xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision 79a93295)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
19 
20 /*
21  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22  * depending on the FPU hardware format:
23  */
24 union fpregs_state init_fpstate __read_mostly;
25 
26 /*
27  * Track whether the kernel is using the FPU state
28  * currently.
29  *
30  * This flag is used:
31  *
32  *   - by IRQ context code to potentially use the FPU
33  *     if it's unused.
34  *
35  *   - to debug kernel_fpu_begin()/end() correctness
36  */
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
38 
39 /*
40  * Track which context is using the FPU on the CPU:
41  */
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43 
44 static void kernel_fpu_disable(void)
45 {
46 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 	this_cpu_write(in_kernel_fpu, true);
48 }
49 
50 static void kernel_fpu_enable(void)
51 {
52 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 	this_cpu_write(in_kernel_fpu, false);
54 }
55 
56 static bool kernel_fpu_disabled(void)
57 {
58 	return this_cpu_read(in_kernel_fpu);
59 }
60 
61 static bool interrupted_kernel_fpu_idle(void)
62 {
63 	return !kernel_fpu_disabled();
64 }
65 
66 /*
67  * Were we in user mode (or vm86 mode) when we were
68  * interrupted?
69  *
70  * Doing kernel_fpu_begin/end() is ok if we are running
71  * in an interrupt context from user mode - we'll just
72  * save the FPU state as required.
73  */
74 static bool interrupted_user_mode(void)
75 {
76 	struct pt_regs *regs = get_irq_regs();
77 	return regs && user_mode(regs);
78 }
79 
80 /*
81  * Can we use the FPU in kernel mode with the
82  * whole "kernel_fpu_begin/end()" sequence?
83  *
84  * It's always ok in process context (ie "not interrupt")
85  * but it is sometimes ok even from an irq.
86  */
87 bool irq_fpu_usable(void)
88 {
89 	return !in_interrupt() ||
90 		interrupted_user_mode() ||
91 		interrupted_kernel_fpu_idle();
92 }
93 EXPORT_SYMBOL(irq_fpu_usable);
94 
95 void __kernel_fpu_begin(void)
96 {
97 	struct fpu *fpu = &current->thread.fpu;
98 
99 	WARN_ON_FPU(!irq_fpu_usable());
100 
101 	kernel_fpu_disable();
102 
103 	if (fpu->fpregs_active) {
104 		/*
105 		 * Ignore return value -- we don't care if reg state
106 		 * is clobbered.
107 		 */
108 		copy_fpregs_to_fpstate(fpu);
109 	} else {
110 		__cpu_invalidate_fpregs_state();
111 	}
112 }
113 EXPORT_SYMBOL(__kernel_fpu_begin);
114 
115 void __kernel_fpu_end(void)
116 {
117 	struct fpu *fpu = &current->thread.fpu;
118 
119 	if (fpu->fpregs_active)
120 		copy_kernel_to_fpregs(&fpu->state);
121 
122 	kernel_fpu_enable();
123 }
124 EXPORT_SYMBOL(__kernel_fpu_end);
125 
126 void kernel_fpu_begin(void)
127 {
128 	preempt_disable();
129 	__kernel_fpu_begin();
130 }
131 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132 
133 void kernel_fpu_end(void)
134 {
135 	__kernel_fpu_end();
136 	preempt_enable();
137 }
138 EXPORT_SYMBOL_GPL(kernel_fpu_end);
139 
140 /*
141  * Save the FPU state (mark it for reload if necessary):
142  *
143  * This only ever gets called for the current task.
144  */
145 void fpu__save(struct fpu *fpu)
146 {
147 	WARN_ON_FPU(fpu != &current->thread.fpu);
148 
149 	preempt_disable();
150 	trace_x86_fpu_before_save(fpu);
151 	if (fpu->fpregs_active) {
152 		if (!copy_fpregs_to_fpstate(fpu)) {
153 			copy_kernel_to_fpregs(&fpu->state);
154 		}
155 	}
156 	trace_x86_fpu_after_save(fpu);
157 	preempt_enable();
158 }
159 EXPORT_SYMBOL_GPL(fpu__save);
160 
161 /*
162  * Legacy x87 fpstate state init:
163  */
164 static inline void fpstate_init_fstate(struct fregs_state *fp)
165 {
166 	fp->cwd = 0xffff037fu;
167 	fp->swd = 0xffff0000u;
168 	fp->twd = 0xffffffffu;
169 	fp->fos = 0xffff0000u;
170 }
171 
172 void fpstate_init(union fpregs_state *state)
173 {
174 	if (!static_cpu_has(X86_FEATURE_FPU)) {
175 		fpstate_init_soft(&state->soft);
176 		return;
177 	}
178 
179 	memset(state, 0, fpu_kernel_xstate_size);
180 
181 	/*
182 	 * XRSTORS requires that this bit is set in xcomp_bv, or
183 	 * it will #GP. Make sure it is replaced after the memset().
184 	 */
185 	if (static_cpu_has(X86_FEATURE_XSAVES))
186 		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;
187 
188 	if (static_cpu_has(X86_FEATURE_FXSR))
189 		fpstate_init_fxstate(&state->fxsave);
190 	else
191 		fpstate_init_fstate(&state->fsave);
192 }
193 EXPORT_SYMBOL_GPL(fpstate_init);
194 
195 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
196 {
197 	dst_fpu->fpregs_active = 0;
198 	dst_fpu->last_cpu = -1;
199 
200 	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
201 		return 0;
202 
203 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
204 
205 	/*
206 	 * Don't let 'init optimized' areas of the XSAVE area
207 	 * leak into the child task:
208 	 */
209 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
210 
211 	/*
212 	 * Save current FPU registers directly into the child
213 	 * FPU context, without any memory-to-memory copying.
214 	 * In lazy mode, if the FPU context isn't loaded into
215 	 * fpregs, CR0.TS will be set and do_device_not_available
216 	 * will load the FPU context.
217 	 *
218 	 * We have to do all this with preemption disabled,
219 	 * mostly because of the FNSAVE case, because in that
220 	 * case we must not allow preemption in the window
221 	 * between the FNSAVE and us marking the context lazy.
222 	 *
223 	 * It shouldn't be an issue as even FNSAVE is plenty
224 	 * fast in terms of critical section length.
225 	 */
226 	preempt_disable();
227 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
228 		memcpy(&src_fpu->state, &dst_fpu->state,
229 		       fpu_kernel_xstate_size);
230 
231 		copy_kernel_to_fpregs(&src_fpu->state);
232 	}
233 	preempt_enable();
234 
235 	trace_x86_fpu_copy_src(src_fpu);
236 	trace_x86_fpu_copy_dst(dst_fpu);
237 
238 	return 0;
239 }
240 
241 /*
242  * Activate the current task's in-memory FPU context,
243  * if it has not been used before:
244  */
245 void fpu__activate_curr(struct fpu *fpu)
246 {
247 	WARN_ON_FPU(fpu != &current->thread.fpu);
248 
249 	if (!fpu->fpstate_active) {
250 		fpstate_init(&fpu->state);
251 		trace_x86_fpu_init_state(fpu);
252 
253 		trace_x86_fpu_activate_state(fpu);
254 		/* Safe to do for the current task: */
255 		fpu->fpstate_active = 1;
256 	}
257 }
258 EXPORT_SYMBOL_GPL(fpu__activate_curr);
259 
260 /*
261  * This function must be called before we read a task's fpstate.
262  *
263  * If the task has not used the FPU before then initialize its
264  * fpstate.
265  *
266  * If the task has used the FPU before then save it.
267  */
268 void fpu__activate_fpstate_read(struct fpu *fpu)
269 {
270 	/*
271 	 * If fpregs are active (in the current CPU), then
272 	 * copy them to the fpstate:
273 	 */
274 	if (fpu->fpregs_active) {
275 		fpu__save(fpu);
276 	} else {
277 		if (!fpu->fpstate_active) {
278 			fpstate_init(&fpu->state);
279 			trace_x86_fpu_init_state(fpu);
280 
281 			trace_x86_fpu_activate_state(fpu);
282 			/* Safe to do for current and for stopped child tasks: */
283 			fpu->fpstate_active = 1;
284 		}
285 	}
286 }
287 
288 /*
289  * This function must be called before we write a task's fpstate.
290  *
291  * If the task has used the FPU before then unlazy it.
292  * If the task has not used the FPU before then initialize its fpstate.
293  *
294  * After this function call, after registers in the fpstate are
295  * modified and the child task has woken up, the child task will
296  * restore the modified FPU state from the modified context. If we
297  * didn't clear its lazy status here then the lazy in-registers
298  * state pending on its former CPU could be restored, corrupting
299  * the modifications.
300  */
301 void fpu__activate_fpstate_write(struct fpu *fpu)
302 {
303 	/*
304 	 * Only stopped child tasks can be used to modify the FPU
305 	 * state in the fpstate buffer:
306 	 */
307 	WARN_ON_FPU(fpu == &current->thread.fpu);
308 
309 	if (fpu->fpstate_active) {
310 		/* Invalidate any lazy state: */
311 		__fpu_invalidate_fpregs_state(fpu);
312 	} else {
313 		fpstate_init(&fpu->state);
314 		trace_x86_fpu_init_state(fpu);
315 
316 		trace_x86_fpu_activate_state(fpu);
317 		/* Safe to do for stopped child tasks: */
318 		fpu->fpstate_active = 1;
319 	}
320 }
321 
322 /*
323  * This function must be called before we write the current
324  * task's fpstate.
325  *
326  * This call gets the current FPU register state and moves
327  * it in to the 'fpstate'.  Preemption is disabled so that
328  * no writes to the 'fpstate' can occur from context
329  * swiches.
330  *
331  * Must be followed by a fpu__current_fpstate_write_end().
332  */
333 void fpu__current_fpstate_write_begin(void)
334 {
335 	struct fpu *fpu = &current->thread.fpu;
336 
337 	/*
338 	 * Ensure that the context-switching code does not write
339 	 * over the fpstate while we are doing our update.
340 	 */
341 	preempt_disable();
342 
343 	/*
344 	 * Move the fpregs in to the fpu's 'fpstate'.
345 	 */
346 	fpu__activate_fpstate_read(fpu);
347 
348 	/*
349 	 * The caller is about to write to 'fpu'.  Ensure that no
350 	 * CPU thinks that its fpregs match the fpstate.  This
351 	 * ensures we will not be lazy and skip a XRSTOR in the
352 	 * future.
353 	 */
354 	__fpu_invalidate_fpregs_state(fpu);
355 }
356 
357 /*
358  * This function must be paired with fpu__current_fpstate_write_begin()
359  *
360  * This will ensure that the modified fpstate gets placed back in
361  * the fpregs if necessary.
362  *
363  * Note: This function may be called whether or not an _actual_
364  * write to the fpstate occurred.
365  */
366 void fpu__current_fpstate_write_end(void)
367 {
368 	struct fpu *fpu = &current->thread.fpu;
369 
370 	/*
371 	 * 'fpu' now has an updated copy of the state, but the
372 	 * registers may still be out of date.  Update them with
373 	 * an XRSTOR if they are active.
374 	 */
375 	if (fpregs_active())
376 		copy_kernel_to_fpregs(&fpu->state);
377 
378 	/*
379 	 * Our update is done and the fpregs/fpstate are in sync
380 	 * if necessary.  Context switches can happen again.
381 	 */
382 	preempt_enable();
383 }
384 
385 /*
386  * 'fpu__restore()' is called to copy FPU registers from
387  * the FPU fpstate to the live hw registers and to activate
388  * access to the hardware registers, so that FPU instructions
389  * can be used afterwards.
390  *
391  * Must be called with kernel preemption disabled (for example
392  * with local interrupts disabled, as it is in the case of
393  * do_device_not_available()).
394  */
395 void fpu__restore(struct fpu *fpu)
396 {
397 	fpu__activate_curr(fpu);
398 
399 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
400 	kernel_fpu_disable();
401 	trace_x86_fpu_before_restore(fpu);
402 	fpregs_activate(fpu);
403 	copy_kernel_to_fpregs(&fpu->state);
404 	trace_x86_fpu_after_restore(fpu);
405 	kernel_fpu_enable();
406 }
407 EXPORT_SYMBOL_GPL(fpu__restore);
408 
409 /*
410  * Drops current FPU state: deactivates the fpregs and
411  * the fpstate. NOTE: it still leaves previous contents
412  * in the fpregs in the eager-FPU case.
413  *
414  * This function can be used in cases where we know that
415  * a state-restore is coming: either an explicit one,
416  * or a reschedule.
417  */
418 void fpu__drop(struct fpu *fpu)
419 {
420 	preempt_disable();
421 
422 	if (fpu->fpregs_active) {
423 		/* Ignore delayed exceptions from user space */
424 		asm volatile("1: fwait\n"
425 			     "2:\n"
426 			     _ASM_EXTABLE(1b, 2b));
427 		fpregs_deactivate(fpu);
428 	}
429 
430 	fpu->fpstate_active = 0;
431 
432 	trace_x86_fpu_dropped(fpu);
433 
434 	preempt_enable();
435 }
436 
437 /*
438  * Clear FPU registers by setting them up from
439  * the init fpstate:
440  */
441 static inline void copy_init_fpstate_to_fpregs(void)
442 {
443 	if (use_xsave())
444 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
445 	else if (static_cpu_has(X86_FEATURE_FXSR))
446 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
447 	else
448 		copy_kernel_to_fregs(&init_fpstate.fsave);
449 
450 	if (boot_cpu_has(X86_FEATURE_OSPKE))
451 		copy_init_pkru_to_fpregs();
452 }
453 
454 /*
455  * Clear the FPU state back to init state.
456  *
457  * Called by sys_execve(), by the signal handler code and by various
458  * error paths.
459  */
460 void fpu__clear(struct fpu *fpu)
461 {
462 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
463 
464 	fpu__drop(fpu);
465 
466 	/*
467 	 * Make sure fpstate is cleared and initialized.
468 	 */
469 	if (static_cpu_has(X86_FEATURE_FPU)) {
470 		fpu__activate_curr(fpu);
471 		user_fpu_begin();
472 		copy_init_fpstate_to_fpregs();
473 	}
474 }
475 
476 /*
477  * x87 math exception handling:
478  */
479 
480 int fpu__exception_code(struct fpu *fpu, int trap_nr)
481 {
482 	int err;
483 
484 	if (trap_nr == X86_TRAP_MF) {
485 		unsigned short cwd, swd;
486 		/*
487 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
488 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
489 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
490 		 * fault bit.  We should only be taking one exception at a time,
491 		 * so if this combination doesn't produce any single exception,
492 		 * then we have a bad program that isn't synchronizing its FPU usage
493 		 * and it will suffer the consequences since we won't be able to
494 		 * fully reproduce the context of the exception.
495 		 */
496 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
497 			cwd = fpu->state.fxsave.cwd;
498 			swd = fpu->state.fxsave.swd;
499 		} else {
500 			cwd = (unsigned short)fpu->state.fsave.cwd;
501 			swd = (unsigned short)fpu->state.fsave.swd;
502 		}
503 
504 		err = swd & ~cwd;
505 	} else {
506 		/*
507 		 * The SIMD FPU exceptions are handled a little differently, as there
508 		 * is only a single status/control register.  Thus, to determine which
509 		 * unmasked exception was caught we must mask the exception mask bits
510 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
511 		 */
512 		unsigned short mxcsr = MXCSR_DEFAULT;
513 
514 		if (boot_cpu_has(X86_FEATURE_XMM))
515 			mxcsr = fpu->state.fxsave.mxcsr;
516 
517 		err = ~(mxcsr >> 7) & mxcsr;
518 	}
519 
520 	if (err & 0x001) {	/* Invalid op */
521 		/*
522 		 * swd & 0x240 == 0x040: Stack Underflow
523 		 * swd & 0x240 == 0x240: Stack Overflow
524 		 * User must clear the SF bit (0x40) if set
525 		 */
526 		return FPE_FLTINV;
527 	} else if (err & 0x004) { /* Divide by Zero */
528 		return FPE_FLTDIV;
529 	} else if (err & 0x008) { /* Overflow */
530 		return FPE_FLTOVF;
531 	} else if (err & 0x012) { /* Denormal, Underflow */
532 		return FPE_FLTUND;
533 	} else if (err & 0x020) { /* Precision */
534 		return FPE_FLTRES;
535 	}
536 
537 	/*
538 	 * If we're using IRQ 13, or supposedly even some trap
539 	 * X86_TRAP_MF implementations, it's possible
540 	 * we get a spurious trap, which is not an error.
541 	 */
542 	return 0;
543 }
544