1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * General FPU state handling cleanups 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 #include <asm/fpu/internal.h> 9 #include <asm/fpu/regset.h> 10 #include <asm/fpu/signal.h> 11 #include <asm/fpu/types.h> 12 #include <asm/traps.h> 13 14 #include <linux/hardirq.h> 15 #include <linux/pkeys.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <asm/trace/fpu.h> 19 20 /* 21 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 22 * depending on the FPU hardware format: 23 */ 24 union fpregs_state init_fpstate __read_mostly; 25 26 /* 27 * Track whether the kernel is using the FPU state 28 * currently. 29 * 30 * This flag is used: 31 * 32 * - by IRQ context code to potentially use the FPU 33 * if it's unused. 34 * 35 * - to debug kernel_fpu_begin()/end() correctness 36 */ 37 static DEFINE_PER_CPU(bool, in_kernel_fpu); 38 39 /* 40 * Track which context is using the FPU on the CPU: 41 */ 42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 43 44 static void kernel_fpu_disable(void) 45 { 46 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 47 this_cpu_write(in_kernel_fpu, true); 48 } 49 50 static void kernel_fpu_enable(void) 51 { 52 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 53 this_cpu_write(in_kernel_fpu, false); 54 } 55 56 static bool kernel_fpu_disabled(void) 57 { 58 return this_cpu_read(in_kernel_fpu); 59 } 60 61 static bool interrupted_kernel_fpu_idle(void) 62 { 63 return !kernel_fpu_disabled(); 64 } 65 66 /* 67 * Were we in user mode (or vm86 mode) when we were 68 * interrupted? 69 * 70 * Doing kernel_fpu_begin/end() is ok if we are running 71 * in an interrupt context from user mode - we'll just 72 * save the FPU state as required. 73 */ 74 static bool interrupted_user_mode(void) 75 { 76 struct pt_regs *regs = get_irq_regs(); 77 return regs && user_mode(regs); 78 } 79 80 /* 81 * Can we use the FPU in kernel mode with the 82 * whole "kernel_fpu_begin/end()" sequence? 83 * 84 * It's always ok in process context (ie "not interrupt") 85 * but it is sometimes ok even from an irq. 86 */ 87 bool irq_fpu_usable(void) 88 { 89 return !in_interrupt() || 90 interrupted_user_mode() || 91 interrupted_kernel_fpu_idle(); 92 } 93 EXPORT_SYMBOL(irq_fpu_usable); 94 95 void __kernel_fpu_begin(void) 96 { 97 struct fpu *fpu = ¤t->thread.fpu; 98 99 WARN_ON_FPU(!irq_fpu_usable()); 100 101 kernel_fpu_disable(); 102 103 if (fpu->initialized) { 104 /* 105 * Ignore return value -- we don't care if reg state 106 * is clobbered. 107 */ 108 copy_fpregs_to_fpstate(fpu); 109 } else { 110 __cpu_invalidate_fpregs_state(); 111 } 112 } 113 EXPORT_SYMBOL(__kernel_fpu_begin); 114 115 void __kernel_fpu_end(void) 116 { 117 struct fpu *fpu = ¤t->thread.fpu; 118 119 if (fpu->initialized) 120 copy_kernel_to_fpregs(&fpu->state); 121 122 kernel_fpu_enable(); 123 } 124 EXPORT_SYMBOL(__kernel_fpu_end); 125 126 void kernel_fpu_begin(void) 127 { 128 preempt_disable(); 129 __kernel_fpu_begin(); 130 } 131 EXPORT_SYMBOL_GPL(kernel_fpu_begin); 132 133 void kernel_fpu_end(void) 134 { 135 __kernel_fpu_end(); 136 preempt_enable(); 137 } 138 EXPORT_SYMBOL_GPL(kernel_fpu_end); 139 140 /* 141 * Save the FPU state (mark it for reload if necessary): 142 * 143 * This only ever gets called for the current task. 144 */ 145 void fpu__save(struct fpu *fpu) 146 { 147 WARN_ON_FPU(fpu != ¤t->thread.fpu); 148 149 preempt_disable(); 150 trace_x86_fpu_before_save(fpu); 151 if (fpu->initialized) { 152 if (!copy_fpregs_to_fpstate(fpu)) { 153 copy_kernel_to_fpregs(&fpu->state); 154 } 155 } 156 trace_x86_fpu_after_save(fpu); 157 preempt_enable(); 158 } 159 EXPORT_SYMBOL_GPL(fpu__save); 160 161 /* 162 * Legacy x87 fpstate state init: 163 */ 164 static inline void fpstate_init_fstate(struct fregs_state *fp) 165 { 166 fp->cwd = 0xffff037fu; 167 fp->swd = 0xffff0000u; 168 fp->twd = 0xffffffffu; 169 fp->fos = 0xffff0000u; 170 } 171 172 void fpstate_init(union fpregs_state *state) 173 { 174 if (!static_cpu_has(X86_FEATURE_FPU)) { 175 fpstate_init_soft(&state->soft); 176 return; 177 } 178 179 memset(state, 0, fpu_kernel_xstate_size); 180 181 if (static_cpu_has(X86_FEATURE_XSAVES)) 182 fpstate_init_xstate(&state->xsave); 183 if (static_cpu_has(X86_FEATURE_FXSR)) 184 fpstate_init_fxstate(&state->fxsave); 185 else 186 fpstate_init_fstate(&state->fsave); 187 } 188 EXPORT_SYMBOL_GPL(fpstate_init); 189 190 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu) 191 { 192 dst_fpu->last_cpu = -1; 193 194 if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU)) 195 return 0; 196 197 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 198 199 /* 200 * Don't let 'init optimized' areas of the XSAVE area 201 * leak into the child task: 202 */ 203 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 204 205 /* 206 * Save current FPU registers directly into the child 207 * FPU context, without any memory-to-memory copying. 208 * 209 * ( The function 'fails' in the FNSAVE case, which destroys 210 * register contents so we have to copy them back. ) 211 */ 212 if (!copy_fpregs_to_fpstate(dst_fpu)) { 213 memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size); 214 copy_kernel_to_fpregs(&src_fpu->state); 215 } 216 217 trace_x86_fpu_copy_src(src_fpu); 218 trace_x86_fpu_copy_dst(dst_fpu); 219 220 return 0; 221 } 222 223 /* 224 * Activate the current task's in-memory FPU context, 225 * if it has not been used before: 226 */ 227 void fpu__initialize(struct fpu *fpu) 228 { 229 WARN_ON_FPU(fpu != ¤t->thread.fpu); 230 231 if (!fpu->initialized) { 232 fpstate_init(&fpu->state); 233 trace_x86_fpu_init_state(fpu); 234 235 trace_x86_fpu_activate_state(fpu); 236 /* Safe to do for the current task: */ 237 fpu->initialized = 1; 238 } 239 } 240 EXPORT_SYMBOL_GPL(fpu__initialize); 241 242 /* 243 * This function must be called before we read a task's fpstate. 244 * 245 * There's two cases where this gets called: 246 * 247 * - for the current task (when coredumping), in which case we have 248 * to save the latest FPU registers into the fpstate, 249 * 250 * - or it's called for stopped tasks (ptrace), in which case the 251 * registers were already saved by the context-switch code when 252 * the task scheduled out - we only have to initialize the registers 253 * if they've never been initialized. 254 * 255 * If the task has used the FPU before then save it. 256 */ 257 void fpu__prepare_read(struct fpu *fpu) 258 { 259 if (fpu == ¤t->thread.fpu) { 260 fpu__save(fpu); 261 } else { 262 if (!fpu->initialized) { 263 fpstate_init(&fpu->state); 264 trace_x86_fpu_init_state(fpu); 265 266 trace_x86_fpu_activate_state(fpu); 267 /* Safe to do for current and for stopped child tasks: */ 268 fpu->initialized = 1; 269 } 270 } 271 } 272 273 /* 274 * This function must be called before we write a task's fpstate. 275 * 276 * If the task has used the FPU before then invalidate any cached FPU registers. 277 * If the task has not used the FPU before then initialize its fpstate. 278 * 279 * After this function call, after registers in the fpstate are 280 * modified and the child task has woken up, the child task will 281 * restore the modified FPU state from the modified context. If we 282 * didn't clear its cached status here then the cached in-registers 283 * state pending on its former CPU could be restored, corrupting 284 * the modifications. 285 */ 286 void fpu__prepare_write(struct fpu *fpu) 287 { 288 /* 289 * Only stopped child tasks can be used to modify the FPU 290 * state in the fpstate buffer: 291 */ 292 WARN_ON_FPU(fpu == ¤t->thread.fpu); 293 294 if (fpu->initialized) { 295 /* Invalidate any cached state: */ 296 __fpu_invalidate_fpregs_state(fpu); 297 } else { 298 fpstate_init(&fpu->state); 299 trace_x86_fpu_init_state(fpu); 300 301 trace_x86_fpu_activate_state(fpu); 302 /* Safe to do for stopped child tasks: */ 303 fpu->initialized = 1; 304 } 305 } 306 307 /* 308 * 'fpu__restore()' is called to copy FPU registers from 309 * the FPU fpstate to the live hw registers and to activate 310 * access to the hardware registers, so that FPU instructions 311 * can be used afterwards. 312 * 313 * Must be called with kernel preemption disabled (for example 314 * with local interrupts disabled, as it is in the case of 315 * do_device_not_available()). 316 */ 317 void fpu__restore(struct fpu *fpu) 318 { 319 fpu__initialize(fpu); 320 321 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */ 322 kernel_fpu_disable(); 323 trace_x86_fpu_before_restore(fpu); 324 fpregs_activate(fpu); 325 copy_kernel_to_fpregs(&fpu->state); 326 trace_x86_fpu_after_restore(fpu); 327 kernel_fpu_enable(); 328 } 329 EXPORT_SYMBOL_GPL(fpu__restore); 330 331 /* 332 * Drops current FPU state: deactivates the fpregs and 333 * the fpstate. NOTE: it still leaves previous contents 334 * in the fpregs in the eager-FPU case. 335 * 336 * This function can be used in cases where we know that 337 * a state-restore is coming: either an explicit one, 338 * or a reschedule. 339 */ 340 void fpu__drop(struct fpu *fpu) 341 { 342 preempt_disable(); 343 344 if (fpu == ¤t->thread.fpu) { 345 if (fpu->initialized) { 346 /* Ignore delayed exceptions from user space */ 347 asm volatile("1: fwait\n" 348 "2:\n" 349 _ASM_EXTABLE(1b, 2b)); 350 fpregs_deactivate(fpu); 351 } 352 } 353 354 fpu->initialized = 0; 355 356 trace_x86_fpu_dropped(fpu); 357 358 preempt_enable(); 359 } 360 361 /* 362 * Clear FPU registers by setting them up from 363 * the init fpstate: 364 */ 365 static inline void copy_init_fpstate_to_fpregs(void) 366 { 367 if (use_xsave()) 368 copy_kernel_to_xregs(&init_fpstate.xsave, -1); 369 else if (static_cpu_has(X86_FEATURE_FXSR)) 370 copy_kernel_to_fxregs(&init_fpstate.fxsave); 371 else 372 copy_kernel_to_fregs(&init_fpstate.fsave); 373 374 if (boot_cpu_has(X86_FEATURE_OSPKE)) 375 copy_init_pkru_to_fpregs(); 376 } 377 378 /* 379 * Clear the FPU state back to init state. 380 * 381 * Called by sys_execve(), by the signal handler code and by various 382 * error paths. 383 */ 384 void fpu__clear(struct fpu *fpu) 385 { 386 WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ 387 388 fpu__drop(fpu); 389 390 /* 391 * Make sure fpstate is cleared and initialized. 392 */ 393 if (static_cpu_has(X86_FEATURE_FPU)) { 394 preempt_disable(); 395 fpu__initialize(fpu); 396 user_fpu_begin(); 397 copy_init_fpstate_to_fpregs(); 398 preempt_enable(); 399 } 400 } 401 402 /* 403 * x87 math exception handling: 404 */ 405 406 int fpu__exception_code(struct fpu *fpu, int trap_nr) 407 { 408 int err; 409 410 if (trap_nr == X86_TRAP_MF) { 411 unsigned short cwd, swd; 412 /* 413 * (~cwd & swd) will mask out exceptions that are not set to unmasked 414 * status. 0x3f is the exception bits in these regs, 0x200 is the 415 * C1 reg you need in case of a stack fault, 0x040 is the stack 416 * fault bit. We should only be taking one exception at a time, 417 * so if this combination doesn't produce any single exception, 418 * then we have a bad program that isn't synchronizing its FPU usage 419 * and it will suffer the consequences since we won't be able to 420 * fully reproduce the context of the exception. 421 */ 422 if (boot_cpu_has(X86_FEATURE_FXSR)) { 423 cwd = fpu->state.fxsave.cwd; 424 swd = fpu->state.fxsave.swd; 425 } else { 426 cwd = (unsigned short)fpu->state.fsave.cwd; 427 swd = (unsigned short)fpu->state.fsave.swd; 428 } 429 430 err = swd & ~cwd; 431 } else { 432 /* 433 * The SIMD FPU exceptions are handled a little differently, as there 434 * is only a single status/control register. Thus, to determine which 435 * unmasked exception was caught we must mask the exception mask bits 436 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 437 */ 438 unsigned short mxcsr = MXCSR_DEFAULT; 439 440 if (boot_cpu_has(X86_FEATURE_XMM)) 441 mxcsr = fpu->state.fxsave.mxcsr; 442 443 err = ~(mxcsr >> 7) & mxcsr; 444 } 445 446 if (err & 0x001) { /* Invalid op */ 447 /* 448 * swd & 0x240 == 0x040: Stack Underflow 449 * swd & 0x240 == 0x240: Stack Overflow 450 * User must clear the SF bit (0x40) if set 451 */ 452 return FPE_FLTINV; 453 } else if (err & 0x004) { /* Divide by Zero */ 454 return FPE_FLTDIV; 455 } else if (err & 0x008) { /* Overflow */ 456 return FPE_FLTOVF; 457 } else if (err & 0x012) { /* Denormal, Underflow */ 458 return FPE_FLTUND; 459 } else if (err & 0x020) { /* Precision */ 460 return FPE_FLTRES; 461 } 462 463 /* 464 * If we're using IRQ 13, or supposedly even some trap 465 * X86_TRAP_MF implementations, it's possible 466 * we get a spurious trap, which is not an error. 467 */ 468 return 0; 469 } 470