code(struct fpu *fpu, int trap_nr) 455 { 456 int err; 457 458 if (trap_nr == X86_TRAP_MF) { 459 unsigned short cwd, swd; 460 /* 461 * (~cwd & swd) will mask out exceptions that are not set to unmasked 462 * status. 0x3f is the exception bits in these regs, 0x200 is the 463 * C1 reg you need in case of a stack fault, 0x040 is the stack 464 * fault bit. We should only be taking one exception at a time, 465 * so if this combination doesn't produce any single exception, 466 * then we have a bad program that isn't synchronizing its FPU usage 467 * and it will suffer the consequences since we won't be able to 468 * fully reproduce the context of the exception. 469 */ 470 if (boot_cpu_has(X86_FEATURE_FXSR)) { 471 cwd = fpu->state.fxsave.cwd; 472 swd = fpu->state.fxsave.swd; 473 } else { 474 cwd = (unsigned short)fpu->state.fsave.cwd; 475 swd = (unsigned short)fpu->state.fsave.swd; 476 } 477 478 err = swd & ~cwd; 479 } else { 480 /* 481 * The SIMD FPU exceptions are handled a little differently, as there 482 * is only a single status/control register. Thus, to determine which 483 * unmasked exception was caught we must mask the exception mask bits 484 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 485 */ 486 unsigned short mxcsr = MXCSR_DEFAULT; 487 488 if (boot_cpu_has(X86_FEATURE_XMM)) 489 mxcsr = fpu->state.fxsave.mxcsr; 490 491 err = ~(mxcsr >> 7) & mxcsr; 492 } 493 494 if (err & 0x001) { /* Invalid op */ 495 /* 496 * swd & 0x240 == 0x040: Stack Underflow 497 * swd & 0x240 == 0x240: Stack Overflow 498 * User must clear the SF bit (0x40) if set 499 */ 500 return FPE_FLTINV; 501 } else if (err & 0x004) { /* Divide by Zero */ 502 return FPE_FLTDIV; 503 } else if (err & 0x008) { /* Overflow */ 504 return FPE_FLTOVF; 505 } else if (err & 0x012) { /* Denormal, Underflow */ 506 return FPE_FLTUND; 507 } else if (err & 0x020) { /* Precision */ 508 return FPE_FLTRES; 509 } 510 511 /* 512 * If we're using IRQ 13, or supposedly even some trap 513 * X86_TRAP_MF implementations, it's possible 514 * we get a spurious trap, which is not an error. 515 */ 516 return 0; 517 } 518